无人机地面站发展综述

无人机地面站发展综述

[摘要]主要介绍了无人机地面站的发展,包括无人机地面站典型的配置、功能及其关键技术。并展望了未来无人机地面站发展趋势。

1、概述

20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS: Ground Contrul Station) 将具有包括任务规划,数字地图,卫星数据链,图像处理能力在内的集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群:地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展;相同的硬件和软件模块可用于不同的地面站。

地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程,飞行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据,接收指令,在网络化的现代作战环境中发挥独特作用。

2典型地面站的配置和功能概述

2.1地面站的典型配置

目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。其相互间的关系如图1所示。

(1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。

(2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。

(3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。

(4)数据分发系统。用于分析和解释从无人机获得的图像。

(5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。

数据链应用于不同的UAV系统,实现以下主要功能:

—用于给飞行器发送命令和有效载荷;

—接收来自飞行器的状态信息及有效载荷数据。

(6)中央处理单元:包括一台或多台计算机,主要功能如下:

—获得并处理从UAV来的实时数据:

—显示处理;

—确认任务规划并上传给UAV;

一一电子地图处理;

—数据分发:

—飞行前分析;

—系统诊断。

2.2地面站的典型功能

GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能:

(1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。

(2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面控制站根据任务要求实现对有效载荷的控制,并通过对有效载荷状态的显示来实现对任务执行情况的监管。

(3)任务规划、飞行器位置监控、及航线的地图显示。任务规划主要包括处理战术信息、研究任务区域地图、标定飞行路线及向操作员提供规划数据等。飞行器位置监控及航线的地图显示部分主要便于操作人员实时地监控飞行器和航迹的状态。

(4)导航和目标定位。无人机在执行任务过程中通过无线数据链路与地面控制站之间保持着联系。在遇到特殊情况时,需要地面控制站对其实现导航控制,使飞机按照安全的路线飞行。随着空间技术的发展,传统的惯性导航结合先进的GPS导航技术成为了无人机系统导航的主流导航技术。目标定位是指飞行器发送给地面的方位角,高度及距离数据需要附加时间标注,以便这些量可与正确的飞行器瞬时位置数据相结合来实现目标位置的最精确计算。为了精确确定目标的位置,必须通过导航技术掌握飞行器的位置,同时还要确定飞行器至目标的短矢量的角度和距离,因此目标定位技术和飞行器导航技术之间有着非常紧密的联系。

(5)与其他子系统的通信链路。该通信链路用于指挥、控制和分发无人机收集的信息。随着计算机和网络技术的发展,现行的通信链路主要借助局域网来进行数据的共享,这样与其他组织的通讯不单纯的是在任务结束以后,更重要的是在任务执行期间,通过相关专业的人员对共享数据进行多层次的分析,及时地提出反馈意见,再由现场指挥人员根据这些意见,对预先规划的任务立即做出修改,从而能充分利用很多资源,从战场全局对完成任务提供有力的支持和合理的建议,使得地面站当前的工作更加有效。

2.3国外典型地面站的配i与功能

美国“捕食者”无人机地面站的部分配置如图 2所示。

图2中示出的是无人机操作员和任务载荷操作员进行操控的方舱内的一部分。

2.3.1“捕食者”无人机地面站组成及装备

(1)捕食者,无人机主要由飞行控制站、任务载荷控制站和合成孔径雷达控制站组成,分别由无人机操作员(AVO)、任务载荷操作员(P0)和合成孔径雷达操作员((SARO)三人进行操控。

AVO:负责对无人机进行操控,包括起飞、着陆、飞行中姿态控制等。

SARO:负责控制和监视无人机的雷达,并对其图像作有限处理。操作员的操控包括对TV相机、红外相机、内置雷达等,雷达可同TV相机或红外相机同时操作。

(2)“捕食者”无人机的配置。地面控制站安装在长lOm的独立拖车内,内有遥控操作的飞行员、监视侦察操作手的座席和控制台,三个波音公司的任务计划开发控制台、两个合成孔径雷达控制台,以及卫星通信、视距通信数据终端。

地面站可将图像信息通过地面线路或“特洛伊精神”数据分派系统发送给操作人员。“特洛伊精神”采用一个5.5m Ku波段地面数据终端碟形天线和一个2.4m数据分派碟形天线。

“捕食者,无人机可以在粗略准备的地面上起飞升空,起飞过程由遥控飞行员进行视距内控制。典型的起降距离为667m左右。任务控制信息以及侦察图像信息由Ku波段卫星数据链传送。图像信号传到地面站后,可以转送给全球各地指挥部门,也可直接通过一个商业标准的全球广播系统发送给指挥用户,指挥人员从而可以实时控制“捕食者” 进行摄影和视频图像侦察。

2.3.2“捕食者”无人机地面站功能

“捕食者”无人机的地面站功能包括飞行监控、导航、任务载荷、任务规划、一个C波段可视数据链或者一个超视距用的Ku波段的卫星数据链等。其中任务规划功能如下:

(1)点击用户接口;

(2)实时地图漫游;

(3)应急航路规划;

(4)支持多无人机规划:

(5)显示经纬度或UTM中的坐标:

(6)基于航路点的无人机性能自动校验;

(7)对地形间隔快速检验;

(8)视线和卫星可见性检测:

(9)一个C波段可视数据链或者一个超视距用的Ku波段的卫星数据链。

3关键技术及典型解决方案

3.1友好的人机界面

为更好地控制无人机,地面控制站采用了各种形式的GCS,以便对无人机的飞行状态和任务设备进行监控。GCS为操作员提供一个“友好”的人机界面,帮助操作员完成监视无人机、任务载荷及通信设备的工作,方便操作员规划任务航路、控制无人机、任务载荷及通信设备。

