高中数学必修2-12
苏教版高中数学必修2配套练习参考答案解析几何全部

解析几何部分(共:1—17课时及每章评价)参考答案:第1课时 直线的斜率(1)1.D 2.C 3.D 4.4- 5.1k ≤ 6.可以是(2,4),不惟一. 7.由题意,()132212a -=++,∴2a =-.8.当1m =时,直线l 与x 轴垂直,此时直线斜率不存在; 当1m ≠时,直线斜率34111k m m-==--. 9.在直线斜率为0,OC 边所在直线斜率不存在,BC 边所在直线斜率为43-.10.由AB AC k k ≠,可得1112383k --≠---, ∴1k ≠.第2课时 直线的斜率(2)1.C 2.B 3.D 4.60o. 5.6 6. (0,2)7. 045α≤<o o 或135180α<<o o.8.倾斜角为45o时斜率为1,倾斜角为135o时斜率为1-.9.直线l 上任一点(,)M m n 经平移后得(3,1)N m n -+在l 上,由两点的斜率公式得(1)1(3)3l n n k m m +-==---.10.直线2l 的倾斜角为180(6015)135α=--=oooo, ∴2tan135tan 451k ==-=-oo.第3课时 直线的方程(1)1.C 2.D 3.A 4.D 5.(1)4y =-;(2)23y x =-- 6.1y +6y x =-+7.由直线1l 的方程2y =+可得1l 的倾斜角为60o ,∴直线l 的倾斜角为30o,斜率为tan 303=o,所以,直线l 的方程为12)y x -=-,即1y x =-+.8. 1:1:(2)-9.由直线1l的方程20x y -+=可求得1l 的斜率为1, ∴倾斜角为145α=o,由图可得2l 的倾斜角2115αα=+o∴直线2l 的斜率为tan 60=o, ∴直线2l 的方程为2)y x -=-0y -=.10.设直线方程为34y x b =+, 令0x =,得y b =;令0y =,得43x b =-, 由题意,14||||623b b ⨯-⨯=,29b =,∴3b =±, 所以,直线l 的方程为334y x =±.第4课时 直线的方程(2)1.D 2.D 3.B 4. 2y x =或1y x =+ 5.3 6. 10x y +-=或32120x y -+=7.设矩形的第四个顶点为C ,由图可得(8,5)C , ∴对角线OC 所在直线方程为005080y x --=--,即580x y -=,AB 所在直线方程为185x y+=,即58400x y +-=. 8.当截距都为0时,直线经过原点,直线斜率为43-,方程为43y x =-;当截距都不为0时,设直线方程为1x ya a +=, 将点(3,4)-代入直线方程得341a a-+=,解得1a =-, 所以,直线方程为430x y +=或10x y ++=.9.当0t =时,20Q =;当50t =时,0Q =,故直线方程是15020t Q +=.图略. 10.直线AB 的方程为3x =,直线AC 的方程为123x y+=,直线x a =与,AB AC 的交点分别为(,3)a 、63(,)2a a -,又∵92ABC S ∆=,∴1639(3)224a a -⋅⋅-=,∴a =(舍负).第5课时 直线的方程(3)1.B 2.D 3.B 4.D 5. 350x y -+= 6.24- 7.当2a =时,直线方程为2x =不过第二象限,满足题意;当20a -≠即2a ≠时,直线方程可化为1(4)2y x a a =+--, 由题意得2010240a a a -≠⎧⎪⎪>⎨-⎪-≤⎪⎩,解得24a <≤,综上可得,实数a 的取值范围是24a ≤≤. 8.(1)由题意得:22(23)(21)m m m m ---=+-, 即2340m m --=,解得43m =或1-(舍) (2)由题意得:22(23)(21)260m m m m m ----+--+=,即23100m m +-=,解得2m =-或53. 9.方法1:取1m =,得直线方程为4y =-, 取12m =,得直线方程为9x =, 显然,两直线交点坐标为(9,4)P -,将P 点坐标分别代入原方程得(1)9(21)(4)5m m m -⨯+-⨯-=-恒成立,所以,不论m 取什么实数,直线(1)m x -+(21)5m y m -=-总经过点(9,4)P -.方法2:原方程可整理得(21)(5)0x y m x y +--+-=,当21050x y x y +-=⎧⎨+-=⎩成立,即94x y =⎧⎨=-⎩时,原方程对任意实数m 都成立,∴不论m 取什么实数,直线过定点(9,4)-.10.方程0x y k +-=可变形为23)9k =-, 当90k -=即9k =时,方程表示一条直线90x y +-=; 当90k -<即9k >时,方程不能表示直线;当90k ->即9k <3= ∵方程仅表示一条直线,∴30+>且30-<,即0k <.综上可得,实数k 的取值范围为9k =或0k <.第6课 两直线的交点1.D 2.D 3.B 4.B 5.-3 6.6或-6 7.10,-12,-2 8.32190x y -+=9.4m =,或1m =-,或1m =.(提示:如果三条直线不能围成三角形,则有两种情形,一是其中有平行的直线,二是三条直线交于一点.) 10.(1)表示的图形是经过两直线210x y -+=和2390x y ++=的交点(3,1)--的直线(不包括直线2390x y ++=).(2)30x y -=或40x y ++=.(提示:可设所求直线方程为21(239)0x y x y λ-++++=,即(21)(32)910x y λλλ++-++=.若截距为0,则910λ+=,即19λ=-,此时直线方程为30x y -=;若截距不为0,则21132λλ+-=--,即3λ=,此时直线方程为40x y ++=.) 