DSP在通信中的应用

合集下载

dsp的原理与应用实验

dsp的原理与应用实验

DSP的原理与应用实验介绍数字信号处理(Digital Signal Processing,DSP)是一种数学算法和基于嵌入式系统的技术,用于处理数字信号,是现代通信、音频处理、图像处理等领域的关键技术之一。

本文将介绍DSP的基本原理以及其在实际应用中的实验。

DSP的基本原理1.数字信号和模拟信号的区别–数字信号是离散的,模拟信号是连续的–数字信号可以用离散的数值表示,模拟信号用连续的数值表示2.采样和量化–采样是指将模拟信号在时间上离散化–量化是指将模拟信号在幅度上离散化3.傅里叶变换–DSP中常用的一种变换方法–将信号从时域转换到频域–可以分析信号的频谱特性4.滤波–常见的信号处理操作之一–可以去除噪声、选择特定频率的信号等–常用的滤波器包括低通滤波器、高通滤波器、带通滤波器等DSP的应用实验1.音频处理实验–使用DSP技术对音频进行处理–实现音频的均衡器效果、混响效果等–可以提高音频的质量和效果2.语音识别实验–利用DSP算法对语音信号进行处理–通过提取特征参数来识别语音内容–可以应用于语音控制、语音识别等领域3.图像处理实验–利用DSP技术对图像进行处理和分析–实现图像增强、去噪等操作–可以应用于图像识别、图像处理等领域4.通信系统实验–使用DSP技术对通信信号进行处理–实现调制解调、信号编解码等操作–可以提高通信系统的性能和可靠性结论数字信号处理(DSP)是一种重要的信号处理技术,可以广泛应用于通信、音频处理、图像处理等领域。