人机界面的设计原则:

(1)一致性。提示、菜单和帮助应使用相同的术语,其颜色、布局、大小写、字体等应当自始至终保持一致。

(2)允许熟练用户使用快捷键。

(3)提供有价值的反馈。

(4)设计说明对话框以生成结束信息。操作序列划分成组,每组操作结束后都应有反馈信息。

(5))允许轻松的反向操作以减轻用户的焦虑,鼓励用户大胆尝试不熟悉的选项和操作。

(6)支持内部控制点。某些有经验的用户可以控制系统,并根据操作获得适当与正确的反馈。

(7)减少短时记忆。由于人凭借短时记忆进行信息处理存在局限性,所以要求显示简单。

3.2操作员的培训

当代无人机操控回路的主导者仍然是人,为此人一机完善交互是UAV有效执行任务的重要环节,操控者必须能在紧急时刻快速、正确地发出操控指令,稍误,则丧失战机或引发事故,因此,操控人员的素质与技能水平培训也是一个关键问题。UAV 操控人员的培训无法像有人军机那样通过飞行训练和实弹演习完成,而需要依靠一系列仿真技术来实现,其中重点要研究解决的仿真技术项目有:

(1)虚拟座舱及操控设备。重点要解决的是虚拟现实环境的构成、系统建模仿真技术和数字传输的快捷、准确、可靠和畅通。操控人员使用类似有人驾驶飞机的同种仪表设备(包括按钮、手柄、开关等)和软件,以体验同样的感观效果;

(2)人为仿真故障和误差的设置、建模与注入技术;

(3)创立实时逼真飞行动画技术、全息显示技术;

(4)人一机权限与功能分配,任务规划和任务管理方法研究与训练。

(5)实时评价技术包括对飞行性能、导航定位、飞行品质、作战效果以及电磁信号等确定明确的评估标准。操控人员要熟练掌握,做到判断正确,操控实时、准确。

3.3一站多机的控制

地面站目前正向一站多机的方向发展,即指一个地面站系统控制多架、甚至是多种无人机。未来无人机地面站将朝着高性能、低成本、通用性方向发展,所以一站多机是发展趋势,这也对地面站的显示和控制提出了更严格的要求。

3.4开放性、互用性与公共性

(1)“开放性”指的是不必对现有系统进行重新设计和研制就可以在地面控制站中增加新的功能模块。这种开放性的定义和要求使得模块化的设计和实现方法成为地面控制站设计和实现的最佳途径。各模块间的功能具有一定的独立性而组合在一起,又能实现整个系统的功能。这种设计思路不仅可通过增加新的模块来扩展功能,也可以根据任务的不同对模块进行实时的添加或者屏蔽。

可以美国海军的通用无人机地面控制站的 TCS战术控制系统为例(如图3所示)来说明。its 战术控制系统提供了一个开放式体系结构软件,能够控制多种不同类型的海上I岸上计算机硬件,实现任务规划、指挥与控制以及情报数据接收和分发等功能。

(2)“互用性”指的是地面控制站能控制任何一种不同的飞行器和任务载荷,并且能够接入连接外部世界的任何一种通信网络。互用性现在己经成为各国发展无人机系统的一个重要思考点。随着网络中心战思想的提出,无人机群的任务必须配合并融入整体作战任务之中,“互用性”的思想正是对这一发展趋势的指导。

(3)“公共性”指的是某个地面控制站与其它的地面站使用相同的硬件及部分或者完全相同的软件模块。提出公共性的目的在一定程度上也是为了实现地面站的资源通用,便于维护修复。地面站作为整个无人机系统中最隐蔽的子系统,是很少受到破坏的,但是,一旦受到破坏,整个无人机系统可能陷于瘫痪,所以公用性的提出可以提高整个无人机系统的维修性和保障性,从而更加合理地利用已有的地面站资源。

上述三个概念并非相互独立。在多数情况下,它们是从不同角度,以不同的方式对同一对象进行描述。开放性的结构通过容纳新的软件和硬件使得“互用性’和“公共性,得以提高。作为无人机系统的神

经中枢,地面控制站要全力地建立开放性、互用性和公共性。

3.5地面站对总线的需求

随着无人机技术的不断发展,无人机航空电子系统与地面站系统之间的通信量越来越大,这就要求地面站系统的无线通信、任务处理、图像处理能力不断增强,因而采用高带宽、低延迟的总线网络实现各部分之间的互连成为必然趋势。从目前的发展来看,只有Gbps级的互连总线网络才能满足未来地面控制站发展对总线的需求。鉴于光纤通道 (Fc)具有高带宽、低延迟、低误码率、灵活的拓扑结构和服务类型、支持多种上层协议和底层传输介质以及具有流控制功能,因此可采用光纤通道 (FC)来实现其需求。FC己经成功应用于F-35 JSF高度综合化和开放式的航空电子系统结构中,相信FC一定能很好地满足地面站的要求。

3.6可靠的数据链

发展安全、可跨地平线、抗干扰的宽带数据链是无人机的关键技术之一。近年来,射频和激光数据链技术的发展为其奠定了基础。

除了带宽要增加外,数据链也要求可用和可靠。数据链的可用是指一特定星群的覆盖区域和范围。可靠是指信号的健壮性。对于不可避免的电子干扰,数据链需要采用复杂的信号处理和抗干扰技术(如扩频、调频技术等),并能够确保在数据链失效的情况下,飞机能安全返回基地。

