SVG动态无功补偿装置原理
35KV直挂式SVG

— 负载:1500kW发电机共33台
— 规模:49.5MVA — 海拔:3300米
Page 17
云南丽江牦牛坪风电场8MVar SVG现场图片
Page 18
云南丽江牦牛坪风电场8MVar SVG户外部分图片
Page 19
直挂式范例:(35kV16M直挂式SVG)
系统:110/35kV 方案:35kV直挂式SVG(16Mvar)
Thank you !
Page 26
SVC的应用效果
滤除电网谐波
Page 27
80
100
无功补偿度 C(%)
闪变补偿效果与补偿容量和响应时间曲线
n Ø Ø
结论: SVC抑制电压闪变能力为2:1 SVG抑制电压闪变能力为5:1
SVC与SVG闪变抑制效果对比图
Page 11
ZG-dSVG 特点2
谐波输出特性优异
输出电流THDi=1.3%
Page 12
ZG-dSVG 特点3
容性-感性输出突变性能优异
实测SVG输出电流突变(容性-感性)
n 结论:特别为冲击性较大 的负荷量身打造。
实测SVG输出电流突变(感性-容性)
Page 13
ZG-dSVG 特点4 V-I特性
SVG低压特性好,是恒定的电流源,系统电压降低时,仍能输出 额定无功电流,并且具备很强的过载能力。
SVC阻抗特性,输出能力线性降低,系统电压降低时,输出无功 电流成比例下降,不具备过载能力。
Page 5
成套装置主接线图
Page 6
成套装置布置图
420
?
0 70
3300
1500
2400
2300
2800
SVG工作原理、控制系统及关键技术说明书

SVG工作原理、控制系统与关键技术说明SVG(Static Var Generator, 动态无功补偿装置)是一种采用自换相变流电路的现代无功补偿装置,是当今无功补偿领域最新技术,又称为STAT〔Static Synchronous pensator, 动态无功补偿装置〕。
SVG 动态无功补偿装置在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面更具优势。
SVG产品技术特点:※触发、监控单元分相独立化设计,运行速度快,抗干扰性强;※基于瞬时无功功率理论的无功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专用的IGBT 驱动电路,保证了IGBT 高频开断的可靠性,并将状态监控信息实时上传至上层监控系统;※链节自取能设计,可靠性高;※链式结构模块化设计,满足系统高可靠性的要求,维护方便;※叠层铜排应用,满足IGBT 高频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的无功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出无功电流不受母线电压影响;※对系统阻抗参数不敏感。
电网电能质量存在的问题1.1非线性负荷大量接入电网和负载的频繁波动,对电能质量产生严重影响:(1) 输电系统缺乏与时的无功调节,系统振荡容易扩大,降低输电系统的稳定性;(2) 负荷中心缺乏快速的无功支撑,容易造成电压偏低;(3) 功率因数低,增加电网损耗,加大生产本钱,降低生产效率;(4) 产生的无功冲击引起电网电压降低、电压波动与闪变,严重时导致传动装置与保护装置无常工作甚至停产;(5) 产生大量谐波电流,导致电网电压畸变,引起:①保护与安全自动装置误动作;②电容器组谐波电流放大,使电容器过负荷或过电压,甚至烧毁;③增加变压器损耗,引起变压器发热;④导致电力设备发热,电机力矩不稳甚至损坏;⑤加速电力设备绝缘老化;⑥降低电弧炉生产效率,增加损耗;⑦干扰通讯信号;(6) 导致电网三相电压不平衡,产生负序电流使电机转子发生振动。
浅谈动态无功补偿(SVG)设计在城市轨道交通供电系统中的应用

