概率论与数理统计课件完整版

合集下载

《概率论与数理统计》-课件 概率论的基本概念

《概率论与数理统计》-课件 概率论的基本概念
解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为

概率论与数理统计课件(PPT)

概率论与数理统计课件(PPT)
随机现象:不确定性与统计规律性
概率论——研究和揭示随机现象 的统计规律性的科学
目录
• • • • • • 第一章 随机事件及其概率 第二章 随机变量 第三章 随机变量的数字特征 第四章 样本及抽样分布 第五章 参数估计 第六章 假设检验
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
注意到不论是对概率的直观理 解,还是频率定义方式,作为事件 的概率,都应具有前述三条基本性 质,在数学上,我们就可以从这些 性质出发,给出概率的公理化定义
1.定义(p8) 若对随机试验E所对应的样本空间中 的每一事件A,均赋予一实数P(A),集合函数
P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
fn(H)
0.5181 0.5069 0.5016 0.5005
N ( A) P( A) N ()
P(A)具有如下性质(P7)
(1) 0 P(A) 1;
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 ={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
1.1随机事件及其概率

同济大学《概率论与数理统计》PPT课件

同济大学《概率论与数理统计》PPT课件
随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)

《概率论与数理统计》课件

《概率论与数理统计》课件
② 力①= ____, AC1 =__________, AA =________. _______ _____ ③ A = ____. ④ 若AuB,则力UB =_____, AHB =______, A ____B. ____ _____ ⑤ A-B = AB = A-AB, A = (AB) , A[}B = B^A万二,U8麟

____
XXXX大学
1.2.1事件间的关系与运算
文氏图(Venn diagram )
随机事件的关系和运算 相似集合的关系和运算
XXXX大学
关系
包含
相等 互不相容 (互斥)
符号表示
AuB/BD A
A u B且A D B
AB=0
事件间的关 系
事件发生
/发生则8发生
样本点
X的样本点都 是gj勺样本

ABC U ABC U
A3:“恰有两人命中目标 '
A4 :"最多有一人命中目 标
A5 :“三人均命中目标' :
ABC
ABC U ABC U
ABC
BC U AC U AB
ABC A n B n
A6 :“三人均未命中目标
C
单选题1分
设凡B, C三个事件,则“至少有两个发生”可表示 )O

A. ABC^^ U ABC
3/10/2022
10
XXXX大学
1.2.2事件的运算性质
交换律A AB = BA
结合律 (A U B)U C
二」U (B U C)
(AB) C = A
3/10/2022
11
XXXX大学
1.2.2事件的运算律
分配律 An(^uc)=(^n^)u(^nc ) Ausnc)=(,ug)n(,u。

概率论与数理统计课件最新完整版

概率论与数理统计课件最新完整版

时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。

概率论与数理统计ppt课件

概率论与数理统计ppt课件
P( A) m( A)
m( )
(其中m( ) 是样本空间的度量, m( A) 是构成事件A 的子区域的度量) 这样借助于几何上的度量来合理 规定的概率称为几何概率. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
20
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不相 关. 求甲、乙两人能会面的概率.
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
k n
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称

概率论与数理统计ppt课件


注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....

5.1 大数定律 5.2 中心极限定理

第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13


事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定

例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖

概率论与数理统计 课件


05
多元统计分析
多元正态分布
01
多元正态分布的定义
多元正态分布是多个连续随机变量的 联合分布,其概率密度函数是多元高 斯函数。
02
多元正态分布的性质
多元正态分布具有旋转对称性、椭球 等高性、最大似然估计等性质。
03
多元正态分布的应用
在多元统计分析中,多元正态分布被 广泛用于描述多维数据的分布特征, 例如在回归分析、主成分分析、因子 分析等中都有应用。
正态分布与指数分布
正态分布
一种常见的连续概率分布,其概率密 度函数呈钟形曲线,对称轴为均值, 形状由标准差决定。
指数分布
描述随机事件在单位时间内发生的次 数,其概率密度函数为指数函数。
均匀分布与对数正态分布
均匀分布
在一定区间内随机变量取值的可能性相等,其概率密度函数 为常数。
对数正态分布
描述随机变量取值的对数服从正态分布的情况,其概率密度 函数在对数尺度上呈正态分布。
因子分析
因子分析的定义
因子分析是一种探索性 统计分析方法,通过寻 找隐藏在数据中的公共 因子来解释变量之间的 相关性。
因子分析的步骤
包括确定因子个数、因 子旋转、因子得分计算 等步骤。
因子分析的应用
在多元统计分析中,因 子分析被广泛应用于市 场细分、顾客满意度分 析、社会问题研究等方 面。
06
随机过程与时间序列分析
描述随机变量取离散值的概率规 律。
02
离散概率分布的特 点
随机变量取值有限或可数,概率 质量函数定义了每个可能取值的 概率。
03
离散概率分布的表 示方法
列表法、图示法、概率质量函数 。
二项分布与泊松分布
1 2