4无人机地面站发展的趋势

无人机地面站技术具有以下发展趋势:

(1)发展通用地面站。美军无人机发展思路是:由陆海空根据各自的需要分别重点开发战术无人机、垂直起降战术无人机和中稿空长航时无人机;最大限度地使用通用的机载设备,避免重复研制:实现地面控制系统的标准化。当前,美国国防部正考虑如何将各层次的无人机综合到系统中。为确保各情报侦察系统间能毫无障碍地传输图像和数据,美国国防航空侦察和国家图像测绘局共同拟定了一项‘通用图像地面接口系统”,并确定一套通用的图像存储与传输的协议,以解决各层次无人机之间的地面站和数据的接口标准问题。

(2)重视一站多机的地面站的设计,包括硬件结构及友好的人机界面。这种地面站的设计可同时操控多架无人机、使用较少的操作员操纵更多的无人机,这样既提高了操作效率,也减少了人力成本。

(3)逐步发展无人作战飞机地面站的设计。是利用现有的飞机还是研究一个全新的飞机现尚无定论,但是先研究地面站的人机界面设计是必要的。

(4)发展可靠的、干扰小的、宽带宽的数据链路,提高数据传输效率。其涉及的关键技术有: 数据链路的抗截获、抗干扰的编码、加密、变频、跳频、扩频与解扩技术和图像压缩与传输解压以及高速信号处理技术等。

(5)发展人工智能决策技术。该技术涉及无人机的自主程度问题,尤其是针对无人战斗机。这需要一些智能的、基于规则的任务管理软件来驱动安置在无人机上的综合传感器,保证通信联接,完成无人机与操纵人员的交互,使无人机不仅能确保按命令或预编程来完成预定任务、对己知的目标作出反应,还能对随机突现的目标作出相应反应。

(6)发展无人机操控的安全、告警与防错技术。

(7)发展无人机通信中继。地面站与无人机之间的中继用以提高作战半径和地面控制站的安

全性。关键技术包括超衫旅巨中继转发与传输、多通道大容量实时信息中继复合传输、军民共享卫星链路和中继载体与无人机协调问题等技术。

参考文献

[1]孙伟.无人机发展的新特点和面临的问题[J].国际航空,2006:4-7.

[2]G.Natarajan.Ground Control Stations for Unmanned Air Vehicles[J].Aeronautical Development Establishment,Bangalore-560

075.2001:5-6.

[3]张治生.无人机地面站系统设计与开发[D].西北工业大学硕士学位论文,2007.

[4]张玉刚.无人作战飞机地面控制系统人机界面设计与仿真系统开发[D].西北工业大学硕士学位论

文,2006.

[5]徐正荣.无人战斗机述论[J].飞机设计,2002,(4):29-30.

[6]张实平.美军无人机地面控制系统最新发展[EB/OL]..

[7]JK.Tomjian.CDE Dave Falk deputy Program Manger[J/EB].US UAV Program

Overviews,David.Falk@https://www.360docs.net/doc/f710549270.html,.

[8]吕震宇.无人战斗机发展综述[EB/OL]..

[9]黄晓娟,景小飞.21世纪军用无人机的发展趋势[J].航空科学技术,2002:1-4.

[10]冯琦,周德云.军用无人机发展趋势[J].电光与控制,2003,(2):5-9.

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

关于三维图像目标识别文献综述

关于三维目标识别的文献综述 前言: 随着计算机技术和现代信息处理技术的快速发展,目标识别已经迅速发展成为一种重要的工具与手段,目标识别是指一个特殊目标(或一种类型的目标)从其它目标(或其它类型的目标)中被区分出来的过程。它既包括两个非常相似目标的识别,也包括一种类型的目标同其他类型目标的识别。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。它属于模式识别的范畴,也可以狭义的理解为图像识别。三维目标识别是以物体表面朝向的三维信息来识别完整的三维物体模型目标识别需要综合运用计算机科学、模式识别、机器视觉以及图像理解等学科知识。目标识别技术已广泛应用于国民经济、空间技术和国防等领域。 正文: 图像识别总的来说主要包括目标图像特征提取和分类两个方面。但是一般情况下,图像受各种因素影响,与真实物体有较大的差别,这样,就需要经过预处理、图像分割、特征提取、分析、匹配识别等一系列过程才能完成整个识别过程。 目前,最主流的三种三维物体识别研究思路是: 1)基于模型或几何的方法;

2)基于外观或视图的方法; 3)基于局部特征匹配的方法; 一、基于模型或几何的方法: 这种方法所识别的目标是已知的,原理就是利用传感器获得真实目标的三维信息并对信息进行分析处理,得到一种表面、边界及连接关系的描述,这里,三维物体识别中有两类最经常使用的传感器:灰度传感器和深度传感器,前者获取图像的每个像素点对应于一个亮度测量,而后者对应于从传感器到可视物体表面的距离;另一方面,利用CAD建立目标的几何模型,对模型的表面、边界及连接关系进行完整的描述。然后把这两种描述加以匹配就可以来识别三维物体。其流程如下图所示: 传感器数据获取过程,就是从现实生活中的真实物体中产生待识别的模型。分析/建模过程,是对传感器数据进行处理,从中提取与目标有关的独立应用特征。模型库的建立一般式在识别过程之前,即首先根据物体的某些特定特征建立一些关系以及将这些信息汇总成一个库。在模型匹配过程,系统通过从图像中抽取出的物体关系属性图,把物体描述与模型描述通过某种匹配算法进行比较、分析,最终得到与物体最相似的一种描述,从而确定物体的类型和空间位置。 基于模型的三维物体识别,需要着重解决以下4个问题:

无人机地面站

无人机地面站 地面站作为整个无人机系统的作战指挥中心,其控制内容包括 :飞行器的飞行过程,飞 行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。 中文名:无人机地面站 外文名: UAV ground station 目录 概述 地面站的配置和功能概述 ?地面站的典型配置 ?地面站的典型功能 关键技术及典型解决方案 ?友好的人机界面 ?操作员的培训 ?一站多机的控制 ?开放性、互用性与公共性 ?地面站对总线的需求 ?可靠的数据链 无人机地面站发展的趋势 概述 近20 年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全 自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面 控制站 (GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理 能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开 放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的 功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素 的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。

无人机地面站发展综述

无人机地面站发展综述 [摘要]主要介绍了无人机地面站的发展,包括无人机地面站典型的配置、功能及其关键技术。并展望了未来无人机地面站发展趋势。 1、概述 20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS: Ground Contrul Station) 将具有包括任务规划,数字地图,卫星数据链,图像处理能力在内的集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群:地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展;相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程,飞行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据,接收指令,在网络化的现代作战环境中发挥独特作用。 2典型地面站的配置和功能概述 2.1地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。其相互间的关系如图1所示。

(1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能: —用于给飞行器发送命令和有效载荷; —接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元:包括一台或多台计算机,主要功能如下: —获得并处理从UAV来的实时数据: —显示处理; —确认任务规划并上传给UAV; 一一电子地图处理; —数据分发: —飞行前分析; —系统诊断。 2.2地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面控制站根据任务要求实现对有效载荷的控制,并通过对有效载荷状态的显示来实现对任务执行情况的监管。 (3)任务规划、飞行器位置监控、及航线的地图显示。任务规划主要包括处理战术信息、研究任务区域地图、标定飞行路线及向操作员提供规划数据等。飞行器位置监控及航线的地图显示部分主要便于操作人员实时地监控飞行器和航迹的状态。 (4)导航和目标定位。无人机在执行任务过程中通过无线数据链路与地面控制站之间保持着联系。在遇到特殊情况时,需要地面控制站对其实现导航控制,使飞机按照安全的路线飞行。随着空间技术的发展,传统的惯性导航结合先进的GPS导航技术成为了无人机系统导航的主流导航技术。目标定位是指飞行器发送给地面的方位角,高度及距离数据需要附加时间标注,以便这些量可与正确的飞行器瞬时位置数据相结合来实现目标位置的最精确计算。为了精确确定目标的位置,必须通过导航技术掌握飞行器的

浅谈无人机的发展现状及发展趋势

浅谈无人机的发展现状及发展趋势研究 【摘要】随着世界科技的进步,计算机技术日新月异,人工智能、云计算已经得以实现,智能化、信息化和自动化的时代已经到来,无人飞机就是新科技下的产儿。无人机能有效的利用人工智能、自动驾驶和信号处理等高精尖核心技术,由于其体积小、航程远及无人驾驶等优势,现在广泛应用到军事领域,用于侦查、干扰,战场目标摧毁等,效果极佳,受到各国军事管理部门的重视。本文就无人机发展的现状及其未来可能出现的发展趋势进行研究,尝试解开无人机的面纱,让更多的人了解无人机。 【关键词】无人机;发展现状;发展趋势;军事领域 随着科技的发展,人们对未知领域的探索也拉开帷幕,面对着高风险、高强度的任务,人们开始利用无人机替代有人飞机来执行,这也是大势所趋,形势所迫。无人飞机其实就是一种由无线电遥控控制的设备,有的是利用预编程序操控,又被人称为遥控驾驶航空器。目前在军事领域发展较为迅速,在一些科技发达的国家已经得到广泛应用。本文对无人机的研究主要是以军用无人机为标本,因为它代表着最先进的无人机发展技术。 1、军用无人机的发展现状分析 对于无人飞机的研究和使用,最早出现在美国,1909年世界上第一架无人机在美国试飞,并取得了不错的成绩。接下来的几年里,英德两国也开始研究无人飞机,并且在1917年先后在此技术研究上取得成功。在无人机问世以来,军事领域显得兴趣盎然,现在对无人机的研究也多数是出于军事使用的目的。在20世纪60年代,无人机已经开始应用到军事领域,在美越战争中,美国就使用了这种无人机来进行军事侦察、空中打击和目标摧毁。但是,最经典的无人机作战运用,属于以色列人。在第四次中东战争中,以色列使用BQM-74C无人机,成功地摧毁了埃及沿运河部署的地空导弹基地。在以色列入侵黎巴嫩时,利用猛犬无人机摧毁了黎巴嫩一些重要的导弹基地。美国在出兵阿富汗和袭击恐怖组织的时候也大量使用了无人飞机,并且在使用中也收到了一定的效果。在20世纪末,很多的国家已经研制出新时代的军用无人机,并且纷纷应用到军事领域,用于战场情报侦察、低空侦察和掩护、战场天气预报、战况评估、电子干扰和对抗、目标定位摧毁等,一定程度上改变了军事战争和军事调动的原始形式。 2、军用无人机的类型研究 随着科学技术的发展,军用无人机的发展日趋成熟,它与有人机相比具有相当大的优势,比如,相对于有人机来说,无人机的操作简单,材料花费较小,关键是可以无飞行员亲自操作,伤亡率低;无人机顾名思义隐蔽性较好,不易暴漏,获取情报的真实度较高,生命力极强;另外,就是无人机的跑距离较短,易于起飞和降落。 就目前对无人机的研究来说,掌握此技术的国家已经有30多个,无人机的类型也有200种以上,军事无人飞机已经广泛应用到军事领域。就现在的军用无人飞机,按照及功能,可以划分为以下几个类型:靶机:主要用于训练飞行员和防空兵及测试其它防空兵器的性能;侦察机:主要用于战场相关情报的搜集和处理;诱饵机:主要是诱使敌雷达,进行空中打击;电子对抗机:主要是对敌机、指挥系统等开展电子干扰和信息侦;攻击机:主要是目标打击和战场摧毁;战斗机:用于空袭或者地面打击;其它无人机:比如激光照射、核幅射的侦察等。 3、军用无人机未来的发展趋势探究 虽然和平与发展是当代社会的主要特征,但是很多的国家在国防建设上并没有放缓脚步,而是在不断的升级军用武器及其它国防基础设施建设。军用飞机有其自身巨大的优势,在各国得到了前所未有的追捧和研究。新时代的战争不再是常规武器之间的较量,而是科学技术