通过实验可以深入了解DSP的原理和应用,提高对信号处理的理解和应用能力。

以上就是DSP的原理与应用实验的简要介绍,希望对你有所帮助!。

dsp芯片的原理与应用

dsp芯片的原理与应用

DSP芯片的原理与应用1. DSP芯片的概述DSP芯片(Digital Signal Processor,数字信号处理器)是一种专门用于数字信号处理的芯片。

它通过对数字信号的处理来实现各种信号处理算法,如音频信号处理、图像处理、视频编解码等。

DSP芯片具有高速计算和高效能耗比的特点,在许多领域都得到了广泛的应用。

2. DSP芯片的原理DSP芯片的核心部分是一组高性能的数学运算单元,主要包括算术逻辑单元(ALU)、寄存器文件和累加器等。

这些数学运算单元可以对数字信号进行加法、减法、乘法、除法等复杂的数学运算,并实现快速的乘积累加(MAC)操作。

此外,DSP芯片还配备了高速的存储器,用于存储待处理的数据和运算结果。

3. DSP芯片的应用领域3.1 音频信号处理DSP芯片在音频信号处理方面应用广泛。

它可以通过数字滤波器对音频信号进行滤波处理,实现均衡器、消噪器、混响器等音效效果。

另外,DSP芯片还可以对音频信号进行编解码,实现音频压缩和解压缩。

3.2 图像处理DSP芯片在图像处理方面也有很多应用。

它可以对图像进行数字滤波、边缘检测和图像增强等处理,用于医学图像的分析、工业检测和图像识别等领域。

3.3 视频编解码在视频处理领域,DSP芯片可以实现视频的压缩和解压缩。

它可以对视频信号进行编码,降低视频数据的传输带宽和存储空间,提高视频传输的效率。

同时,DSP芯片还可以对编码后的视频进行解码,恢复原始的视频信号。

3.4 通信系统DSP芯片广泛应用于各种通信系统中。

它可以实现数字调制解调、误码纠正、信道均衡和信号编码等功能,用于提高通信系统的性能和效率。

此外,DSP芯片还可以实现语音信号的压缩和解压缩,用于语音通信系统和语音识别系统等领域。

3.5 控制系统在控制系统中,DSP芯片可以实现数字控制、数字滤波和模拟信号的转换等功能。

它可以对控制信号进行数字化处理,提高控制系统的精度和稳定性。

此外,DSP芯片还可以与传感器和执行器进行接口,实现实时的控制和反馈。

通信系统中的信号处理方法与技巧

通信系统中的信号处理方法与技巧

通信系统中的信号处理方法与技巧在当今信息化时代,通信系统已成为现代社会中不可或缺的基础设施。

随着科技的飞速发展,通信系统的处理方法和技巧也在不断地创新和优化。

其中,信号处理方法和技巧是通信系统中最为关键的一环。

一、数字信号处理数字信号处理(Digital Signal Processing,DSP)是现代通信系统中应用最为广泛的信号处理方法之一。

它通过对信号进行采样、量化、编码、滤波等数学操作,将信号从模拟域转换到数字域,从而实现对信号的数字化处理。

在通信系统中,常用的数字信号处理技术包括FFT、滤波、降噪、解调等。

其中,FFT(快速傅里叶变换)可以将信号从时域转换到频域,实现频谱分析;滤波技术可以去除信号中的噪声和干扰,提高信号的质量;降噪技术可以对信号进行去噪处理,提高信号的清晰度;解调技术可以将调制信号还原成原始信号,实现信息的传输。

二、自适应滤波在通信系统中,往往存在着各种干扰和噪声,这些干扰和噪声会对信号的质量产生不利影响。

自适应滤波(Adaptive Filtering)技术就是通过对干扰和噪声进行识别和估计,对信号进行滤波处理,从而提高信号的抗干扰能力和抗干扰性。

自适应滤波技术主要包括LMS算法(最小均方算法)和RLS 算法(递归最小二乘算法)等。

LMS算法是一种基于梯度下降的最小均方算法,它通过对信号进行加权运算,实现对干扰和噪声的消除;RLS算法是一种递归最小二乘算法,它通过对信号进行递推运算,实现对信号的实时滤波处理。

三、多路复用技术多路复用(Multiplexing)技术是一种将多个信号合并在同一传输信道中传输的技术。

在通信系统中,常用的多路复用技术包括时分多路复用(TDM)、频分多路复用(FDM)和码分多路复用(CDM)等。

其中,TDM技术将多个信号按照时间间隔进行分割,将分割后的信号按照顺序发送到接收端,从而实现多路复用;FDM技术将多个信号按照频率进行分割,将分割后的信号按照频域隔离发送到接收端,从而实现多路复用;CDM技术则是通过将每个信号转换成特定的码序列,将所有信号合并在同一频率上进行传输,从而实现多路复用。