《概率论与数理统计》课件

n
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率.
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
可列个A事 1, A2件 ,的和事件记 Ak.为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,即事件A与B同时发生. A B 可简记为AB.
A
类似地, 事件
A
为可列个事件AS1,
A2, ...的积事件. K
B
k 1
(2)AB
A
B S
(3)A B
4.差事件: 事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A-BAAB
显然: A-A=, A- =A, A-S=
s A
B
(4)AB
5.事件的互不相容(互斥):
若 A B,则A 称 与 B 是 互 不 ,或 相 互 ,容 即 斥
A 与 B 不能同 . 时发生
B
AB
A
6. 对立事件(逆事件):
若ABS且AB, 则A称 与B互 为 逆 事 件
为对立.事 即:件 在一次实 , 事 验件 A中 与B中必然有 个 发,且 生仅 有 一.个 发 生 A的 对 立 事A件 .若A与 记B互 为为 对 立 事 件 A, B, 或BA.
二、几何定义:
定义 若对于一随机试验 ,每个样本点出现是等可能的 , 样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
定义 当随机试验的样本空间是某个区域,并且任意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
P(A) m(A)
m()
(其中 m()是样本空间,m 的 (A)度 是量 构成事 A 件 的子区域的 )这度样量借助于几量 何来 上合 的理 度 规定的概率 几称 何为 概 . 率
说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不相关. 求甲、乙两人能会面的概率.
E2: 将一枚硬币抛三次,观察正反面出现的情况. E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数.
E5: 在一批灯泡中任取一只, 测试它的寿命.
随机试验: (1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结果; (3) 一次试验前不能确定会出现哪个结果.
B A
S
BA
7.事件的运算律:
交换律: A B B A ; A B B A .
结合律: A(BC)(AB )C; A(BC)(AB )C.
分配律: A(BC )(AB)(AC ); A(BC )(AB)(AC ).
对偶律: 证明
AB AB; AB AB.
对偶律.
例.事件 A、B、C两两互不相 则容 有,
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
§3. 概率的概念 一. 古典定义: 等可能概型的两个特点: (1) 样本空间中的元素只有有限个; (2) 试验中每个基本事件发生的可能性相同.
(3) 对于两两互斥个 的事 可A件 1,列 A2, 多, P(A1A2)P(A1)P(A2)
三. 统计定义:
(一) 频率 1. 在相同的条件下, 共进行了n次试验,事件A发生的次数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为fn(A).
2. 频率的基本性质:
(1) 0f( n A) 1; (非负性)
...
B3
注 (1) 若B1,B2,…,Bn是样本空间S的一个划分, 则每次试验中, 事件B1, B2, …, Bn 中必有一
(2)当 个且n 仅有 一个2 发时 生. ,B 1,B 2为 S 的 一,则 个 B 1,B 划 2为 对 立 ,即 B 事 1B 2.件
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.12次来访, 且都是在周二和周四来访. 问是否可以推断接待时间是有规定的?
实际推断原理:“小概率事件在一次试验中实际上是不可能发生的”. 注
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P(A)SA 中 中的 的基 基本 本事 事 kn件 件总 数
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
概率论与数理统计课件完整版
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
§1.随机试验 我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例: E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况.
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一次试验中, 当且仅当这一子集中的一个样本点出现时, 称这 一事件发生.
基本事件:
由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件为复合事件. 如:E3中{出现正面次数为奇数}.
(三)事件间的关系与事件的运算 1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记作AB. 若A B且A B, 即A=B, 则称A与B相等.
B A
S
(1) AB
2.和事件:
AB{x|xA或xB}称为 A与B的和事 . 件 即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
例3. r只红球○
t只白球○
每次任取一只球观察颜色后, 放回, 再放回a只 同色球
§2. 样本空间与随机事件 (一) 样本空间: 定义 随机试验E的所有可能结果组成的集合称为 E的样本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类: 1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等.
2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
例如:掷一颗骰子,观察出现的点数. 概率的古典定义: 对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包含S的 k 个样本点,则事件A的概率定义为
P(A)SA 中 中的 的基 基本 本事 事 kn件 件总 数数
古典概型概率的计算步骤: (1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
推广 P(ABC)P(A )P(B )P(C) P(A)B P(A)C P(B)C P(AB ).C
P (A 1 A 2 A n)
n
P(A i
)
P(A i A j )
i1
1i jn
P(A i A jA k )
1i jk n
(1)n1 P(A 1 A 2 A n ).
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事件的概率:
在袋中连续取球4次, 试求第一、二次取到红球且第三、四次取到白球的概率.
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定义 : 若 B1,B2,,Bn一组事件 : 满足
(iB i) B j φ ,i ji,j, 12,.,.n .,,
n
(ii) Bi S,
S B2
B1
i1
则称B1, B2,Bn为样 本空间 S的一个划. 分 Bn
P( Bi |A) P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1P) (|A )0.
(2设 )B1,B2,,Bn两两互不 ,则相容
n
n
P( Bi |A) P(iB|A.)
i1
i1
(3P )B (|A )1P (B |A ).
(4P ) (C B |A P ) |(A B P ) |(A C) -P(|A BC ).
P(A1)P(A2) P(An).(有 限 可 )
性3质 . 若 AB,则有 P(BA)P(B)P(A);
P (B )P (A ).
一般地有: P(B-A)=P(B)-P(AB).
性4质 .对任一 A, 事 P(A)件 1.
性5质 .对任一 A , P 事 (A)件 1P(A).
性6质 .对任意A 两 ,B有 事件 P(AB)P(A)P(B)P(A)B.
相关文档
最新文档