目标检测综述教学内容

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region

proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。 1. R-CNN (CVPR2014, TPAMI2015) (Region-based Convolution Networks for Accurate Object d etection and Segmentation)

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/f710549270.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

无人机的图像处理综述

无人机图像处理综述 摘要:目标识别与跟踪技术是无人作战机实施攻击的关键步骤,本文从无人作战机的自动目标识别与跟踪的基本概念入手,以成像传感器的目标识别与跟踪为例,介绍目标识别、检测、跟踪等关键技术。 关键词:无人战斗机目标识别图像处理识别技术 一、引言 无人战斗机在最近几年成为无人机的发展热点。它的设计概念介于有人战斗机与导弹之间。无人战斗机不是孤立存在的,它是整个无人战斗机系统的一部分。无人战斗机系统有其独特的组成方式和管理模式。目前,无人战斗机的开发刚刚处于起步阶段。为了发展无人战斗机,有许多关键技术值得注意,特别是目标识别技术。它主要包括视觉图像预处理,目标提取、目标跟踪、数据融合等问题。其中,运动目标检测可采用背景差法、帧差法、光流法等,固定标志物检测可用到角点提取、边提取、不变矩、Hough 变换、贪婪算法等,目标跟踪可以分析特征进行状态估计,并与其他传感器融合,用到的方法有卡尔曼滤波、粒子滤波器和人工神经网络等。还有很多方法诸如全景图像几何形变的分析或者地平线的检测等没有进行特征提取,而是直接将图像的某一变量加到控制中去。 实际应用中,上述问题的进一步解决受到很多因素的制约。由于无人机的动力、载重、装配空间等物理条件的限制以及飞行速度更快,使得算法处理需要更少的延时。而且,无人机稀疏的室外飞行环境使得适用于地面机器人的算法不适用于无人机。同时,模型的不确定性,噪声和干扰,都限制了实物实验的成功。所以,如何将地面机器人的视觉导航成果应用到无人机视觉导航中去,如何提高无人机的算法速度并不过分损失导航精度,如何面对无人机自身模型的不确定度以及外界噪声的干扰,如何适应无人机所处的标志物稀疏的飞行环境,这些问题都需要更进一步的探讨。 二、无人机图像处理技术现状 1979年,Daliy等人首先把雷达图像和Landsat.MSS图像的复合图像用于地质解释,其处理过程可以看作是最简单的图像融合。1981年,Laner和Todd 进行了Landsat. RBV和MSS图像融合试验。 到20世纪80年代中后期,图像融合技术开始引起人们的重视,陆续有人将图像融合技术应用于遥感多谱图像的分析和处理。 到20世纪80年代末,人们才开始将图像融合应用于一般图像融合(可见光、红外等)。多波段SAR雷达相继开发使得对多波段的SAR图像数据融合技术的研究成为可能,特别是美国宇航局1993年9月成功发射了全世界第一部多波段(L,C, X波段)、多极化、多投射角空间SAR之后,为多波段的SAR图像融合提供了坚实的物质基础。 20世纪90年代后,图像融合技术的研究呈不断上升趋势,应用的领域也遍

无人机导航定位技术简介与分析

无人机导航定位技术简介与分析 无人机导航定位工作主要由组合定位定向导航系统完成,组合导航系统实时闭环输出位置和姿态信息,为飞机提供精确的方向基准和位置坐标,同时实时根据姿态信息对飞机飞行状态进行预测。组合导航系统由激光陀螺捷联惯性导航、卫星定位系统接收机、组合导航计算机、里程计、高度表和基站雷达系统等组成。结合了SAR 图像导航的定位精度、自主性和星敏感器的星光导航系统的姿态测定精度,从而保证了无人飞机的自主飞行。 无人机导航是按照要求的精度,沿着预定的航线在指定的时间内正确地引导无人机至目的地。要使无人机成功完成预定的航行任务,除了起始点和目标的位置之外,还必须知道无人机的实时位置、航行速度、航向等导航参数。目前在无人机上采用的导航技术主要包括惯性导航、卫星导航、多普勒导航、地形辅助导航以及地磁导航等。这些导航技术都有各自的优缺点,因此,在无人机导航中,要根据无人机担负的不同任务来选择合适的导航定位技术至关重要。 一、单一导航技术 1 惯性导航 惯性导航是以牛顿力学定律为基础,依靠安装在载体(飞机、舰船、火箭等)内部的加速度计测量载体在三个轴向运动加速度,经积分运算得出载体的瞬时速度和位置,以及测量载体姿态的一种导航方式。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪。三自由度陀螺仪用来测量飞行器的三个转动运动;三个加速度计用来测量飞行器的三个平移运动的加速度。 计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。惯性导航完全依靠机载设备自主完成导航任务,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,不受气象条件限制,是一种自主式的导航系统,具有完全自主、抗干扰、隐蔽性好、全天候工作、输出导航信息多、数据更新率高等优点。实际的惯性导航可以完成空间的三维导航或地面上的二维导航。 2 定位卫星导航 定位卫星导航是通过不断对目标物体进行定位从而实现导航功能的。目前,全球范围内有影响的卫星定位系统有美国的GPS,欧洲的伽利略,俄罗斯的格拉纳斯。这里主要介绍现阶段应用较为广泛的GPS全球定位系统导航。