dsp控制器原理及应用

dsp控制器原理及应用

dsp控制器原理及应用
DSP控制器原理及应用
DSP控制器是指采用数字信号处理技术设计的控制系统中的
一种关键组件。

它主要应用于需要高性能数字信号处理的领域,如通信、音频、图像处理、汽车控制等。

DSP控制器的原理是基于数字信号处理技术,通过将模拟信
号转换为数字信号,并利用高速的数值运算进行信号处理和控制。

其核心是DSP芯片,它集成了高性能的数字信号处理器,具有强大的计算能力和灵活的编程控制能力。

在应用方面,DSP控制器的主要作用是实现对输入信号的数
字化采样、滤波、变换和调节,从而得到所需的控制输出信号。

它可以对信号进行实时处理,满足复杂的控制算法和多种控制需求。

同时,DSP控制器还可与其他传感器、执行器等硬件
设备进行接口连接,实现完整的控制系统。

在通信领域,DSP控制器可用于实现调制解调、编码解码、
信号检测等功能,提高通信系统的传输质量和可靠性。

在音频领域,它可以实现音频信号音乐合成、音频效果处理等功能,满足高保真音质要求。

在图像处理领域,DSP控制器可以处
理图像的采集、压缩、增强等任务,实现高质量图像输出。

在汽车控制领域,它可以应用于发动机控制、车辆稳定性控制等方面,提高驾驶安全性和舒适性。

总的来说,DSP控制器的原理是基于数字信号处理技术,通
过数字化信号的处理和计算,实现对输入信号的控制输出。

在各个领域中,它都具有广泛的应用前景,可以提高系统的性能和功能。

DSP在通信系统中的应用与发展

DSP在通信系统中的应用与发展

则 将 F T 数 字 滤 波 和 卷 积 等 算 法 F
集 成 到 DSP 芯 片 内 部 一 般 适 用 于
全世界份 额的近 5 0% 。
与 Tl 司 相 比 其 它 几 家 公 司 公 在 市 场 上 也 占 有 一 定 的 份 额 他
中 图 分 类 号 : N9 17 T 1 .2
文献标识 码 : B
某 些 专 用 的 场 台 . 便 于 提 高 信 号 处 理 的 速 度 。 按 照 数 据 格 式 可 分
为 定 点 和 浮 点 度 两 种 它 代 表 了
们 的 产 品 也 都 有 各 自 的 特 点 如
AD 公 司 的 芯 片 具 有 系 统 时 钟 一 般
属 Tl 司 它 在 1982年 成 功 地 推 公
制 以 及 家 用 电 器 等 电 产 品 不 可 或
缺 的 基 础 器 件 . 尤 其 在 通 信 领 域 数 字 信 号 处 理 器 以 其 实 时 快 速 地
出 第 一 代 DS P芯 片 T Ms 2 1 3 0 0及 其 系 列 产 品 之 后 相 继 推 出 了 第 二 代 T Ms 2 2 第 三 代 T 300 MS3 0 0 2 3 第 四代 T 30 0 第 五代 T 3 0 5 / MS 2 4 MS 2C 0
芯 片

D P 件 、 商 简 要 介 绍 s器 厂
点 格 式 也 不 完 全 一 样 有 的 浮 点 DSP 采 用 自 定 义 的 格 式 。 按 照 基 础 特 性 分 类 则 可 分 出 静 态 DS P芯 片
和 一 致 性 DSP芯 片 两 大 类 如 果 在
DSP 也 称 作 数 字 信 号 处 理 器