11.直线l 的方程为60x y += 12.22b -≤≤(数形结合)第7课 两直线的平行与垂直(1) 1.D 2.B 3.C 4.平行, 不平行5.平行或重合 6.-2 , 0或10 7.四边形ABCD 是平行四边形. 8.32A C =≠-且9.2,2m n == 10.20x y += 11. 3440x y +-=12.860860x y x y -+=--=或(提示:Q 所求直线与已知直线l :8610x y -+=平行,∴设所求直线的方程为860x y λ-+=,与两坐标轴的交点为λ(-,0)8,λ(0,)6.又该直线与两坐标轴围成的三角形面积为8,∴1||||8286λλ⋅-⋅=,λ∴=±,故所求直线方程为860x y -+=或860x y --= 第8课 两直线的平行与垂直(2)1. B2. C3. C4. C5. B6. 垂直,不垂直7. 32y x =+8. 2,-2,09. 20x y -= 10. 310x y ++=和330x y -+= 11. 1a =-或92a =-12.270x y +-=,10x y -+=,250x y +-=(提示:由于点A 的坐标不满足所给的两条高所在的直线方程,所以所给的两条高线方程是过顶点B ,C 的,于是2AB k =-,1AC k =,即可求出边AB ,AC 所在的直线方程分别为270x y +-=,10x y -+=.再由直线AB 及过点B 的高,即可求出点B 的坐标(3,1),由直线AC 及过点C 的高,即可求出点C 的坐标(1,2).于是边BC 所在的直线方程为250x y +-=.)第9课 平面上两点间的距离1.C 2.C 3.C 4.A5.B 6.22y y =-=-或 7.47240x y +-= 8.23120x y +-=912|x x - 10.13410x x y =++=或 11.5150x y --=12.(1) (2,0)P -;(2) (13,0)P ,此时||PM PN -. 13.54x =(提示:y =数形结合,设(1,1),(2,3),(,0)A B P x ,则y PA PB =+)第10课时 点到直线的距离(1)1.()A 2.()C 3.()D 4.()A 5.()C 6.()A 7.58.2a =或4639.设所求直线方程为340x y m -+=,=解得:14m =或12m =-(舍),所以,所求的直线方程为:34140x y -+=.10.由题意第一、三象限角平分线的方程为y x =,设00(,)P x y ,则00x y =,即00(,)P x x .= 解得:01x =或09x =-,所以点P 的坐标为:(1,1)或(9,9)--.11.由题意:当直线l 在两坐标轴上的截距为0时, 设l 的方程为y kx =(截距为0且斜率不存在时不符合题意)=k = 122-±,所以直线l 的方程为:122y x -±=. 当直线l 在两坐标轴上的截距不为0时,设l 的方程为1x ya a+=,即0x y a +-=,=a =13或1a =, 所以直线l 的方程为:130x y +-=或10x y +-=.综上所述:直线l 的方程为:122y x -±=或130x y +-=或10x y +-=. 12.设(,1)M t t -,则M 到两平行线段的距离相等,∴43t =,即41(,)33M ∵直线l 过(1,1)P -,41(,)33M 两点,所以,l 的方程为2750x y +-=.第11课时 点到直线的距离(2)1.()B 2.()C 3.()A 4.18 5.(1,2)或(2,1)- 6.34210x y +-=7.3208.4310x y +-=9.设l :320x y C -+=则1d =2d =1221d d =,所以|1|2|13|1C C +=+,解得:25C =-或9-, 所以l 的方程为:32250x y --=或3290x y --=.10.证明:设(,)P a b ,则221a b -=P 到直线1l ,2l的距离分别为1d =,2d = ∴2212||122a b d d -==g. 11.设(,)M x y 为A ∠的平分线AD 上任意一点,由已知可求得,AC AB 边所在直线方程分别为5120x y -+=,5120x y --=,由角平分线的性质得:=∴512512x y x y -+=--或512(512)x y x y -+=---, 即6y x =-+或y x =,由图知:AC AD AB k k k <<,∴155AD k <<,∴6y x =-+不合题意,舍去,所以,A ∠的平分线AD 所在直线方程y x =. 12.设CD 所在直线方程为30x y m ++=,=,解得7m =或5m =-(舍).所以CD 所在直线方程为370x y ++=.因为AB BC ⊥所以设BC 所在直线方程为30x y n -+=,=,解得9n =或3n =-.经检验BC 所在直线方程为390x y -+=,AD 所在直线方程为330x y --=.综上所述,其它三边所在直线方程为370x y ++=,390x y -+=,330x y --=.第12课时 圆的方程(1)1.()B 2.()C 3.()B 4.()C 5.()C 6.()B 7.(1)0a =;(2)||b r =;(3)310a b +-=. 8.22(6)36x y -+=9.C e 的圆心为(3,2)C -,C 'e 的圆心与(3,2)C -关于10x y -+=对称, ∴设C 'e 的圆心为(,)C a b '则3210222113a b b a +-⎧-+=⎪⎪⎨+⎪=-⎪-⎩g ,解得:34a b =-⎧⎨=⎩,C 'e 的标准方程为:22(3)(4)36x y ++-=.10.