无人战斗机的目标识别与跟踪

无人战斗机的目标识别与跟踪 【摘要】无人作战飞机实施攻击中,目标识别与跟踪技术是关键步骤,本文从无人作战机的自动目标识别与跟踪的基本概念入手,以成像传感器的目标识别与跟踪为例,介绍目标识别、检测、跟踪等关键技术。 【关键词】无人战斗机;目标识别;跟踪;图像处理 一、引言 无人战斗机是无人机的发展趋势。无人战斗机的设计概念介于有人战斗机与导弹之间,它是整个无人战斗机系统的一部分。无人战斗机系统有其独特的组成方式和管理模式。目前,无人战斗机的开发刚刚处于起步阶段,特别是目标识别与跟踪技术。它主要包括视觉图像预处理,目标提取、目标跟踪、数据融合等技术难题。在实际应用中,无人机的动力、载重、装配空间等物理条件的限制以及飞行速度很快,使得算法处理需要更少的延时。如何提高无人机的算法需要在实践中进一步的研究。 二、无人机影像分析 国内无人机的应用主要是利用固定翼无人机系统获得遥感信息,用于资源调查、环境监测、气象灾害评估等。白由路等(2004)研究了低空遥感技术在精确农业中的应用,使用遥控固定翼无人机系统获取农田信息,如地块边界的数字化、地块面积量算、作物种类识别、作物长势分析等;马轮基等(2005)阐述了无人机在土地利用遥感调查、水色遥感调查、洪涝遥感调查等方面的应用前景;李字昊(2006)利用无人机获得影像,从中测算造林地面积、计算成活率、辨认树种、计算造林密度、确定林龄,以及定位造林地;吕书强等(2007)介绍了无人机遥感的系统集成,并对所获取的遥感影像和飞行辅助数据对飞行试验进行了质量评价;陈信华(2007)将SIFT(Scak Invariant Feature Transform)特征应用于影像的自动相对定向,结合最小二乘法实现了影像的自动匹配;韩杰等(2008)分析无人机的技术优势,阐述无人机遥感技术的主要研究目标和研究内容,探讨我国使用无人机遥感技术的国土资源快速监察机制。 三、无人机目标识别和跟踪技术发展方向 无人侦察机活动图像实时传输的特点:有一定的速高比,图像内目标像素小,目标数量大,图像是满屏运动,帧间相关性较差,为了保证侦察图像信息远距离传输的高准确性和高可靠性,要求侦察图像信息必须分辨率高、失真小,而且传输带宽尽可能窄。因此,中远程无人机侦察信息必须采用一种特殊的数字化压缩传输体制,选择合适的压缩算法,利用专用图像处理芯片来实现侦察信息安全传输。无人机图像图像融合(Image Fusion)是以图像为研究对象的数据融合,是指在同一时间,将同一景物的不同波段或来自不同传感器的两个或两个以上的图像进行处理,形成一幅合成图像,以获取更多的关于目标信息的图像处理过程。

无人机武器系统及其发展应用综述+

无人机武器系统及其发展应用综述 摘要:主要介绍了无人机系统组成、发展历程、战场应用及其发展趋势,对 引言 21世纪,对战场信息的掌控程度主导着战争的成败,集侦察、情报传输和火力打击于一身的无人机已成为信息化战场的“新宠”。 1 无人机简介 1.1 无人机定义 无人机是一种由动力驱动、机上无人驾驶、可重复使用、利用无线电遥控设备或自备程序控制系统进行操纵的航空器。航空器的简称:英文常用Unmanned Aerial Vehicle表示,缩写为UA V。无人机与有人机、航模、导弹的区别见表1—3。 1.2 无人机系统组成及其功用 无人机武器系统是指无人机本身和完成战斗任务所用的必要设备、设施的全体,概括地讲,由飞行平台与任务设备两大部分组成。