DSP工作原理

DSP工作原理

DSP工作原理DSP(数字信号处理)是一种广泛应用于通信、音频、图象等领域的技术,它通过对连续时间信号进行采样和离散化处理,实现信号的数字化表示和处理。

本文将从引言概述、工作原理、应用领域、优势和发展趋势五个方面详细介绍DSP的工作原理。

引言概述:DSP作为一种数字信号处理技术,广泛应用于通信、音频、图象等领域。

它通过对连续时间信号进行采样和离散化处理,实现信号的数字化表示和处理。

DSP具有高速、高效、灵便等特点,已经成为现代通信和媒体技术的核心。

一、工作原理:1.1 采样与离散化:DSP首先对连续时间信号进行采样,即在一定时间间隔内对信号进行采集。

采样频率决定了信号的高频成份是否能够准确还原。

然后,采样得到的连续时间信号将被离散化,即将连续时间信号转换为离散时间信号。

1.2 数字滤波:离散时间信号经过采样和离散化后,可以应用各种数字滤波算法进行滤波处理。

数字滤波可以实现信号的去噪、频率选择和频率变换等功能,提高信号质量。

1.3 数字信号运算:DSP通过数学运算对离散时间信号进行处理。

常见的运算包括加法、减法、乘法、除法、卷积等。

这些运算能够对信号进行加工、提取特征、实现各种算法。

二、应用领域:2.1 通信领域:DSP在通信领域中起到了重要作用。

它可以实现信号的调制、解调、编码、解码等功能,提高通信质量和传输速率。

同时,DSP还可以应用于通信系统的自适应均衡、信道估计等方面。

2.2 音频领域:DSP在音频领域中被广泛应用。

它可以实现音频信号的压缩、解压、降噪、音效处理等功能。

通过DSP的处理,音频信号可以更好地适应不同的播放设备和环境。

2.3 图象领域:DSP在图象领域中也有广泛的应用。

它可以实现图象的压缩、增强、去噪、图象识别等功能。

通过DSP的处理,图象的质量和清晰度可以得到有效提升。

三、优势:3.1 高速处理:DSP采用并行处理的方式,能够实现高速的信号处理。

这使得DSP在实时处理和大规模数据处理方面具有优势。

dsp控制的原理及应用pdf

DSP控制的原理及应用1. DSP控制的基本原理DSP(数字信号处理)是一种基于数字技术的信号处理方法,通过将连续信号转换为离散信号,以实现信号的处理和分析。

在控制系统中,DSP控制是一种使用数字信号处理技术进行控制的方法。

其基本原理包括以下几个方面:1.1 数字信号处理数字信号处理是将模拟信号转换为数字信号,并对数字信号进行处理的过程。

通过采样、量化和编码等步骤,将连续的模拟信号转换为离散的数字信号。

在DSP 控制中,数字信号处理用于对系统信号进行采样和分析,并生成控制信号。

1.2 控制算法控制算法是DSP控制中的核心部分。

通过对输入信号进行分析和处理,可以根据系统的要求生成控制信号。

常用的控制算法包括PID控制算法、模糊控制算法和自适应控制算法等。

这些算法可以根据具体的系统需求来选择和应用。

1.3 数字滤波数字滤波是DSP控制中常用的方法之一。

通过滤波器对输入信号进行滤波处理,可以去除噪声和干扰,获得更加准确的控制信号。

常用的数字滤波器有低通滤波器、高通滤波器和带通滤波器等。

1.4 调制和解调调制和解调是在DSP控制中经常使用的技术。

通过调制技术,可以将信号转换为适合传输的形式。

解调技术则将传输的信号转换回原始的信号形式。

调制和解调技术可以应用于传感器信号的采集和控制信号的输出。

2. DSP控制的应用DSP控制在各个领域中有广泛的应用。

下面列举了几个常见的领域及其应用:2.1 电力系统•电力系统的数字化控制: DSP控制可以应用于电力系统的数字化控制,通过对电力系统信号的采集和处理,实现电力系统的稳定运行和故障检测。

2.2 通信系统•无线通信系统: DSP控制可以应用于无线通信系统中的信号处理和调制解调技术,提高通信质量和传输速率。

2.3 汽车电子控制系统•发动机控制: DSP控制可以应用于汽车发动机控制系统中,通过对传感器信号的采集和处理,进行发动机的调节和控制。

2.4 工业自动化•数字化控制系统: DSP控制可以应用于工业自动化系统中的数字化控制,提高生产效率和质量。

dsp芯片的原理与开发应用

DSP芯片的原理与开发应用1. 什么是DSP芯片?DSP芯片(Digital Signal Processor)是一种专用的数字信号处理器芯片,用于加速数字信号的处理和计算。