由题意可设C e 的圆心为(,)C a b 半径为r ,则||2a =当2a =时,C e :222(2)()x y b r -+-= 因为C e 与直线20x y +-=相切于点(1,1)P , ∴222(12)(1)b r -+-= ①且1(1)112b--=--g ② 联立方程组,解得:2b =,r =所以C e 的方程为:22(2)(2)2x y -+-=同理,当2a =-时,C e 的方程为:22(2)(2)18x y +++=综上所述:C e 的方程为:22(2)(2)2x y -+-=或22(2)(2)18x y +++=11.由题意设C e 的方程为222()()x a y b r -+-=,由C e 经过点(2,1)-,得:222(2)(1)a b r -+--=①由C e 与直线10x y --=r =② 由圆心在直线2y x =-上,得:2b a =-③联立方程组,解得:918a b r ⎧=⎪=-⎨⎪=⎩,或12a b r ⎧=⎪=-⎨⎪=⎩所以,C e 的方程为:22(9)(18)338x y -++=或22(1)(2)2x y -++=.12.设⊙C 的方程为:222()()x a y b r -+-=,∵⊙C 与x 轴相切,所以22r b =①,又∵圆心(,)C a b 到直线0x y -=的距离为:d =∴222r +=,即 22()142a b r -+=②,又圆心在直线30x y -=上,所以30a b -=③联立方程组,解得133a b r =⎧⎪=⎨⎪=⎩或133a b r =-⎧⎪=-⎨⎪=⎩所以C e 的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.第13课时 圆的方程(2)1.()C 2.()D 3.()B 4.12k <-5.2 6.2π7.5,5 8.2或23-9.圆方程为220x y Dx Ey F ++++=,将(0,0),(1,1)两点坐标代入方程分别得0F = ①20D E F +++= ②又∵圆心(,)22D E--在直线30x y --=上,∴60E D --= ③解由①②③组成的方程组得4,2,0D E F =-==,∴所求圆方程为22420x y x y +-+=,圆心(2,1)-10.证明:将034222=+--+y x y x 化为22(1)(2)2x y -+-= 则点与圆心之间的距离的平方为222(41)(2)17125m m m m -+-=-+ 又∵圆的半径的平方为2,∴2171252m m -+-217123m m =-+ 令2()17123f x m m =-+0∆<,即2()17123f x m m =-+恒大于0,即点与圆心之间的距离恒大于圆的半径,所以无论实数m 如何变化,点(4,)m m 都在圆034222=+--+y x y x 之外.11.设所求圆的方程为: 022=++++F Ey Dx y x令0y =,得20x Dx F ++=.由韦达定理,得12x x D +=-,12x x F =由12||x x -=6=,∴2436D F -=. 将(1,2)A ,(3,4)B 分别代入022=++++F Ey Dx y x ,得25D E F ++=-,3425D E F ++=-.联立方程组,解得12D =,22E =-,27F =或8D =-,2E =-,7F =所以所求的圆的方程为221222270x y x y ++-+=或228270x y x y +--+=12.证明:由题意22210250x y ax ay a ++---=,∴2225()()102524a a x a y a ++-=++ 令25()10254a f a a =++,则0∆<, ∴()0f a >即22(25)(210)0x y a x y +-+--=,表示圆心为(,)2a a -若22(25)(210)0x y a x y +-+--=对任意a 成立,则222502100x y x y ⎧+-=⎨--=⎩,解得34x y =⎧⎨=-⎩或5x y =⎧⎨=⎩,即圆恒过定点(3,4)-,(5,0).第14课时 直线与圆的位置关系1.C 2.C 3.D 4.B 5.34250x y +-= 6.40x y +±=7 8. 247200x y --=和2x =;7 9.22(3)(1)9x y -+-=或22(3)(1)9x y +++=. 10.16m =-.11. 4330x y ++=或3430x y +-=.第15课时 圆与圆的位置关系 ⒈B ⒉B 3.D 4.A5.20x y -+= 6.260x y -+= ,6 7.(1,1) 8.22(3)(1)5x y -+-= 9.224(1)(2)5x y ++-=10.(1)240x y -+=; (2)22(2)(1)5x y ++-=; (3)22(3)(3)10x y ++-=. 11. 3r =±.第16课时 空间直角坐标系1.B ⒉C 3.C 4.D5.(2,0,0)、(0,3,0)- 6.(0,4,2)7.442110x y z ++-=8.略 9.略10.提示(1)只要写出的三点的纵坐标和竖坐标分别相等即可;(2)只要写出的三点的竖坐标相等即可.11.111212121x x y y z z x x y y z z ---==---21(x x ≠且21y y ≠且21)z z ≠.第17课时 空间两点间的距离1.D 2.D 3.A 4.A 5.(0,2,0) 6.222(1)(2)(4)9x y z -+++-=7.7 8.(1,0,0)P ± 9.[提示]建立空间直角坐标系,由中点坐标公式求出,P Q 两点坐标,用两点间距离公式即可求得线段PQ2.10.