信号与系统陈生潭习题答案章部分

合集下载

信号与系统课后答案(全)

信号与系统课后答案(全)

第八章习题8.1 图示一反馈系统,写出其状态方程和输出方程。

解由图写出频域中输入、输出函数间的关系⎥⎦⎤⎢⎣⎡+-+=)(11)()3(3)(sYssEsssY把此式加以整理可得)(334)1(3)(23sEsssssY++++=故系统的转移函数为334)1(3)(23++++=sssssH根据转移函数,可以用相变量直接写出状态方程和输出方程分别为exxxxxx⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡143311'''321321[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32133xxxy8.2 写出下图所示三回路二阶系统的状态方程。

解:第一步,选取状态变量。

由于两个储能元件都是独立的,所以选电感电流为状态变量1x,电容电压为另一状态变量2x,如图所示。

第二步,分别写包含有电感电压的回路电压方程和包含有电容电流的节点电流方程。

根据第二个回路的回路方程,并代入元件参数,则有112122'ixxx+--=312'21ixx-=第三步,上两式中1i和3i不是状态变量,要把它们表为状态变量。

由第一个回路有1124xie-=,即112141xei+=由第三个回路有323ix=,即2331xi=把1i和3i分别代入第二步中两式,并经整理,最后得所求状态方程为exxx21'211+--=212322'xxx-=或记成矩阵形式8.3 图示一小信号谐振放大器的等效电路,这里的激励函数)(t e是一压控电流源,输出电压)(t y由耦合电路的电阻L R上取得。

要求写出此电路的状态方程和输出方程。

解:第一步,选状态变量。

因为电感电流和电容电压等三个变量都是独立的,所以选回路电感L中的电流1x、回路电容C上的电压2x、耦合电容c C上的电压3x为状态变量。

第二步,分别写回路方程或节点方程。

由RLC回路有211'xRxLx=+eixxCCx rc-=+++132''RL c i x C ='3第三步,消去非状态变量。

信号与系统第七、八章课后习题

信号与系统第七、八章课后习题

N k

2
2.线性时不变离散时间系统 ①线性 线性=叠加性+均匀性(齐次性)
c1 x1 (n) c2 x2 (n)
系统
c1 y1 (n) c2 y2 (n)
②时不变
x(n N )
系统
y (n N )
x ( n)
1 E
y ( n)
y ( n)

a
ay(n)
单位延时
1 T D z ( )
已知激励初始状态y(-1)=0,y(-2)=1/2, fk=2ku(k),求系统 的零输入响应,零状态响应和全响应. 解: (1) 零输入响应 根据定义,零输入响应满足方程:
yx (k ) 3 yx (k 1) 2 yx (k 2) 0
其初始状态
1 yx (1) y (1) 0, yx 2 y 2 2
x(n)(n n0 ) x(n0 )(n n0 )
n
x(n)(n) x(0) (n) x(0)
n


n
x(n)(n n ) x(n ) (n n ) x(n )
0 0 n 0 0

x ( n)
k k 零状态响应
2 1 k k k (1) (2) (2) , k 0 3 3
离散时间系统的单位样值响应
(n)
零状态系统
h( n)
单位样值响应h(n)是系统在零状态时,由单位样值信 号作用之下产生的响应。因此,它是一个零状态响应。
同样,单位样值信号δ(n)仅在n=0时刻等于1,其它时 刻δ(n)=0,因此系统在n>0时的响应是零输入响应。

《信号与系统分析基础》第二章部分习题参考答案

《信号与系统分析基础》第二章部分习题参考答案

第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。

121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。

信号系统第3版课后习题答案第二章

信号系统第3版课后习题答案第二章

第2章习题答案2-1 绘出下列各时间函数的波形图。

(1)1()()2(1)(2)f t u t u t u t =--+- (2)3()(1)[()(1)]f t t u t u t =----解:2-4 已知()f t 波形如图题2-5所示,试画出下列信号的波形图。

图 题2-4(3)3()(36)f t f t =+ (5)511()36f t f t ⎛⎫=-- ⎪⎝⎭解:tt2-5 已知()ft 波形如图题2-5所示,试画出下列信号的波形图。

图 题2-5(4)4()(2)(2)f t f t u t =-- (6)6()(1)[()(2)]f t f t u t u t =--- 解:2-6 计算下列各式。

