第一章 数制和编码

合集下载

数字电路

数字电路

第一章数制和码制1.表示数量大小基本概念:基数数码位权数制几种进制:特点,表示方法转换:二进制模拟按权展开信号十进制小数:乘基数取整法数字表现形式数码整数:除以基数倒取余数法八十六算术运算:+-*/ 想要只用移位和相加全部解决补码正数:原码=反码=补码负数:原码按位取反反码加1 补码补码的运算2.表示不同事物或事物的不同状态,又称“代码”编制规则:码制(各种码制的特点、相互关系)十进制代码:(书上还有5211码)注:8421BCD码和十进制间的转换是直接按位(按组)转换如:(36)10=(0011 0110)8421BCD=(110110)8421BCD(101 0001 0111 1001)8421BCD=(5179)10格雷码(循环码):①相邻性:任意两个相邻码组间仅有一位的状态不同。

②循环性:首尾两个码组也具有相邻性。

ASCII码(美国信息交换标准代码):采用7位二进制编码,用来表示27(即128)个字符。

注意0~9,a~z,A~Z的ASCII码特点第二章逻辑代数基础一、逻辑代数(开关代数、布尔代数)与(逻辑相乘)Y = A·B = AB1.基本运算或(逻辑相加)Y = A+B非(逻辑求反)Y = (A)‘衍生出:与非:BAY+=或非:BAY+=与或非:CDABY+=异或:BAB ABAY+=⊕=互为反运算同或:ABBABAY+=Θ=2.基本公式(定律):衍生出常用公式:注意记忆它们的图形符号3.基本定理:(注意结合例题进行练习、理解)代入定理:任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立。

反演定理:对于任意一个逻辑函数式 F ,做如下处理:①运算符“.”与“+”互换,“”与“⊙”互换②常量“0”换成“1”,“1”换成“0”;③原变量换成反变量,反变量换成原变量。

那么得到的新函数式称为原函数式F 的反函数式对偶定理:若两逻辑式相等,则它们对应的对偶式也相等。

现代电子技术基础(数字部分)知识点

现代电子技术基础(数字部分)知识点

一、数电知识要点第一章 数制与编码1、码制:各种码制之间的转换(整数,小数)2、带符号数的原码、反码和反码3、二进制编码:自然二进制码、格雷码4、BCD 码:8421BCD 码、余三码等第二章 逻辑函数及其化简1、逻辑代数的基本运算及复合运算:与、或、非、与非、或非、异或、同或与运算: 全1得1,有0得0;或运算:有1得1,全0得0; 非运算:10 01==异或:相同得0,相异得1同或:相同得1,相异得02、逻辑运算基本公式及常用规则:1) 十个基本公式2) 逻辑运算常用规则:代入规则;反演规则;对偶规则3、逻辑函数表示方法1)真值表2)逻辑函数表达式:与或表达式;或与表达式;与非-与非表达式;或非-或非表达式;最小项表达式;最大项表达式(概念、性质、两者之间的关系)3)逻辑电路图(与电路分析设计结合):由逻辑表达式到电路图;由电路图写逻辑表达式;4)卡诺图(化简:最多四变量)求逻辑函数的最简与或表达式和或与表达式第三章组合逻辑电路1、集成电路主要电气指标:输入/输出电压;输入/输出电流;噪声容限;扇出系数;输出结构:推拉式输出;开路输出;三态输出2、常用组合逻辑模块3-8译码器、数据选择器、加法器、数值比较器3、组合逻辑电路分析分析步骤:1)由给定的逻辑图逐级写出逻辑函数表达式;2)由逻辑表达式列出真值表;3)分析、归纳电路的逻辑功能。

4、组合电路的设计设计步骤:列真值表—写出适当的逻辑表达式—画电路图。

其中第二步写逻辑表达式时根据设计要求有所不同:1)用门电路设计:与或电路/与非-与非电路:卡诺图化简求最简与或表达式或与电路/或非-或非电路:卡诺图化简求最简或与表达式2)用3-8译码器+与非门设计:写最小项表达式3)用3-8译码器+与门设计:写最大项表达式4)用数据选择器设计:通过卡诺图降维得出数据选择器的各位地址信号Ai和各路数据Di的表达式5、逻辑险象的判别和消除第四章时序电路分析1、各类触发器的特性方程、约束方程、状态表、状态图(RS,JK,D)2、集成计数器74163工作原理、功能及应用(如何构成任意模的计数器、序列信号发生器)3、时序电路的分析1)由触发器构成的米里型/莫尔型同步时序电路的分析步骤:分析电路类型—写激励方程和输出方程—求次态方程—状态表、状态图—功能。