(1)(1,2,1)[提示]设重心G 的坐标为(,,)x y z ,则222GA GB GC ++2233x y =+22236126643(1)3(2)z x y z x y +---+=-+-23(1)46z +-+.当1,2,1x y z ===时,点G 到,,A B C 三点的距离的平方和最小,所以重心的坐标为(1,2,1).(2)1,8,9x y z ===.第二章《解析几何初步》评价与检测参考答案:1.C 2.D 3.B 4.B 526.0d ≤≤ 7.4个 8.60 9.67250x y +-= 10.2750x y +-= 11.22(2)(2)25x y -++= 12.(1,0)A -,C (5,6)- 13.B14.C 15.A 16.D 17.11(,)102- 18.4a =±19.20,x y y x ++==,y x = 20.10 21.解:设与51270x y ++=平行的边所在直线方程为5120x y m ++=(7)m ≠,则=解得19m =-, ∴直线方程为512190x y +-=,又可设与51270x y ++=垂直的边所在直线方程为1250x y n -+=()n R ∈,则=解得100n=或74,∴另两边所在直线方程为1251000x y-+=,125740x y-+=22.解:设()2,1B-,()4,2C,()2,3D第四个顶点的坐标为(),A m n.则有BC所在直线的斜率为32BCk=;CD所在直线的斜率为12CDk=-;BD所在直线的斜率不存在.①若BD∥AC,BC∥AD,则AC所在直线的斜率不存在.4m∴=.又BC ADk k=,即33242n-=-,6n∴=.∴平行四边形第四个顶点的坐标为()4,6.②若BD∥AC,CD∥BA,则AC所在直线的斜率不存在.4m∴=.又CD BAk k=,即()11242n---=-,2n∴=-.∴平行四边形第四个顶点的坐标为()4,2-.③若CD∥BA,BC∥AD,则,CD BABC ADk kk k=⎧⎨=⎩()11223322nmmnnm--⎧-=⎪=⎧⎪-⇒⇒⎨⎨=-⎩⎪=⎪-⎩∴平行四边形第四个顶点的坐标为()0,0.综上所述,平行四边形第四个顶点的坐标可为()4,6或()4,2-或()0,0.23.解:设1122(,),(,)P x y Q x y,由2223060x yx y x y c+-=⎧⎨++-+=⎩消去x得2520120y y c-++=,∴由韦达定理知:12124125y y c y y +=⎧⎪⎨+=⎪⎩Q OP OQ ⊥,12121y y x x ∴⋅=-, 即12120x x y y +=,又12121212(32)(32)96()4x x y y y y y y =--=-++∴121296()50y y y y -++=, 也就是12964505c +-⨯+⨯=解之,得3c =. 从而所求圆的方程为22630x y x y ++-+=24.解:设1122(,),(,)P x y Q x y ,则1|OP x ==,2|OQ x ==.,P Q Q 为直线与圆的交点,∴ 12,x x 是方程22(1)(86)210x m m x ++-+=的两根, ∴12221,1x x m=+ ∴ 2221(1)211OP OQ m m ⋅=+=+。
高中数学必修二试题

2.1.4-6 两条直线的交点、平面上两点间的距离、点到直线的距离重难点:能判断两直线是否相交并求出交点坐标,体会两直线相交与二元一次方程的关系;理解两点间距离公式的推导,并能应用两点间距离公式证明几何问题;点到直线距离公式的理解与应用.经典例题:求经过点P(2,-1),且过点A(-3,-1)和点B(7,-3)距离相等的直线方程.当堂练习:1.两条直线A1x+B1y+C1=0与A2x+B2y+C2=0的交点坐标就是方程组的实数解,以下四个命题:(1)若方程组无解,则两直线平行(2)若方程组只有一解,则两直线相交(3)若方程组有两个解,则两直线重合(4)若方程组有无数多解,则两直线重合。
其中命题正确的个数有()A.1个B.2个C.3个D.4个2.直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0相交,则实数k的值为()A.B.C.D.3.直线y=kx-k+1与ky-x-2k=0交点在第一象限,则k的取值范围是()A.0<k<1 B.k>1或-1<k<0 C.k>1或k<0 D.k>1或k<4.三条直线x-y+1=0、2x+y-4=0、ax-y+2=0共有两个交点,则a的值为()A.1 B.2 C.1或-2 D.-1或25.无论m、n取何实数,直线(3m-n)x+(m+2n)y-n=0都过一定点P,则P点坐标为()A.(-1,3)B.(-,)C.(-,)D.(-)6.设Q(1,2), 在x轴上有一点P , 且|PQ|=5 , 则点P的坐标是()A.(0,0)或(2,0) B.(1+,0) C.(1-,0) D.(1+,0)或(1-,0)7.线段AB与x轴平行,且|AB|=5 , 若点A的坐标为(2,1) , 则点B的坐标为()A. (2,-3)或(2,7)B. (2,-3)或(2,5) C.(-3,1)或(7,1) D.(-3,1)或(5,1)8.在直角坐标系中, O为原点. 设点P(1,2) , P/(-1, -2) , 则OPP/的周长是()A.2B.4C.D.69.以A(-1,1) ,B(2,-1) , C(1 ,4)为顶点的三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰直角三角形10.过点(1,3)且与原点的距离为1的直线共有()A.3条 B.2条C.1条D.0条11.