(1)0()()f t t t δ+ (2)24e (3)d tt t δ-+⎰(3)e sin (1)d t t t t δ∞-+⎰(4)d [e ()]d tt t δ- (5)00()(2)d t t u t t t δ∞-∞--⎰(6)j 0e [()()]d t t t t t Ωδδ∞--∞--⎰(7)'e [()()]d t t t t δδ∞--∞+⎰(8)(1cos )()(/2)d t u t t t δπ∞-∞--⎰解:(1) 原式0()()f t t δ=(2)原式2334(3)e t dt e δ---=+=⎰(3)原式1sin(1)(1)0(()1)e t t dt δδ+∞-=-++=⎰不在积分区间内 (4)原式)()](['0t t e dtd δδ==(5)原式⎩⎨⎧<>=-=--=⎰∞+∞-0100)()2()(000000t t t u dt t t u t t δ(6)原式000[()()]1j t j t e t e t t dt e δδ+∞-Ω-Ω-∞=--=-⎰ (7)原式'00()()2tt t tt t de e t dt e t dt e dtδδ-+∞+∞---=-∞-∞==+=-=⎰⎰(8)原式/2(1cos )()1t t u t π==-=2-8 已知()f t 的波形如图题2-13所示,求()f t '和()f t '',并分别画出()f t '和()f t ''的波形图。

信号与系统课后习题答案

信号与系统课后习题答案
f ( ) (t ) d f ( ) d
t
ε(t) *ε(t) = tε(t)
第2-8页

信号与系统 电子教案
4. 卷积的时移特性
若 f(t) = f1(t)* f2(t), 则 f1(t –t1)* f2(t –t2) = f(t –t1 –t2)

f1(2-τ)
2 f 2( τt )
τ t
-2 1 -1 -1 1
3
τ t
(1)换元 (2) f1(τ)得f1(–τ) (3) f1(–τ)右移2得f1(2–τ) (4) f1(2–τ)乘f2(τ) (5)积分,得f(2) = 0(面积为0)
第2-6页

f 1(2-τ ) f 2(τ ) 2 2 τ
第2-1页

信号与系统 电子教案 2. 信号的时域分解与卷积积分
f (t)
LTI系统 零状态
2.3
卷积积分
yZS (t)
根据h(t)的Байду номын сангаас义: δ(t) 由时不变性: δ(t -τ)
h(t) h(t -τ) f (τ) h(t -τ)
由齐次性: f (τ)δ(t -τ)
由叠加性:

f ( ) (t ) d
第2-5页

信号与系统 电子教案
2.3
卷积积分
2 f 1( τt )
f1(-τ) 图解法一般比较繁琐,但 若只求某一时刻卷积值时 还是比较方便的。确定积 分的上下限是关键。 例:f1(t)、 f2(t)如图所示,已知 f(t) = f2(t)* f1(t),求f(2) =? 解: f (2) f 2 ( ) f1 (2 ) d

信号与系统课后答案 第2章 习题解

信号与系统课后答案 第2章 习题解

第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。

(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。

解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。

(完整版)信号与系统课后题答案

(完整版)信号与系统课后题答案

《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。

图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V CR = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。

信号与系统第5章习题答案

信号与系统第5章习题答案

信号与系统第5章习题答案信号与系统是电子信息类专业中的一门重要课程,它研究信号的产生、传输和处理,以及系统对信号的响应和处理。

第5章是该课程中的一个重要章节,主要涉及离散时间信号与系统。

本文将为读者提供信号与系统第5章习题的详细解答。

1. 习题1:给定一个离散时间信号x(n) = {1, 2, 3, 4},求其反序信号y(n)。

解答:反序信号即将原信号的元素按照相反的顺序排列。

所以,反序信号y(n)= {4, 3, 2, 1}。

2. 习题2:给定两个离散时间信号x(n) = {1, 2, 3, 4}和h(n) = {1, -1, 1, -1},求它们的卷积y(n)。

解答:卷积运算公式为y(n) = ∑[x(k) * h(n-k)],其中k为求和变量。

根据公式,我们可以得到y(n)的计算过程如下:y(0) = x(0) * h(0) = 1 * 1 = 1y(1) = x(0) * h(1) + x(1) * h(0) = 1 * (-1) + 2 * 1 = 1y(2) = x(0) * h(2) + x(1) * h(1) + x(2) * h(0) = 1 * 1 + 2 * (-1) + 3 * 1 = 2y(3) = x(0) * h(3) + x(1) * h(2) + x(2) * h(1) + x(3) * h(0) = 1 * (-1) + 2 * 1 + 3 * (-1) + 4 * 1 = 2所以,卷积结果为y(n) = {1, 1, 2, 2}。

3. 习题3:给定一个离散时间信号x(n) = {1, 2, 3, 4},求其单位脉冲响应h(n)。

解答:单位脉冲响应是系统对单位脉冲信号的响应。

单位脉冲信号为δ(n),即在n=0时取值为1,其他时刻取值为0。

根据系统的线性性质,我们可以通过输入单位脉冲信号得到输出信号,即h(n) = x(n)。

所以,单位脉冲响应h(n) = {1, 2, 3, 4}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章,第二章,第三章,第四章,第一章:1.找两个表示信号的例子,并指出信号表示的信息(消息)。