浅谈动态无功补偿 (SVG)设计在城市轨道交通供电系统中的应用摘要:在城市轨道交通工程中,电力系统功率因数的调节总是复杂的。
由于城市轨道交通运营初期电力系统负荷率低,电力电缆产生的无功功率难以吸收,导致系统功率因数低,无功损耗大。
另一方面,由于城市轨道交通的特点是夜间维护、白天运营,白天不同时段的负荷性质不同,电力系统的功率因数在固定时间内不符合电力部门的要求。
因此,必须引入SVG作为城市轨道交通电力系统的功率因数调节解决方案。
关键词:城市轨道交通;供电系统;动态无功补偿;功率因数调整前言城市轨道交通的运营离不开电力系统的支撑。
优化电力系统电能质量的关键在于动态调整系统功率因数,以更好地保证电能质量。
从城市轨道交通无功补偿现状出发,介绍了无功补偿装置的特点和优点,研究了将SVG无功补偿装置添加到电力系统的方法,该装置的使用可以大大提高电能质量。
一、SVG动态无功补偿装置的基本原理和组成SVG动态无功连续补偿装置是一种新型的可调连续双向补偿电源。
基本原理是:IGBT管式三相并联变换器并联并网,系统电流由电流变换器采集到SVG控制系统中,控制系统通过实时控制电路分离负载电流中的无功元件,并采用IGBT 触发控制通过调整三相变换器直流侧输出电压的相位和幅度,可以快速吸收(在感知模式下)或发射(在体积模式下)持续不断地补偿动态无功所需的无功电流。
SVG的基本原理是通过高压连接变压器将自动开关桥电路连接到电网上,正确调整桥电路交流侧输出电压的幅度和相位,或者直接控制桥电路交流电流,使电路吸收或释放符合的无功电流h .无功补偿装置H.SVG在原理上有创新突破,使电容器失效,无电容器产生无功。
全面解决了和谐环境下的动态无功补偿问题,是无功补偿的替代产物。
二、城市轨道交通无功补偿的现状城市轨道交通工程供电系统采用双层集中供电系统。
主要由110kV主变电站、35kV牵引减压联合变电站组成。
分析了电力系统的组成和负荷组成,无功补偿要求主要由牵引负荷、变压器负荷和电缆负荷以及电力照明负荷组成。
SVG原理简介

静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或 PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比 SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。
SVG工作原理、控制系统及关键技术说明

SVG⼯作原理、控制系统及关键技术说明SVG⼯作原理、控制系统及关键技术说明SVG(Static Var Generator, 动态⽆功补偿装置)是⼀种采⽤⾃换相变流电路的现代⽆功补偿装置,是当今⽆功补偿领域最新技术,⼜称为STATCOM(Static Synchronous Compensator, 动态⽆功补偿装置)。
SVG 动态⽆功补偿装置在响应速度、稳定电⽹电压、降低系统损耗、增加传输能⼒、提⾼瞬变电压极限、降低谐波和减少占地⾯积等多⽅⾯更具优势。
SVG产品技术特点:※触发、监控单元分相独⽴化设计,运⾏速度快,抗⼲扰性强;※基于瞬时⽆功功率理论的⽆功检测技术;※直流侧电压平衡控制;※完善的保护功能;※专⽤的IGBT 驱动电路,保证了IGBT ⾼频开断的可靠性,并将状态监控信息实时上传⾄上层监控系统;※链节⾃取能设计,可靠性⾼;※链式结构模块化设计,满⾜系统⾼可靠性的要求,维护⽅便;※叠层铜排应⽤,满⾜IGBT ⾼频触发的要求;※响应时间可达5ms。
※能够提供从感性到容性的连续、平滑、动态、快速的⽆功功率补偿;※能够解决负荷的不平衡问题;※电流源特性,输出⽆功电流不受母线电压影响;※对系统阻抗参数不敏感。
电⽹电能质量存在的问题1.1⾮线性负荷⼤量接⼊电⽹和负载的频繁波动,对电能质量产⽣严重影响:(1) 输电系统缺乏及时的⽆功调节,系统振荡容易扩⼤,降低输电系统的稳定性;(2) 负荷中⼼缺乏快速的⽆功⽀撑,容易造成电压偏低;(3) 功率因数低,增加电⽹损耗,加⼤⽣产成本,降低⽣产效率;(4) 产⽣的⽆功冲击引起电⽹电压降低、电压波动及闪变,严重时导致传动装置及保护装置⽆法正常⼯作甚⾄停产;(5) 产⽣⼤量谐波电流,导致电⽹电压畸变,引起:①保护及安全⾃动装置误动作;②电容器组谐波电流放⼤,使电容器过负荷或过电压,甚⾄烧毁;③增加变压器损耗,引起变压器发热;④导致电⼒设备发热,电机⼒矩不稳甚⾄损坏;⑤加速电⼒设备绝缘⽼化;⑥降低电弧炉⽣产效率,增加损耗;⑦⼲扰通讯信号;(6) 导致电⽹三相电压不平衡,产⽣负序电流使电机转⼦发⽣振动。
高压动态无功补偿与滤波装置SVG概述