过点P(1,2)的直线与两点A(2,3)、B(4,-5)的距离相等,则直线的方程为()A.4x+y-6=0 B.x+4y-6=0 C.3x+2y=7或4x+y=6 D.2x+3y=7或x+4y=612.直线l1过点A(3,0),直线l2过点B(0,4),,用d表示的距离,则()A.d 5 B.3C.0D.0<d13.已知两点A(1,6)、B(0,5)到直线的距离等于a, 且这样的直线可作4条,则a的取值范围为()A.a 1 B.0<a<1 C.0<a 1 D.0<a<2114.若p、q满足p-2q=1,直线px+3y+q=0必过一个定点,该定点坐标为________.15.直线ax+by+6=0与x-2y=0平行,并过直线4x+3y-10=0和2x-y-10=0的交点,则a= _______,b=___________.16.已知ABC的顶点A(-1,5) ,B(-2,-1) ,C(4,7), 则BC边上的中线AD的长为___________.17.已知P为直线4x-y-1=0上一点,P点到直线2x+y+5=0的距离与原点到这条直线的距离相等,则P点的坐标为___________.18.ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.19.已知二次方程x2+xy-6y2-20x-20y+k=0表示两条直线,求这两条直线的交点坐标.20.已知平行四边形ABCD的三个顶点的坐标是A(-3,-4),B(3,-2),C(5,2),求点D的坐标.21.直线经过点A(2,4),且被平行直线x-y+1=0与x-y-1=0所截得的线段的中点在直线x+y-3=0上,求直线的方程.参考答案:经典例题:解:若过P点的直线垂直于x轴,点A与点B到此直线的距离均为5,所求直线为x=2; 若过P点的直线不垂直于x轴时,设的方程为y+1=k(x-2), 即kx-y+(-1-2k)=0.由,即|5k|=|5k+2|, 解得k=-所求直线方程为x+5y+3=0;综上,经过P点的直线方程为x=2或x+5y+3=0.当堂练习:1.D;2.D;3.B;4.C;5.D;6.D;7.C;8.B;9.D; 10.B; 11.C; 12.D; 13.B; 14. (-); 15. –2, 4; 16. 2; 17. (;18. 解:kCE= -, AB方程为3x-2y-1=0,由, 求得A(1,1),设C(a,b) , 则D(, C点在CE上,BC中点D在AD上,, 求得C(5,2),再利用两点间距离公式,求得AC的长为19. 解:利用待定系数法,原二次函数可化为(x-2y+m)(x+3y+n)=0, 由两个多项式恒等,对应项系数对应相等,于是有(x-2y-12=0)(x+3y-8)=0由, 得两直线交点坐标为().20. 解:设点P为平行四边形ABCD的中心, 则P是对角线AC的中点,即P( 1, -1) . 点P又是对角线BD的中点,D(-1,0).21. 解:中点在x+y-3=0上,同时它在到两平行直线距离相等的直线x-y=0上,从而求得中点坐标为(,),由直线过点(2,4)和点(,),得直线的方程为5x-y-6=0.2.2圆与方程考纲要求:①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程.判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.2.2.1 圆的方程重难点:会根据不同的已知条件,利用待定系数法求圆的标准方程;了解圆的一般方程的代数特征,能实现一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.经典例题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.当堂练习:1.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.-1<a<1 B.0<a<1 C.a<-1或a>1 D.a= 12.点P(m2,5)与圆x2+y2=24的位置关系是()A.在圆内B.在圆外C.在圆上D.不确定3.方程(x+a)2+(y+b)2=0表示的图形是()A.点(a,b)B.点(-a,-b) C.以(a,b)为圆心的圆D.以(-a,-b)为圆心的圆4.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13 B.(x+2)2+(y-3)2=13 C.(x-2)2+(y+3)2=52 D.(x+2)2+(y-3)2=52 5.圆(x-a)2+(y-b)2=r2与两坐标轴都相切的充要条件是()A.a=b=r B.|a|=|b|=r C.|a|=|b|=|r|0 D.以上皆对6.圆(x-1)2+(y-3)2=1关于2x+y+5=0对称的圆方程是()A.(x+7)2+(y+1)2=1 B.(x+7)2+(y+2)2=1 C.(x+6)2+(y+1)2=1 D.(x+6)2+(y+2)2=1 7.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为()A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)8.圆x2+y2-2Rx-2Ry+R2=0在直角坐标系中的位置特征是()A.圆心在直线y=x上B.圆心在直线y=x上, 且与两坐标轴均相切C.圆心在直线y=-x上D.圆心在直线y=-x上, 且与两坐标轴均相切9.如果方程x2+y2+Dx+Ey+F=0与x轴相切于原点,则()A.D=0,E=0,F0 B.E=0,F=0,D0 C.D=0,F=0,E0 D.F=0,D0,E010.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0) 所表示的曲线关于直线y=x对称,那么必有()A.D=E B.D=F C.E=F D.D=E=F11.