机体通常由机翼、机身、尾翼等组成,为支持无人机在空中稳定飞行提供良好的 气动外形,为为其机载设备提供足够的装载空间。 起降装置用来保证无人机正常起飞和着陆。 动力装置包括发动机和保证其正常工作的附件和系统,它是无人机的动力源,使无人机获得速度和升力。 控制与导航系统是保障和规划无人机稳定地沿预定航线飞行,到达目标区域。其主要包括机载测量设备、飞行控制与管理设备、定位和导航设备、飞行指挥与航迹控制设备等。 数据链用来完成对无人机的遥控、遥测、跟踪定位及数据信息传输,构成天地回路,还能实现与上级及友邻部队的通信。分为机载和地面两部分,主要包括射频收发设备、调制解调设备、天线等。 任务设备是用来完成指定任务的装备,不同用途的无人机安装不同的任务设备。 此外,无人机武器系统一般还包括后勤保障系统,如运输设备、装卸设备、测试设备、地面电源、维修设备等。 1.3 无人机分类 历经70多年的发展,至今出现了各种各样的无人机。目前,从不同的角度出发对无人机的分类方法也多种多样。现介绍几种常用的分类方法,见图2。 图2 无人机分类 1.4 无人机的特点 与有人机相比,无人机有以下主要特点[无人机技术] :1)成本低廉;2)重量轻尺寸小;3)机动性好;4)隐形性好,生存力强;5)适应性强;6)可在危险条件下执行任务。 图1 无人机武器系统组成框图

无人机发展现状以及未来趋势研究

无人机发展现状以及未来趋势研究 2014020912026 姚聪 【摘要】随着世界科技的进步,计算机技术日新月异,人工智能、云计算已经得以实现,智能化、信息化和自动化的时代已经到来,无人飞机就是新科技下的产儿。无人机能有效的利用人工智能、自动驾驶和信号处理等高精尖核心技术,由于其体积小、航程远及无人驾驶等优势,现在广泛应用到军事领域,用于侦查、干扰,战场目标摧毁等,效果极佳,受到各国军事管理部门的重视。本文就无人机发展的现状及其未来可能出现的发展趋势进行研究,尝试解开无人机的面纱,让更多的人了解无人机。 【关键词】无人机;发展现状;发展趋势;军事领域 随着科技的发展,人们对未知领域的探索也拉开帷幕,面对着高风险、高强度的任务,人们开始利用无人机替代有人飞机来执行,这也是大势所趋,形势所迫。无人飞机其实就是一种由无线电遥控控制的设备,有的是利用预编程序操控,又被人称为遥控驾驶航空器。目前在军事领域发展较为迅速,在一些科技发达的国家已经得到广泛应用。本文对无人机的研究主要是以军用无人机为标本,因为它代表着最先进的无人机发展技术。 1、军用无人机的发展现状分析 对于无人飞机的研究和使用,最早出现在美国,1909年世界上第一架无人机在美国试飞,并取得了不错的成绩。接下来的几年里,英德两国也开始研究无人飞机,并且在1917年先后在此技术研究上取得成功。在无人机问世以来,军事领域显得兴趣盎然,现在对无人机的研究也多数是出于军事使用的目的。在20世纪60年代,无人机已经开始应用到军事领域,在美越战争中,美国就使用了这种无人机来进行军事侦察、空中打击和目标摧毁。但是,最经典的无人机作战运用,属于以色列人。在第四次中东战争中,以色列使用BQM-74C无人机,成功地摧毁了埃及沿运河部署的地空导弹基地。在以色列入侵黎巴嫩时,利用猛犬无人机摧毁了黎巴嫩一些重要的导弹基地。美国在出兵阿富汗和袭击恐怖组织的时候也大量使用了无人飞机,并且在使用中也收到了一定的效果。在20世纪末,很多的国家已经研制出新时代的军用无人机,并且纷纷应用到军事领域,用于战场情报侦察、低空侦察和掩护、战场天气预报、战况评估、电子干扰和对抗、目标定位摧毁等,一定程度上改变了军事战争和军事调动的原始形式。 2、军用无人机的类型研究 随着科学技术的发展,军用无人机的发展日趋成熟,它与有人机相比具有相当大的优势,比如,相对于有人机来说,无人机的操作简单,材料花费较小,关键是可以无飞行员亲自操作,伤亡率低;无人机顾名思义隐蔽性较好,不易暴漏,获取情报的真实度较高,生命力极强;另外,就是无人机的跑距离较短,易于起飞和降落。 就目前对无人机的研究来说,掌握此技术的国家已经有30多个,无人机的类型也有200种以上,军事无人飞机已经广泛应用到军事领域。就现在的军用无

无人机概述与系统组成

无人机概述及系统组成 无人机( UAV)的定义 无人机驾驶航空器(UA: Unmanned Aircraft ),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭 载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统( UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的 型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任 务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航 空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航 空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人 工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖

无人机飞行轨迹的视觉检测

无人机飞行轨迹的视 觉检测

摘要 无人机飞行是利用无线电遥控设备控制的程序装置来操作的一种无人驾驶的飞机,在无人机上装载了自动陀螺仪、程序控制装置等设备,控制无人机平稳度等各项仪式。随着科学技术的进步,微小型多旋翼无人机技术已经日渐成熟,其应用的领域也越来越广泛,随之对轨迹规划的要求也不断的提高。无人机的轨迹规划是指在满足无人机性能指标和特定的约束条件下,寻找一条从起始点到目标点的最优或者次优的飞行轨迹,它是无人机实现自主巡航的重要组成部分。本文利用人工模拟无人机航线,采用直线和斜线两种方法,利用神经网络模型对结果进行预测。无人机飞行进行了仿真,对实验进行模拟,结果证实方法有一定的可行性和实时性。 关键词无人机;神经网络;自主巡航;轨迹估测