数字电路-数制与编码

数字电路-数制与编码
常用进位制:二进制、八进制、十六 进制、十进制等。
数码的个 数和计数 规律是进 位计数制 的两个决 定因素
一、 十进制数的表示 数码个数10: ⒈ 数码个数 :
0,1,2,3,4,5,6,7,8,9
计数规律: 计数规律
逢十进 1,借一当10
2.基与基数 2.基与基数
用来表示数的数码的集合称为基 用来表示数的数码的集合称为基(0—9), ) 称为基数 十进制为10)。 称为基数(十进制为 。 基数 十进制为 集合的大小
lg α j≥i lg β
取满足不等式的最小整数
)16 ,已知精度为±(0.1)410
例: (0.3021)10→(
解: α=10,β=16,i=4
lg10 j≥ 4 = 3.32 取 j=4 lg16
⑵按题意要求
例: (0.3021)10→( 解:
)2 ,要求精度 0.1% ∴取 j=10
1 1 0.1% = ≥ 10 1000 2
X ;0 ≤ X < 2n [ X ]补= 2n +1 + X ;-2n ≤ X < 0
例 2:
(321.4)8 = ( )10 =3×82+2×81+1×80 +4×8-1 =(209.5)10 192 16 1 0.5
基数乘除法( 10 → R )
分整数部分和小数部分分别转换。 ⒈整数的转换——基数除法 规则:除基取余, 规则:除基取余,商零为止 例1:(25) 10 = ( ) 2
例:已知 X1=1100 X2=1010 求 Y1= X1- X2 ; Y2= X2- X1
01100 +10101 100001 + 1 00010 01010 +10011 11101

数制与编码

数制与编码

第1章数制与编码学习目标:本章主要介绍了计算机中关于数的表示方法、几种常用数制的转换、机器数的表示方法和常用编码等内容。

使学生通过对数的基础知识的学习,可以为后续单片机原理的学习打下基础。

知识点:1、二进制、十六进制、十进制表达形式及其相互转换;2、机器数中关于有符号数的原码、反码、补码的表达形式及其相互转换;3、ASCII码、BCD码的表达形式及其相互转换。

1.1 不同进位计数制及其转换1.1.1 进位计数制计算机其实就是一种由数字电路演变而来的能进行逻辑运算的机器,其处理的信息就是数字电路所提到的二进制数,而人们常使用的是十进制数,这样,为了能顺利地在人与计算机之间进行信息交换,一定要进行不同进制数之间的转换操作,因此我们有必要掌握数制及数制转换的原理。

进位计数制:按进位的原则进行计数的一种方法。

进位计数制有以下两个特点:(1)有一个固定的基数r,数的每一位只能取r个不同的数字,即所使用的数码为0,1,2,……,r-1。

(2)逢r进位,它的第i个数位对应于一个固定的值r i,r i称为该位的“权”。

小数点左侧各位的权是基数r的正次幂,依次为0,1,2,…,m次幂,小数点右侧各位的权是基数r的负次幂,依次为-1,-2,…,-n次幂。

1、十进制十进制的基数为10,它所使用的数码为0~9,共l0个数字。

十进制各位的权是以10为底的幂,即每个数所处的位置不同,它的值是不同的,每一位数是其右边相邻那位数的10倍。

例如,数555.55就是下列多项式的缩写:555.55D=5*102+5*101+5*100+5*10-1+5*10-2上式中的后缀D(Decimal)表示该数为十进制数,通常对十进制数可不加后缀。

2、二进制二进制的基数为2,它所使用的数码为0、1,共2个。

二进制各位的权是以2为底的幂,即…,22,21,20,2-1,2-2,…。

例如,二进制数1011.101相当于十进制数:1011.101B=1*23+0*22+1*21+1*20+1*2-1+0*2-2+1*2-3 =11.625二进制数的运算规则类似于十进制,加法为逢二进一,减法为借一为二。

数字电路逻辑基本知识

数字电路逻辑基本知识
电路的设计维修维护灵活方便随着集成电路技术的高速发展数字逻辑电路的集成度越来越高集成电路块的功能随着小规模集成电路ssi中规模集成电路msi大规模集成电路lsi超大规模集成电路vlsi的发展也从元件级器件级部件级板卡级上升到系统级
数字逻辑
主 讲:代 媛 电 话:87092338
数字逻辑
用数字信号完成对数字量进行算术运算和逻辑运 算的电路称为数字电路,或数字系统。由于它具有逻 辑运算和逻辑处理功能,所以又称数字逻辑电路。现 代的数字电路是由半导体工艺制成的若干数字集成器 件构造而成。逻辑门是数字逻辑电路的基本单元。存 储器是用来存储二值数据的数字电路。
17
1.1 进位计数制
可见,数码处于不同的位置,代表的数值是不同的。这 里102、101、100、 10-1、10-2 称为权或位权,即十进制数中 各位的权是基数 10 的幂,各位数码的值等于该数码与权的 乘积。
因此, 435.86 4 102 4 101 5100 8 101 6 102
数字集成器件所用的材料以硅材料为主,在高速电路中 ,也使用化合物半导体材料,例如砷化镓等。
5
数字逻辑
逻辑门是数字电路中一种重要的逻辑单元电路 。 TTL逻辑门电路问世较早,其工艺经过不断改进,至今 仍为主要的基本逻辑器件之一。随着CMOS工艺的发展 ,TTL的主导地位受到了动摇,有被CMOS器件所取代的 趋势。
令小数部分 (a2 21 a3 22 am 2m1) F1
34
则上式可写成
1.2 数制转换
2( N )10 a1 F1
现代计算机通常都是标准的数字系统,数字系统 内部处理的是离散元素,并且采用称为信号的物理量 表示,一般为电压和电流,因而现实社会中的各种信 息在数字系统内部呈现出不同的形式 。