方程x4-y4-4x2+4y2=0所表示的曲线是()A.一个圆B.两条平行直线C.两条平行直线和一个圆D.两条相交直线和一个圆12.若a0, 则方程x2+y2+ax-ay=0所表示的图形()A.关于x轴对称B.关于y轴对称C.关于直线x-y=0对称D.关于直线x+y=0对称13.圆的一条直径的两端点是(2,0)、(2,-2),则此圆方程是()A.x2+y2-4x+2y+4=0 B.x2+y2-4x-2y-4=0 C.x2+y2-4x+2y-4=0 D.x2+y2+4x+ 2y+4=014.过点P(12,0)且与y轴切于原点的圆的方程为__________________.15.圆(x-4)2+(y-1)2=5内一点P(3,0),则过P点的最短弦的弦长为_____,最短弦所在直线方程为___________________.16.过点(1,2)总可以向圆x2+y2+kx+2y+k2-15=0作两条切线,则k的取值范围是_______________.17.已知圆x2+y2-4x-4y+4=0,该圆上与坐标原点距离最近的点的坐标是___________,距离最远的点的坐标是________________.18.已知一圆与直线3x+4y-2=0相切于点P(2,-1),且截x轴的正半轴所得的弦的长为8,求此圆的标准方程.19.已知圆C:x2+y2-4x-6y+12=0, 求在两坐标轴上截距相等的圆的切线方程.20.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆,(1)求t的取值范围;(2)求该圆半径r的取值范围.21.已知曲线C:x2+y2-4mx+2my+20m-20=0(1)求证不论m取何实数,曲线C恒过一定点;(2)证明当m≠2时,曲线C是一个圆,且圆心在一条定直线上;(3)若曲线C与y轴相切,求m的值.参考答案:经典例题:解:设所求的圆的方程为:∵在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:∴所求圆的方程为:;得圆心坐标为(4,-3).或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)当堂练习:1.A;2.B;3.B;4.A;5.C;6.A;7.D;8.B;9.C; 10.A; 11.D; 12.D; 13.A; 14. (x-6)2+y2=36; 15.2, x+y-3=0; 16. ; 17. (2-,2-), (2+,2+);18. 解:设所求圆圆心为Q(a,b),则直线PQ与直线3x+4y-2=0垂直,即,(1)且圆半径r=|PQ|=,(2)由(1)、(2)两式,解得a=5或a= -(舍),当a=5时,b=3,r=5, 故所求圆的方程为(x-5)2+(y-3)2=25.19. 解:圆C的方程为(x-2)2+(y-3)2=1, 设圆的切线方程为=1或y=kx,由x+y-a=0,d=.由kx-y=0,d=.综上,圆的切线方程为x+y-5=0或(2)x-y=0.20. 解:(1)方程表示一个圆的充要条件是D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)>0,即:7t2-6t-1<0,(2)r2= D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)=-28t2+24t+4=-28(t-)2+,21. 解:(1)曲线C的方程可化为:(x2+y2-20)+m(-4x+2y+20)=0,由, ∴不论m取何值时,x=4, y=-2总适合曲线C的方程,即曲线C恒过定点(4, -2).(2)D=-4m, E=2m, F=20m-20, D2+E2-4F=16m2+4m2-80m+80=20(m-2)2∵m≠2, ∴(m-2)2>0, ∴D2+E2-4F>0, ∴曲线C是一个圆, 设圆心坐标为(x, y), 则由消去m得x+2y=0, 即圆心在直线x+2y=0上.(3)若曲线C与y轴相切,则m≠2,曲线C为圆,其半径r=,又圆心为(2m, -m),则=|2m|, .2.2.2-3 直线与圆、圆与圆的位置关系重难点:掌握直线与圆、圆与圆的位置关系的几何图形及其判断方法,能用坐标法判直线与圆、圆与圆的位置关系.经典例题:已知圆C1:x2+y2=1和圆C2:(x-1)2+y2=16,动圆C与圆C1外切,与圆C2内切,求动圆C的圆心轨迹方程.当堂练习:1.已知直线和圆有两个交点,则的取值范围是()A.B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-15.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或136.若P(x,y)在圆(x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2B.-3+C.-3-2D.3-27.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切B.相交C.相离D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A.B.2C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切C.内切D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1 C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合B.