1.1(1),1.1(5),1.1(9);1.2(4),1.2(6) ;1.3(a);1()(1)0.5*() 2.5*(1)(3)f t t t t t εεεε=++--+- 1.4(6),(1)6()j t f t e π-=, 周期信号,周期为22T ππ==1.5(10);1.6(4);1.11(3),[]00000()()()()1j t j t j t j t j t e t t t dte t dt e t t dt e e e ωωωωωδδδδ∞--∞∞∞---∞-∞----=--=-=-⎰⎰⎰ 1.11(7)2221(1)()(1)()21/22(1)()2()2t t t dt t t t dt t t t dt t dtδδδδ∞∞-∞-∞∞∞-∞-∞++=++=++==⎰⎰⎰⎰1.11(8)()()221()212()2()2()tttxx x dx x x x dxx dx t δδδε-∞-∞-∞++=++==⎰⎰⎰1.17(a) 解:设左边加法器的输出为'()x t ,则积分器的输出为()x t 。

根据两个加法器的输入输出关系,可以得到''()()3()()()2()x t f t x t y t x t x t =-=+因此"'''"''''''''()()3()()()2()()3()2(()3())()2()3(()2())()2()3()()3()()2()x t f x x t y t x t x t f x x t f t x t f x f t x t x t f x f t y t y t y t f t f t =-=+=-+-=+-+=+-∴+=+ 1.17(b)"'"'()()3()2()()3()2()()y t f t y t y t y t y t y t f t =--⇒++=1.17(c) 解:设左边加法器的输出为()x k ,则()()(1)x k f k ax k =-- (1) ()()(1)y k x k bx k =+- (2)由 式(1)和(2)(1)(1)(2)(1)(1)(2)x k f k ax k y k x k bx k -=----=-+-因此[][]()()(1)(1)(2)()(1)(1)(2)()(1)(1)y k f k ax k b f k ax k f k bf k a x k bx k f k bf k ay k =--+---=+---+-=+--- 即()(1)()(1)y k ay k f k bf k +-=+-1.17(d)()4[()2(1)3(2)]5[(1)2(2)3(3)]6[(1)2(3)3(4)]4()5(1)6(1)2[4(1)5(2)6(3)]3[4(2)5(3)6(4)]4()5(1)6(2)2(1)3(2)y k f k x k x k f k x k x k f k x k x k f k f k f k x k x k x k x k x k x k f k f k f k y k y k =+-----+---+-+---=--+-+---+-----+-=--+-+---所以,输入输出方程是()2(1)3(2)4()5(1)6(2)y k y k y k f k f k f k --+-=--+- 1.18 是否为线性系统(1)否; 零输入响应20()x t 为非线性响应,零输入响应和零状态响应也不是和的关系。

(2)否;零状态响应2()f t 为非线性响应。

(3)否;(4)是;1.19 解:(1) 线性、时不变、因果、稳定;(2) 非线性(零输入响应12(0)(0)x x 为非线性响应)、时不变、因果、不稳定(响应中0()tf d ττ⎰,例如信号()()f t t ε=时,随时间增长变为无穷大。

);(3) 非线性(输出响应sin[()]f t 为非线性响应)、时不变、因果、稳定;(4) 线性、时变(响应(2)f t 和初始时间有关系)、非因果(响应(1)f t +,0t =时刻的响应和之后的时刻1t =有关系)、稳定;(5) 非线性(响应()(2)f k f k -为非线性响应)、时不变、因果、稳定;(6) 线性、时变(响应11(0)2kx ⎛⎫⎪⎝⎭为和初始时刻有关系的响应)、非因果(响应(1)(2)k f k -+,0k =时刻的响应和之后的时刻2k =有关系)、不稳定(响应中(1)(2)k f k -+,例如信号()()f k k ε=时,随k 增长变为无穷大。