它通常由高速运算单元、数据存储器和输入输出接口等组成,具备高速、高效的信号处理能力。

DSP芯片广泛应用于音频、视频、通信、雷达、医疗等领域,是实现实时信号处理的重要工具。

2. DSP芯片的工作原理DSP芯片的工作原理可以简单概括为以下几个步骤:2.1 信号采样DSP芯片首先对输入信号进行采样,将连续的模拟信号转换为离散的数字信号。

常用的采样方式有周期采样和非周期采样,通过选择合适的采样频率和采样精度,可以有效地保留原始信号的特征。

2.2 数字信号处理采样后的信号经过ADC(Analog-to-Digital Converter)转换为数字信号后,DSP芯片开始进行数字信号处理。

这个过程包括滤波、变换、编码、解码、增益控制等一系列算法和操作。

DSP芯片通常集成了多种数学运算单元,如乘法器、加法器、移位器等,可以高速、高效地执行各种信号处理算法。

2.3 数据存储DSP芯片在处理过程中需要对输入、输出数据进行存储,通常包括程序存储、数据存储和寄存器等。

程序存储用于存放DSP芯片的软件程序,数据存储用于存放输入、输出数据以及中间计算结果,而寄存器则用于存放计算过程中的临时数据和控制信息。

2.4 输出重构在数字信号处理算法执行完毕后,DSP芯片将输出数据转换为模拟信号,经过DAC(Digital-to-Analog Converter)转换为连续的模拟信号。