与圆C1同心圆C.过P1且与圆C1同心相同的圆D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即,化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7=0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.2.3空间直角坐标系考纲要求:①了解空间直角坐标系,会用空间直角坐标系表示点的位置.②会推导空间两点间的距离公式.2.3.1-2空间直角坐标系、空间两点间的距离重难点:了解空间直角坐标系,会用空间直角坐标系刻画点的位置;会推导空间两点间的距离公式.经典例题:在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问(1)在y轴上是否存在点M,满足?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.当堂练习:1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为()A.(-1,2,3) B.(1,-2,-3) C.(-1, -2, 3) D.(-1 ,2, -3)2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为()A.(-3,4,5) B.(-3,- 4,5) C.(3,-4,-5) D.(-3,4,-5)3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为()A.B.6 C.D.24.点P( 1,0, -2)关于原点的对称点P/的坐标为()A.(-1, 0, 2) B.(-1,0, 2) C.(1 , 0 ,2) D.(-2,0,1)5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是()A.( 4, 2, 2) B.(2, -1, 2) C.(2, 1 , 1) D.4, -1, 2)6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是()A.xOy平面B.xOz平面C.yOz平面D.以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为()A.B.C.D.9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于()A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为()A.(,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)11.点到坐标平面的距离是()A.B.C.D.12.已知点,,三点共线,那么的值分别是()A.,4 B.1,8 C.,-4 D.-1,-813.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是()A.B.C.D.14.在空间直角坐标系中, 点P的坐标为(1, ),过点P作yOz平面的垂线PQ, 则垂足Q的坐标是________________.15.已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.16.已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.17.已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.18.求下列两点间的距离:A(1 , 1 , 0) , B(1 , 1 , 1);C(-3 ,1 , 5) , D(0 , -2 , 3).19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证: ABC是直角三角形.20.求到下列两定点的距离相等的点的坐标满足的条件:A(1 , 0 ,1) , B(3 , -2 , 1) ;A(-3 , 2 , 2) , B(1 , 0 , -2).21.在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.参考答案:经典例题:解:(1)假设在在y轴上存在点M,满足.因M在y轴上,可设M(0,y,0),由,可得,显然,此式对任意恒成立.这就是说y轴上所有点都满足关系.(2)假设在y轴上存在点M,使△MAB为等边三角形.由(1)可知,y轴上任一点都有,所以只要就可以使得△MAB 是等边三角形.因为于是,解得故y轴上存在点M使△MAB等边,M坐标为(0,,0),或(0,,0).当堂练习:1.B;2.A;3.A;4.B;5.C;6.B;7.B;8.C;9.B; 10.D; 11.C; 12.C; 13.A; 14. (0, ); 15. ; 16.3 , 2; 17. (0, ;18. 解: (1)|AB|=(2)|CD|==19. 证明:为直角三角形.20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则,化简得4x-4y-3=0即为所求.(2)设满足条件的点的坐标为(x ,y , z) , 则,化简得2x-y-2z+3=0即为所求.21. 解: 由图形知,DA⊥DC,DC⊥DP,DP⊥DA,故以D为原点,建立如图空间坐标系D -xyz.