);1.21 解:零输入线性,包括零输入齐次性和零输入可加性。

因为激励()0f t =,故系统零状态响应()0f y t =。

对于零输入响应,已知3121(0)1,(0)0()23,0t t x x x y t e e t ----==→=+≥ 3122(0)0,(0)1()42,0t t x x x y t e e t ----==→=-≥根据零输入线性,可得12123(0)5,(0)3()5()3()229,0x x x ttx x y t y t y t e e t ----==→=+=+≥响应;3()()229,0t t x y t y t e e t --==+≥1.23 解: 设初始状态12(0)1,(0)2x x --==时,系统的零输入响应为1()x y t ;输入()()f t t ε=时,系统的零状态响应为 1()f y t ,则有11231231()()65()3()87t tx f t t x f y t y t e e y t y t e e----⎧+=-⎪⎨+=-⎪⎩ 联立,解方程组得12312354t tx t tf y e e y e e ----⎧=-⎪⎨=-⎪⎩ 根据系统的线性特性,求得(1) 23154,0t t x x y y e e t --==-≥ (2)输入为()2()f t t ε=时的零状态响应12322(),0t t f f y y e e t --==-≥# 离散信号()f n :# (3)()()(3)t t t t εεεε-=--# )()()()(02t d d e d e tttεττδττδττδτ===⎰⎰⎰∞-∞-∞--1.4(6), (1)6()j t f t e π-=, 周期信号,周期为22T ππ==# 系统结构框图如图所示,该系统的单位冲激响应h(t) 满足的方程式为dh t dth t t ()()()+=δ)()()()()()()()();()()()()()()()()()()()()()()()('''''t t h dtt dh t t h t h t t x t h t y t x t y t y t y t x t s t x t s t y t s t y t s t x t s δδδ=+=+===+-=-===-=代入第二章: 2.3(3)()434()()()(1)()(1)f t f t f t t t t δδδ*=*+++-444(1)()(1)(2)(1)(1)(2)f t f t f t t t t t εεεε=+++-=+++---- 2.3(4) 45()()((1)(1))((1)(4))f t f t t t t t εεεε*=+--*---235()|()|()|()|t t t t t t t t t t t t t t t t εεεε→→-→-→-=--+()(2)(2)(3)(3)(5)(5)t t t t t t t t εεεε=------+--2.4(4)122200()()()()()()11()22ttf t f t t t t t d d t t εετετετττττε∞-∞*=*=-===⎰⎰2.4(8)122()()(1)(2)(2)(1)(1)t f t f t t e t e t d e t d ττεεετεττεττ∞-∞-∞*=-*-=---=--⎰⎰当 12t -< 即 3t <时 1112()()t t f t f t e d e ττ---∞*==⎰当 12t -≥ 即 3t ≥时 2212()()f t f t e d e ττ-∞*==⎰故 21(3)(1)(2)(3)tt e t t e t e t εε-⎧≥-*-=⎨<⎩2.4(9) 2312()()(1)(3)tt f t f t et e t εε--*=-*+22(1)93(3)(1)(3)t t e e t e e t εε----+=-*+72(1)3(3)723137232724362331((1)(3))(()())|()()|()(2)()(2)t t t t t t t t t t t t t t e e t e t e e t e t e e e t e e e t e e t εεεεεεε---+--→-+--→+-----+-+=-*+=*=-=-+=-+2.612013111()()53()123323t or t t t f t f t t t t t <->⎧⎪+-≤<⎪⎪*=⎨--≤<⎪⎪-≤≤⎪⎩ 2.7(1)112222[(2)(1)]2[(2)(1)]23t t t d d εετετετττττ∞-∞--*+--=+--===-⎰⎰2.7(2)11()()()()1ttnnn n t t t d d t t n εετεττττε+-∞*===+⎰⎰ [()0]ε-∞= 2.7(3)''()()()()[()()]tt et t t e t t t εδεεδε--**=** [()0]ε-∞='()[()()]()[()()]()()()t t tte t t t e t t t e t t e t εδεεδδεδε----=**=**=*=2.7(4)由于 ()0t t t ε=-∞=2"2'2'22()()()()()[()()]()()()()()()()t t ttte t t t t e t t t t t e t t t e t t t e t εδεεδεδεδεεδδε-----**=**+=**=**=2.8123()()[(2)2(1)](1)(2)(1)2(1)(1)()2()(3)(3)2()t t t t f t f t t t t t t t t t t t t t t t t εεεεεεεεεεε→+→*=-++-*+=-+*++-*+=-+=-+++(1)(13)2f -=--+=-;(0)(03)03f =-++=-(1)(13)2112f =-++⋅⋅=-2.9 由图可知 1()(2)(3)f t t t εε=---,(1)2()(1)t f t e t ε-+=+因此(1)(1)12213112(1)(2)(1)(1)()()()(2)(1)(3)(1)[()()][()()](1)()(1)()(1)(1)(1)(2)01112(t t t t t t t t t t t t t t t t t t f t f t f t t e t t e t t e t t e t e t e t e t e t t e t e e εεεεεεεεεεεε-+-+----→-+→-+→-→---------=*=-*+--*+=*-*=---=-----<=-≤<1)2t ⎧⎪⎨⎪-≥⎩# ()()()()t f t t f t δδ**=# ())()(2121t t t f t t t t f --=-*-δ # 已知函数()f t ,则函数0()f t at -可以把函数()f at -右移0t a得到。

相关文档
最新文档