⾼压动态⽆功补偿与滤波装置SVG概述⾼压动态⽆功补偿与滤波装置(SVG)概述第⼀篇、SVG产品概述柔性交流输电系统(FACTS)技术是电⼒⾏业世界前沿科技,它是指采⽤电⼒电⼦型静⽌控制器来加强交流输电系统可控性和增强输电线路功率传输能⼒。
静⽌同步补偿器(Static Synchronous Compensator, STATCOM,⼜称为SVG)是FACTS中的⼀种重要装置,是⼀种新型的动态⽆功补偿装置,它在输电⽹、受端⼤电⽹和⽤户侧电能质量控制中都有⼴阔的应⽤,其核⼼的⼤功率换流器技术也是FACTS的核⼼技术。
1.1SVG原理及结构1)、SVG的原理电容⽆功补偿的原理是:容性⽆功功率在本质是电压与超前它90°的电流的乘积。
感性⽆功功率是电压与滞后它90°的电流的乘积。
⽽SVG的原理就是适当地调节桥式电路交流侧输出电压的幅值和相位或者直接控制其交流侧电流就可以使该电路吸收或者发出满⾜要求的超前90°或滞后90°的⽆功电流,从其原理上来补偿和实现动态⽆功补偿的⽬的。
SVG以三相⼤功率电压逆变器为核⼼,其输出电压通过变压器或电抗器接⼊系统,与系统侧电压保持同频、同相,通过调节其输出电压幅值与系统电压幅值的关系来确定输出功率的性质与容量,当其幅值⼤于系统侧电压幅值时输出容性⽆功,⼩于时输出感性⽆功。
其原理如下图所⽰:图1 SVG⼯作原理⽰意图2)、SVG的组成SVG的组成部分主要由连接电抗器、启动装置、IGBT换流阀组、控制系统、等部分组成。
请参考⽰意图:1.2SVG 补偿技术的优势SVG型动态⽆功补偿与谐波治理装置是⽬前最先进的动态⽆功补偿技术。
具备补偿性能强、谐波特性好、运⾏安全性可靠性⾼、占地⾯积⼩、损耗⼩噪⾳低、可靠性⾼维护量⼩等特点。
(1)补偿性能强:动态快速连续调节⽆功输出,最⼤限度满⾜功率因数补偿要求,任意时刻的功率因数按近1.0,设备投资效益⾼。
浅谈动态无功补偿装置(SVG)在风电场的应用

浅谈动态无功补偿装置(SVG)在风电场的应用摘要:随着风电场建设规模的增大,装机容量的大幅上升,其接入系统后对电网的影响也日益严重,而SVG动态无功补偿装置在满足无功功率、谐波治理,提高功率因数及电能质量,降低损耗,调整电压等方面起着重要作用。
关键词:风电场SVG;动态无功补偿装置风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,导致并网功率因数不合格、电压波动和闪变等问题,对于大容量风电场接入系统时还存在稳定性问题,都需要动态无功补偿系统。
另一方面,系统电压的波动也会对风机的正常运行造成影响。
而且随着技术的发展和完善,SVG的优势越来越明显,在风电场的设计中,无功补偿装置也越来越多的采用了SVG技术。
一、风电场无功消耗分析风电场无功消耗主要有以下几个方面:1.风力发电机组的无功消耗,不同机型,不同的机组内无功配置,无功消耗也不同。
2.与风力发电机配套的箱式变压器的无功消耗,一般消耗无功的比例为箱变容量2%-4%,与箱变的短路阻抗有关。
3.风力发电机组配电线路的无功消耗,电缆线路还是架空线路也不同,-般而言:电缆产生无功,架空线路消耗无功。
4.风力发电场升压主变的无功消耗。
一般消耗无功比例为变压器容量的3%左右。
二、风电场对无功补偿的要求当前风电场成熟的设计运行模式是相对较小容量的单台风机由1台箱式变压器升压接至集电线路,多台并联连接后接至统一的35 kV母线上,一个中等规模的风电场需要数十台箱式变压器。
依据风能特性,风电场的有功是随机、动态变化的,因此风电场的无功需求也是随机、动态变化的。
风电场变化的无功将会将会给数量众多的风力发电机组、箱式变压器以及主变压器和长距离的输电线路等带来无功损耗。
为解诀并网风电带来的电压及谐波问题,就需要风电场有动态、宽幅可调的无功容量及消谐能力,以减少风力发电功率波动对电网电压的影响,提高系统的稳定性。
风电场的无功电源包括风力发电机组和风电场的无功补偿装置。
浅论动态无功补偿装置SVG在光伏电站的应用