《数制与码制 》课件

《数制与码制 》课件

八进制数制在一些特定领域中有应用 ,例如数学和工程领域中用于简化运 算和提高运算效率。
在八进制数制中,每一位的权值是8 的幂次方,例如八位、十六位等。
02
码制的概念与分类
码制的概念
码制是指一种用于表示、传输、处理和存储数据的编码方式。
码制的主要目的是将数据转换为二进制或其他进制形式,以便计算机能够识别、处 理和存储。
码制的转换
十进制码制与二进制码制的转换
十进制转二进制
将十进制数除以2,取余数,直 到商为0,将余数从下往上排列

二进制转十进制
将二进制数从右往左每4位一组 ,将每组数转换为十进制数, 再将各组十进制数相加。
十进制转二进制示例
将十进制数23转换为二进制数 ,得到101011。
二进制转十进制示例
将二进制数101011转换为十进 制数,得到23。
数制与码制的发展趋势和未来展望
标准化和规范化
随着信息技术的不断发展,数制 与码制的标准化和规范化将更加 重要,以促进不同系统、平台之
间的互操作性和兼容性。
高效性和灵活性
未来数制与码制将更加注重高效性 和灵活性,以满足不同应用场景的 需求,包括物联网、云计算、大数 据等领域。
安全性与可靠性
随着信息安全威胁的不断增加,数 制与码制的未来发展将更加注重安 全性与可靠性,提高信息传输和存 储的安全防护能力。
在十进制数制中,每一位的权值 是10的幂次方,例如十位、百
位、千位等。
二进制数制
二进制数制由0和1两个数字组 成,采用逢二进一的计数原则 。
在二进制数制中,每一位的权 值是2的幂次方,例如二进制数 1011表示为十进制数11。
二进制数制在计算机科学中广 泛应用,因为计算机中的信息 都是以二进制形式存储和处理 的。

阎石《数字电子技术基础》笔记和课后习题详解-数制和码制【圣才出品】

6 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

(3)(10010111)2=1×27+0×26+0×25+1×24+0×23+1×22+1×21+1×20=151 (4)(1101101)2=1×26+1×25+0×24+1×23+1×22+0×21+1×20=109
一、概述 1.数码的概念及其两种意义(见表 1-1-1)
表 1-1-1 数码的概念及其两种意义
2.数制和码制基本概念(见表 1-1-2) 表 1-1-2 数制和码制基本概念
二、几种常用的数制 常用的数制有十进制、二进制、八进制和十六进制几种。任意 N 进制的展开形式为:
D=∑ki×Ni
1 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
位每 4 位数分为一组,并将各组代之以等值的十六进制数。例如:
(0101 1110. 1011 0010)2
( 5 E.
B 2)16
(2)十六-二:将十六进制数的每一位数代替为一组等值的 4 位二进制数即可。例如:
(8
(1000
F A. 1111 1010.
C 1100
6 )16 0110)2
1.3 将下列二进制小数转换为等值的十进制数。 (1)(0.1001)2;(2)(0.0111)2;(3)(0.101101)2;(4)(0.001111)2。 解:(1)(0.1001)2=1×2-1+0×2-2+0×2-3+1×2-4=0.5625 (2)(0.0111)2=0×2-1+1×2-2+1×2-3+1×2-4=0.4375 (3)(0.101101)2=1×2-1+0×2-2+1×2-3+1×2-4+0×2-5+1×2-6=0.703125 (4)(0.001111)2=0×2-1+0×2-2+1×2-3+1×2-4+1×2-5+1×2-6=0.234375

1no 计算机中的数据和编码

十六进制

进位计数制
表1.1 计算机中的数制对照表 0 1 2 3 4 5 6 7 十进制 二进制 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111
十六进制
8 9 A B C D E F
1.1 计算机中的数制