Abstract With the progress of modern science and technology, the technology of mini multi-rotor UAVs is becoming more and more mature. And the application fields is becoming widely, and with this demands of trajectory planning is constantly increasing. On the condition that the UAVs satisfied with the performance and some specific constrains, the trajectory planning of unmanned aerial vehicle(UAV) refers to planning an optimal or sub-optimal flight from the starting point to the target point. It is an important part for the UAV to realize autonomous cruise. In this paper, the artificial neural network model is used to predict the results of artificial unmanned aerial vehicle (UAV), using straight line and oblique lines. UAV flight simulation, the simulation of the experiment, the results confirmed that the method has a certain feasibility and real-time. Key words UAV:Artificial Neural Networks; Autonomous Cruise; Tracks Track

民用无人机当前市场背景概览综述

中国民用无人机当前市场背景概览综述目录页 1.无人机定义及分类 1.1无人机定义 1.2无人机分类 1.3无人机应用领域 2.无人机市场全球、国内发展背景综述 2.1全球无人机市场容量 2.2 国内无人机市场容量 3.国内民用无人机当前背景情况一览 3.1民用无人机起源 3.2民用无人机发展历程 3.3民用无人机行业现阶段宏观分析 3.4民用无人机行业商业模式分析 3.5民用无人机当前用户需求分析 3.6民用无人机行业当前主要参与者、投融资概况 3.7民用无人机产业链概况 3.8民用无人机专利申请情况 3.9无人机飞手培训行业情况

4. 工业级民用无人机爆发在即 4.1无人机+行业的当前应用 4.2工业级无人机当前市场容量分析 4.2.1农业植保 4.2.2电力巡检 4.2.3森林防火 4.2.4输油管道 4.2.5警用需求 4.2.6快递物流 4.3未来发展方向预测 5.民用无人机未来发展趋势及创新应用 前言: 中国民用无人机市场经历了30多年的发展。2010年之前,中国民用无人机市场规模小,增长缓慢,主要运用于灾害救援、地图测绘等专业领域市场。2011年,以大疆创新为代表的中国消费级民用无人机企业,依靠多旋翼无人机迅速崛起,并在全球消费级无人机市场占有70%的份额,成为“中国创造”的代表。2014年-2015年,中国民用无人机受到社会舆论、资本市场的广泛关注。2016年是【民用无人机+】的时代元年,必将引爆各行各业! 1.无人机定义、分类及应用领域

1.1无人机定义 根据中国民用航空局飞行标准司规定: ●无人机驾驶航空器(UA:Unmanned Aircraft),简称无人机,是一架由遥控站管理(包括远程操作或自主飞行)的航空器,也称遥控驾驶航空器。 ●无人机系统(UVS:Unmanned Aircraft System),也称无人机驾驶航空器系统,是指一架无人机、相关的遥控站、所需的指挥与管制链路以及批准的型号设计规定的任何其他部件组成的系统。 1.2无人机分类

关于三维目标识别的文献综述

1.1研究背景 随着人类社会的快速发展,图像识别已经迅速发展成为一项极为重要的科技手段,其研究目标是,赋予计算机类似于人类的视觉能力,使其通过二维图像认知周边环境信息,包括识别环境中三维物体的几何形状、位置和姿态等。图像识别需综合运用计算机科学、模式识别、机器视觉及图像理解等学科知识,并随着这些学科的发展而前进。图像识别技术己广泛应用到许多领域,例如:宇宙探测、生物医学工程、遥感技术、交通、军事及公安等。针对不同对象和环境有不同的识别方法。由于图像可以提供十分丰富有效的信息,为给识别带来较大方便。因此,图像识别技术一直受到研究者重视,是模式识别领域的研究热点之一。一般来说,图像识别技术大体经历了三个主要阶段即:文字识别、二维图像识别和处理、三维物体识别。文字识别开始于1950年前后,首先是识别字母、数字和符号,后来发展到识别文字,从识别印刷字体到手写文字,并研制出相应的文字识别设备。从六十年代初期开始,人们开始图像处理和识别的研究,逐步发展到识别静止图像和运动图像,最初主要利用成像技术光学技术等,后来人们结合了日新月异的计算机技术,获得巨大成功。接下来是对三维物体识别问题的研究。三维物体识别的任务是识别出图像中有什么类型的物体,并给出物体在图像中所反映的位置和方向,是对三维世界的感知理解。在结合了人工智能科学、计算机科学和信息科学之后,三维物体识别成为图像识别研究的又一重要方向。 目前,出于城市规划、工业自动化、交通监控、军事侦察及医疗等各个领域的大量应用需求,三维物体识别已成为一个活跃的研究领域,有较大的实用价值和重要意义,具有广阔前景。设计一个三维物体识别系统,理论上要求它有足够好的通用性、稳健性,且学习简单,即这个系统能够在各种条件下,无需手工干预就能识别任何物体,没有特殊或复杂的过程来获得数据库模型。当然这个需求一般很难达到,实际都是在一定约束条件下进行方法的研究,然后尽可能减约束条件。三维物体识别一般可分为五种主要的研究思路: 1)基于模型(model-based)或几何(geometry-based)的方法; 2)基于外观(appearance-based)或视图(view-based)的方法; 3)基于局部特征匹配的方法; 4)光学三维物体识别 5)基于深度图像的三维物体识别 现在主流的是前三项, 1.基于模型或几何的方法 如果在识别的过程中,要利用有关物体外观的先验知识,如CAD设计的模型则称为基于模型(model-based)或几何(geometry-based)的三维物体识别。基于模型的方法,从输入图像数据中得到物体描述,并与模型描述进行匹配,以达到对物体进行识别及定位目的。这里的物体模型一般仅描述物体的三维外形,省略颜色和纹理等其他属性,其算法流程如图1-1所示。

相关文档
最新文档