输出重构的过程可以根据需求进行滤波、放大等处理,以获取高质量的模拟输出信号。

3. DSP芯片的开发应用DSP芯片具备高速、高效的信号处理能力,广泛应用于以下领域:3.1 通信领域DSP芯片在通信系统中广泛应用,如无线通信、移动通信和光纤通信等。

它可以处理无线信号的调频解调、调制解调、信号压缩和解码,实现高质量的音频和视频通信。

dsp的原理及应用

dsp的原理及应用
DSP(数字信号处理)是一种通过对数字信号进行采样和处理
来实现信号分析、处理和合成的技术。

原理:
1. 采样:将连续时间的模拟信号转换为离散时间的数字信号。

通过对模拟信号进行周期性采样,得到一系列等距离的采样点。

2. 数字化:将采样得到的模拟信号转换为数字信号。

使用模数转换器(ADC)将模拟信号转换为二进制数据,以便计算机
进行处理。

3. 数字信号处理算法:采用数学算法对数字信号进行处理。

这些算法可以对信号进行滤波、傅里叶变换、时域分析、频域分析和图像处理等操作。

4. 数字合成:通过合成器件,将处理后的数字信号重新转换为模拟信号,以供人们感知和使用。

应用:
1. 通信系统:DSP可用于数字调制解调、信号编解码、误码
纠正和信道均衡等任务,提高通信质量和容量。

2. 音频处理:DSP可应用于音频信号的滤波、均衡、增益控制、混响和音效等处理,提高音频品质。

3. 图像处理:DSP用于静态图像和视频图像的去噪、锐化、
边缘检测、图像压缩和图像识别等处理。

4. 生物医学信号处理:DSP可应用于心电图分析、脑电图分析、正电子断层扫描等生物医学信号的提取和处理。

5. 雷达和信号处理:DSP可用于雷达信号的滤波、目标检测、目标跟踪和雷达成像等应用。

6. 控制系统:DSP可用于控制系统中的信号采样、滤波、控制算法实现和系统建模等任务。

通过DSP的应用,可以实现信号的高效处理、精确分析和准确合成,广泛应用于通信、音频、图像、医学、雷达和控制等领域,提升了信号处理的效率和准确性。

信号处理技术在通信领域中的应用

信号处理技术在通信领域中的应用随着科技的不断发展,信号处理技术在通信领域日益普及。

信号处理技术不仅能够提高通信品质,降低通信成本,还具有广泛的应用前景。

本文将探讨信号处理技术的应用领域、技术原理和未来发展趋势。

一、信号处理技术的应用领域1.无线通信无线通信是信号处理技术的主要应用领域之一。

信号处理技术可以对无线信号进行解调、编码、解码、恢复和调整,从而实现高效、稳定、低成本的无线通信。

无线通信技术应用于手机、通信卫星、卫星导航等,已成为现代通信技术的重要组成部分。

2.音频处理信号处理技术在音频处理方面也有着广泛的应用。

它可以对音频信号进行去噪、均衡、压缩和扬声器优化等处理,以提高音频的品质和清晰度。

此外,信号处理技术还可以实现多通道录音、混音和回声抑制等功能,被广泛应用于音频工程、娱乐产业和语音识别等领域。

3.图像处理信号处理技术在图像处理方面的应用也层出不穷。

它可以对图像进行去噪、增强、压缩和矫正等处理,以提高图像质量和准确度。

此外,信号处理技术还可以实现对象检测、图像分割和特征提取等功能,被广泛应用于摄影、电视广播、医学影像和安防监控等领域。

二、信号处理技术的技术原理信号处理技术是通过数字信号处理器(DSP)对采集到的信号进行数字化处理实现的。

数字信号处理器是一种专门用于处理数字信号的微处理器,可以高效地实现信号处理功能。

数字信号处理的基本流程包括信号采集、数字化、预处理、后处理和输出。

其中,信号采集是指将真实世界中的信号转化为模拟信号,再通过模数转换器将其转化为数字信号。

数字化是指将模拟信号转化为数字信号,数字信号的离散化方式有采样、量化和编码。

预处理是指对数字信号进行滤波、调整和去噪等处理,以准备提取所需信息。

后处理是指对预处理后的数字信号进行运算、分析和变换等处理,提取所需信息,形成输出。

输出是指将信息从数字信号再转换为模拟信号,以便输出到最终设备中。