进位计数制
在进位计数制中,一个数码处在数的不同位置时, 它所代表的数值是不同的。每一个数位赋予的数值称为 位权,简称权。 权的大小是以基数为底,数位的序号为指数的整数 次幂,用I 表示数位的序号,用R 表示数位的权。 例:342.54各数位的权分别为102, 101, 100, 10−1和 10−2; 1011.01B各数位的权分别为23,
X1 X2

【例1.11】 写出真值X1 = +1001110,X2 = −1001110的补码。 [X1]补= 01001110 [X2]补= 10110010 【例1.12】 写出8位补码表示的最大和最小整数。 Max[X]补= [01111111]补 =+1111111B =+127 Min[X]补 = [10000000]补 = −10000000B = −128 8位补码表示整数的范围是+127~−128。 用补码表示法能使减法运算转化为加法运算,并且在进行加减运算时, 能使符号位和数值位一起运算,从而简化运算规则。
Xn
+1)。
计算机中数的表示 1.2 计算机中数的

机器数的表示方法
4.移码表示法 . 移码也称作增码,就是在补码的基础上增加一个偏移量。根据多数高 级程序语言软件包的实数标准格式,字长为8位的移码,其偏移量为 127(7FH);字长为11位的移码,其偏移量为1023(3FFH)。 【例1.14】 写出X1 =+0000011B,X2 = −0000011B的移码。 [X1]移 = [X1]补+偏移量 = [00000011B]补+01111111B = [10000010B]移; [X2]移 = [X2]补+偏移量= [11111101B]补+01111111B = [01111100B]移。

数制和编码

)余3码
十进制码与BCD码之间的转换(直接转换):(38)10=(
1.4 可靠性代码
•循环码(又称间隔位编码、格雷码(Gray))
一位循环码 二位循环码 三位循环码 四位循环码 0000 0001 0011 0010 0110 0111 0101 0100 1000 1001 1011 1010 1110 1111 1101 1100
例:将(28.84)10转换为二进制数 整数部分:除2取余 28 / 2 = 14 …… 余 0 14 / 2 = 7 …… 0 7 / 2 = 3 …… 1 低位
3 / 2 = 1 …… 1 1 / 2 = 0 …… 1 ( 28 ) 10 = (11100 ) 2 小数部分:乘2取整 0.84 × 2 = 1.68 ……… 取整 1 0.68 × 2 = 1.36 …………… 1 0.36 × 2 = 0.72 …………… 0 0.72 × 2 = 1.44 …………… 1 0.44 × 2 = 0.88 …………… 0
1.2 数制转换
任意两种进制之间的转换: (借助十进制作为桥梁)
多项式替代法
例: (121)3转换成二进制
= (1 × 10 2 + 2 × 101 + 1 × 100 ) 3 = (1 × 112 + 10 × 111 + 1 × 110 )2 = (1001 + 110 + 1)2 = (10000)2
计算机使用二进制进行机器运算。
优点:运算简单、电路实现容易、便于利用逻辑代数 进行研究分析
加法规则 减法规则 乘法规则 除法规则
0+0 =0 1+0 = 1 0−0 =0 1−0 = 1 0×0 = 0 1× 0 = 0 0÷1=0

数电选择题(无答案版)

15. F =BC D +ABD +AD +ABC +ABCD 的最简与或式为
2
16.逻辑函数 F(ABCD) = ∑(0, 2, 5, 7, 8), 约束条件为 AB + AC = 0 ,其最简与或非式为
A.
B.
C.
D.
17. 能使下图输出 Y = 1 时的 A,B 取值有( )
A.1 种
B.2 种
30.半加器的逻辑功能是(A)
A.两个同位的二进制数相加 B.两个二进制数相加
C.两个同位的二进制数及来自低位的进位三者相加 D.两个二进制数的和的一半
31.全加器的逻辑功能是( )
A.两个同位的二进制数相加 B.两个二进制数相加
C.两个同位的二进制数及来自低位的进位三者相加 D.不带进位的两个二进制数相加
)。
A. 全为0状态 B.全为1状态 C.为0为1状态都有 D.以上均不对
19.集成 4 位数值比较器 74LS85 级联输入 IA<B、IA=B、IA>B 分别接 001,当输入二个相等的 4 位数据时,输出 FA<B、
FA=B、FA>B 分别为(
)。
A.010
B.001
C.100
D.011
20.下列不是 3 线 ─ 8 线译码器 74LS138 输出端状态的是 ( ) 。
C.3 种
D.4 种
18.图示为二输入逻辑门的输入 A、B 和输出 Y 的波形,则该逻辑门是( )。
A
B
Y
A.与非门 B.同或门 C.异或门 D.或非门
19.函数 F(A,B,C)=AB+BC+AC 的最小项表达式为(
)。
A.F(A,B,C)=∑m(0,2,4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档