浅论动态无功补偿装置SVG在光伏电站的应用摘要:随着时代的发展,我国电力行业也取得了很大的发展,而在光伏电站中,使用无功补偿装置可以有效将系统的稳定性以及光伏输送容量提高,此外,还可以有效避免出现电压崩溃的情况。
SVG即为无功补偿装置,该装置在电力系统中得了大量的应用。
关键词:动态无功补偿装置;SVG;光伏电站引言随着时代的发展,人们对电力行业的要求也在不断提高,在电网中应用光伏电站对过去系统的潮流分布进行了改变,过去的电网如果接入的容量过大会导致并网点的电压超出限制。
此外,随着外界环境中光照以及温度的不同,也会导致并网点输出的有功功率出现变动,这时就需要对系统的无功输出进行调节,从而实现对并网点的电压进行稳定。
如果电网出现故障,也会对并网点产生影响,会使得其电压跌落,而如果采用光伏电站,其具备的无功输出可以为电力系统提供电力支撑。
但由于光伏发电系统的输出功率会受到天气和温度等因素影响,且这种影响具有随机性,在电网运行过程中,随着时间变化的功率不仅会对电能的质量造成影响,还会影响电网的稳定性,而随着新能源发电应用的增多,其对电能和电网的影响会越来越大。
就目前情况而言,大多数光伏电站已经使用了SVG装置,由于SVG这种无功补偿调节装置对电压控制能力更加平滑、响应时间更短,即使在欠电压的情况下,补偿能力也很强,因而,其能很好的改善光伏电站的性能,从而保障电能的质量,并有效提高电网稳定性。
1SVG无功补偿装置1.1SVG原理简介SVG装置属于IGBT全控式有源型无功发生器,作为大功率电力电子技术领域的一份子,可以实现对无功功率的动态发出和吸收。
该装置的核心是链式H桥电压逆变器,其确定输出功率的容量和性质的主要方式是对系统电压幅值和输出电压幅值进行调解,当其幅值大于系统侧电压幅值的时候,输出容性无功;如果其幅值小于系统侧电压幅值,此时输出的感性无功,图1为主电路图。
图1 链式SVG主电路结构1.2SVG的特点1.2.1谐波特性好谐波作为非线性负荷的属性之一,谐波问题属于的是非线性符合用电特性问题,谐波问题的发生一旦出现这类负荷就会存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SVG动态无功补偿装置原理
SVG(Static Var Generator)是一种静态无功补偿装置,用于解决
电力系统中的无功功率问题。
其基本原理是通过控制电力电子开关器件进
行无功功率的补偿,从而改善电力系统的功率因数和电压稳定性。
SVG的主要组成部分包括电力电子开关器件、滤波电容、控制系统等。
当电力系统中的无功功率过大时,SVG通过调节电力电子开关器件的导通
和断开时间,可以实时地控制电流的相位和大小,从而提供所需的无功功率,并将多余的无功功率回馈到电网中。
SVG的工作原理主要可分为两个步骤:检测和控制。
1.检测:SVG通过检测电网的电流和电压来获取系统的相位差和功率
因数,并转化为相关信号送给控制系统处理。
检测部分主要包括电流采样、电压采样和相位差计算等。
-电流采样:通过与电网连接的电流互感器或电流互感器测量电网的
电流值。
-电压采样:通过与电网连接的电压互感器或电压互感器测量电网的
电压值。
-相位差计算:根据电流和电压的采样值,通过计算得到电网的相位差。
2.控制:SVG通过控制系统对电力电子开关器件进行调节,实时地控
制电流的相位和大小,从而提供所需的无功功率。
-控制电流相位:根据检测到的电流和电压的相位差,通过调节电力电子开关器件的导通和断开时间,使得电流与电压相位差为零或接近零,并具有适当的相位滞后或超前,以实现无功功率的产生和吸收。
-控制电流大小:根据检测到的电压和电网所需的功率因数,通过控制电力电子开关器件的导通和断开时间,调节电流的大小,实现无功功率的提供或吸收。
通过以上的检测和控制,SVG可以实时地提供所需的无功功率,使得电力系统的功率因数变为理想的值,并提高电网的电压稳定性。
此外,SVG还具有快速响应、高效率和灵活性等特点,可以有效地调节电力系统的无功功率分配,并改善电网的品质和可靠性。
总结而言,SVG的工作原理是通过控制电力电子开关器件进行电流相位和大小的调节,实现无功功率的补偿,从而改善电力系统的功率因数和电压稳定性。