三、信号处理技术的未来发展趋势信号处理技术发展的趋势是更加智能化、高效化和低成本化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DSP在通信中的应用 在当前的DSP市场上,通信设备是其最大的用户,以下是其中的几个例子: (1)数字式蜂房系统 数字式蜂房系统使用通用DSP来实现语音合成(speech synthesis)、纠错编码(error-correction coding)、基带调制解调器(baseband modem)、以及系统控制等功能。 a.语音合成、语音压缩与编码是DSP最早和最广泛的应用项目。在有线和无线通信中,矢量编码器用于将语音信号压缩到有限带宽的信道中。 b.纠错编码。前向纠错(FEC,Forward Error-Correction)方案广泛地使用在电信应用中、用以降低噪声信道中的bit误码率。随着越来越多的数据要通过有限带宽的信道、对改善的FEC技术的需求也就更加迫切。循环冗余检验(CRC)和bit奇偶检验仍然用于简单的误码检测。然而,更复杂的前向纠错方案,例如Verbi卷积编码和Reed-Solomon(RS)编码常常使用于多bit的检错与纠错。通常,链接的编码方案在降低bit误码方面要优于简单的方案。例如,美国数字蜂房移动电话的IS-54语音信道规范,就由CRC和卷积码来共同保证。 c.基带调制与解调。DSP能够用来实现基带调制解调功能。这些功能包括定时的恢复、自动增益和频率控制、符号检测、脉冲整形、以及匹配滤波器等。许多功能以往是用硬件来实现的。随着高性能DSP的发展和多种目的硬件设计需要的增长,例如,IS-54标准就要求每个终端能够处理三种调制方案:FM、FSK、DQPSK,现在往往用DSP通过其软件来实现。 (2)软件电台(Software rideo) 近年来得到充分重视与迅速发展的软件电台,是利用同样的硬件设备和不同的软件模块,来适应不同频段、不同调制方式下的通信。在软件电台中,最重要和最具挑战性的部分就是高性能的A/D、D/A变换器和以DSP为核心的实时信号处理器。软件电台概念的提出和最初的应用都是在军用通信中;但近年来在各种民用通信系统中也已显露出了广阔的应用前景。软件电台对DSP所提出的实时性很高的要求,正有力地促进着DSP的发展,其中包括单片处理器的性能、多处理器协同工作的能力、DSP软件开发的环境和DSP实时操作系统等多方面的发展。 (3)均衡和信道估计 对DSP来说,另一个计算量繁重的任务是信道模拟,用以估计回声、噪音或码间干扰。线路回声对消是在公用有线电话上适合用DSP来实现的应用。回声和噪音的对消对于有线和无线通信同样重要。 均衡是又一种信道估计技术,用以消除由于信道延时扩展所引起的码间干扰。 (4)语音和字符识别算法 DSP在完成核心的应用之外,还常常用来完成用户界面的任务。这是因为以DSP为基础的产品具有很强的设计灵活性,允许系统的设计者把附加的任务加给他们的DSP,以便更充分地利用其处理能力。在移动电话中。其语音拨号功能就可以由DSP来实现。在使用个人数字助理(PDA、Personal Digital Assistent)技术时,把计算机和通信应用结合在一起,人机界面设计就来得更重要。 (5)调制解调器(Modem) 调制解调器中复杂的数学运算主要是依靠DSP或由DSP核组成的ASIC来完成的。在便携式计算机中、对调制解调器的大小、重量、功耗特别关注时,对DSP的要求就来得更高。调制解调器的速度随着DSP速度的提高而不断地提高,到1997年已达到56kbps。 (6)综合业务数字网(ISDN) ISDN在显著降低成本的同时,使数据传输速率得到很大的提高。从而使一些需要高速数据传输率和信息实时处理的新业务得到发展,如交互式出版、视频会议、远程医疗、远程教学等。 以视频会议为例。由于需要很宽的带宽来传输视频图象和声音,传统的电视会议需要专门租用昂贵的宽带信道。而以最新的DSP为基础的视频会议系统所实现的H.320编码与国际视频会议及ISDN视频电话兼容。也就是说,可以在ISDN的6个基本速率接口(即6×64kbps)上运行视频会议。 由DSP来实现的双模式Modem,既可以在模拟信道上以模拟模式工作、也可以在ISDN信道上以数字格式工作,因为ISDN系统是数字式的。 (7)多媒体 多媒体是由将传统的模拟视频信号和声音信号转换为数字信号而驱动的。电影和电视已经可以装入VCD和DVD供家庭娱乐、电子游戏、商业展览、教学等。数字式的视频数据很快就可以通过电缆电视、电话线、蜂房电话和卫星等信道传输。由视频和声音信号数字化所产生的大量数据,要依靠高性能的DSP来减小对存储空间和传输带宽的要求。需要由DSP来完成的任务包括视频信号与音频信号的编码/解码、彩色空间转换、回音消除、滤波、误码校正、复用、bit流协议处理等。

DSP在第三代移动通信系统中的应用 (1)高性能DSP 第三代移动通信要求DSP的运算速度至少达到300MIPS,才能实现各种繁杂的算法、解压缩和编译码。目前,DSP在功能上趋向实现多个MAC和多个寄存器,更宽的程序总线和数据总线;在结构上趋向采用单指令多数据(SIMD)、多指令多数据(MIMD)和超长指令(VLIW)。TMS320C67X是第六代VIIW结构的DSP产品,浮点运算速度达IGFLOPS。TI公司计划在2000年,将C67X系列的浮点运算速度提升到3GFLOPS,届时用一片C67X,就可完成10片普通DSP的工作,而其单价与市面上普通浮点DSP的价格相当。C67X功能之强大,足以为下一代个人通信提供高速、精确、多功能和多信道的解决方案。 过去,DSP一般采用高级C语言。为了适应将来无线访问Internet网络和多媒体业务的需要,1997年10月,TI从Sun公司得到授权,获准将Personal Java语言嵌入到DSP中。Personal Java是一种适合个人网络连接和应用的Java环境,基于该环境的个人通信系统,可以从网络和Internet上下载数据和图像。另外,TI还研究开发符合MPEG-4(待定)无线解压缩标准的DSP。 为了研究开发适合下一代无线宽带应用的高性能DSP核,Motorola和Iucent于1998年6月签署了DSP联盟协议,双方将合作在亚特兰大设立一个称为StarC0re的设计中心,同时就现有DSP技术进行交互授权。StarCore设计中心将于 1999年完成第一个DSP核设计,并逐步把 Motorola的 M.Core微处理器技术过渡到下一代高速DSIP核中。到2003年,真正实现低功耗、多信道和实时嵌入控制。Motorola最近将16位DSP56600数字信号处理器和32位M.Core微处理器集成为单片型 DSP 56652,开创了双核DSP之先河,该芯片的工作电压仅为1.8V,可满足TDMA基带信号处理的需要,同时该芯片又是为Motorola下一代Nextel移动电话而设计的。 个人移动电话(无论是GSM还是CDMA)和下一代个人通信业务系统的硬件都是由基带单元和射频单元两大部分组成。目前无线通信的基带单元已从通用DSP加CPU发展到以DSP和CPU为核,建立专用基带芯片组。自1996年基带芯片专用化以来,到1998年,基带芯片组的数目已从3块变为2块。 (2) 提高射频集成电路的集成度 射频集成电路的集成有两个方向:(1)纵向发展,将接收机从接收混额直到零中频的电路尽可能设计在一块芯片上;(2)横向发展,将收发信机中相近频率范围的电路全部集成到一个模块上。在射频单元信号处理方面,还有一个新动向是向DSP技术转移。DSP作为关键器件,将不断融合射频信号处理,特别是I/Q解调和调制、信道滤波等。 DSP的控制领域将越来越接近射频前端,最终将其集成在内。Lucent计划在1999年,将模拟 Uhura DSP与数字 Speck DSP集成在一片称为 Kirk的 DSP中,到 2000年,再将射频前端集成到Kirk中,最终制成一块BROG超级芯片(MBIC)。 (3)软件无线电技术 对于第三代移动通信系统,争论最多的还是无线传输体制问题。目前具有代表性传输体制的系统主要有三个:(1)以欧洲为代表的基于GSM系统的TDMA系统,(2)以北美为代表的基于窄带IS-95的CDMA系统,(3)以日本为代表的宽带 CDMA系统。根据目前的发展,由于受利益驱使和应用场合的限制,全世界的无线移动个人通信不可能统一到一种体制上。在不同场合,不同体制有其固有的优越性,其它体制无法代替,因此不同体制的互联性已成为一个重要讨论课题,多种体制并存是未来无线通信系统的必然趋势。 软件无线电通过对模拟和数字硬件功能的软件化,达到提高业务质量和信道接入灵活性的目标。在标准的兼容性、技术接人和经济性之间,软件无线电能够很好地折衷,是实现不同多址接入方式兼容的最佳方案。通过软件无线电技术对多种体制进行综合,开发出新一代的多模移动通信手机,实现一机在手漫游天下的设想,已成为第三代移动通信的发展方向。 软件无线电利用DSP的强大处理能力和软件的灵活性,实现多种通信协议的兼容,进行信道分离、解调和信道编译码等。例如在同一硬件上,可以用不同的软件处理数字压缩的话音(如 GSM)或模拟调频话音(如AMPS)。软件无线电技术的发展和实用取决于高速集成电路,如 DSP、模/数、数/模的技术发展情况。 为了达到最大的灵活性,人们希望在天线输入/输出端和终端模拟输入/输出接口进行模/数变换(ADC)和数/模变换(DAC),由DSP完成其间所有的处理任务,只要更改下载软件就可以满足用户需要。由于多方面原因的限制,目前软件无线电技术采用中频数字化较为有利。 目前先进的可编程DSP大约可提供数百到上千MIPS的运算速度。实时软件无线电系统基带以下部分完全可由DSP实现,但目前的DSP仍然不能直接进行通用中频数字信号处理,所以一般考虑把中频下载到专用的数字硬件上,使处理负载减少到软件可以实时处理的水平。 在实际应用中,由于可用DSP芯片的限制,以及保证系统工作稳定性所造成

相关文档
最新文档