因为E,F,G,H分别为侧棱中点,由立体几何知识可知,平面EFGH与底面ABCD平行,从而这4个点的竖坐标都为P的竖坐标的一半,也就是b,由H为DP中点,得H(0,0,b)E在底面面上的投影为AD中点,所以E的横坐标和纵坐标分别为a和0,所以E(a,0,b),同理G(0,a,b);F在坐标平面xOz和yOz上的投影分别为点E和G,故F与E横坐标相同都是a,与G的纵坐标也同为a,又F竖坐标为b,故F(a,a,b).立体几何初步单元测试1.∥,a,b与,都垂直,则a,b的关系是A.平行B.相交C.异面D.平行、相交、异面都有可能2.异面直线a,b,a⊥b,c与a成300,则c与b成角范围是A.[600,900] B.[300,900] C.[600,1200] D.[300,1200]3.正方体AC1中,E、F分别是AB、BB1的中点,则A1E与C1F所成的角的余弦值是A.B.C.D.4.在正△ABC中,AD⊥BC于D,沿AD折成二面角B—AD—C后,BC=AB,这时二面角B—AD—C大小为A.600 B.900 C.450 D.12005.一个山坡面与水平面成600的二面角,坡脚的水平线(即二面角的棱)为AB,甲沿山坡自P朝垂直于AB的方向走30m,同时乙沿水平面自Q朝垂直于AB的方向走30m,P、Q都是AB上的点,若PQ=10m,这时甲、乙2个人之间的距离为A.B.C. D.6.E、F分别是正方形ABCD的边AB和CD的中点,EF交BD于O,以EF为棱将正方形折成直二面角如图,则∠BOD=A.1350 B.1200 C.1500 D.9007.三棱锥V—ABC中,VA=BC,VB=AC,VC=AB,侧面与底面ABC所成的二面角分别为α,β,γ(都是锐角),则cosα+cosβ+cosγ等于A.1 B.2 C.D.8.正n棱锥侧棱与底面所成的角为α,侧面与底面所成的角为β,tanα∶tanβ等于A.B.C.D.9.一个简单多面体的各面都是三角形,且有6个顶点,则这个简单多面体的面数是A.4 B.6 C.8 D.1010.三棱锥P—ABC中,3条侧棱两两垂直,PA=a,PB=b,PC=c,△ABC的面积为S,则P到平面ABC的距离为A.B.C. D.11.三棱柱ABC—A1B1C1的体积为V,P、Q分别为AA1、CC1上的点,且满足AP=C1Q,则四棱锥B—APQC的体积是A.B.C.D.12.多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面AC的距离为2,则该多面体的体积为A.B.5 C.6 D.13.已知异面直线a与b所成的角是500,空间有一定点P,则过点P与a,b所成的角都是300的直线有________条.14.线段AB的端点到平面α的距离分别为6cm和2cm,AB在α上的射影A’B’的长为3cm,则线段AB的长为__________.15.正n棱锥相邻两个侧面所成二面角的取值范围是____________.16.如果一个简单多面体的每个面都是奇数的多边形,那么它的面数是__________.17.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H;(3)A1O⊥平面BDF;(4)平面BDF⊥平面AA1C.18.如图,三棱锥D—ABC中,平面ABD、平面ABC均为等腰直角三角形,∠ABC=∠BAD=900,其腰BC=a,且二面角D—AB—C=600.⑴求异面直线DA与BC所成的角;⑵求异面直线BD与AC所成的角;⑶求D到BC的距离;⑷求异面直线BD与AC的距离.19.如图,在600的二面角α—CD—β中,ACα,BDβ,且ACD=450,tg∠BDC=2,CD=a,AC=x,BD=x,当x为何值时,A、B的距离最小?并求此距离.20.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形,侧棱长为b,侧棱AA’与底面相邻两边AB、AC都成450角,求此三棱柱的侧面积和体积.参考答案:1.D;2.A;3.C;4.A;5.B;6.B;7.A;8.B;9.C; 10.B; 11.B; 12.D; 13.2; 14. 5或; 15.(); 16. 偶数;17. 解析:⑴欲证EG∥平面BB1D1D,须在平面BB1D1D内找一条与EG平行的直线,构造辅助平面BEGO’及辅助直线BO’,显然BO’即是。
2024-2025学年高中数学选择性必修二综合测试卷

2024-2025学年高中数学选择性必修二综合测试卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列{a n }的通项公式为a n =n 2+n.则12是该数列的第()A .2项B .3项C .4项D .5项2.中国跳水队是中国体育奥运冠军团队.自1984年以来,中国跳水队已经累计为我国赢得了40枚奥运金牌.在一次高台跳水比赛中,若某运动员在跳水过程中其重心相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=10-5t 2+5t ,则该运动员在起跳后1秒时的瞬时速度为()A .10米/秒B .-10米/秒C .5米/秒D .-5米/秒3.等差数列{a n }中,已知a 3+a 7=6,则S 9=()A .36B .27C .18D .94.设单调递增的等比数列{a n }满足1a 2+1a 4=1336,a 1a 5=36,则公比q =()A .32B .94C .2D .525.已知函数f(x)=sin x -mx 为增函数,则实数m 的取值范围为()A .(-∞,-1]B .[-1,1]C .(-1,1)D .[1,+∞)6.在一次劳动实践课上,甲组同学准备将一根直径为d 的圆木锯成截面为矩形的梁.如图,已知矩形的宽为b ,高为h ,且梁的抗弯强度W =16bh 2,则当梁的抗弯强度W 最大时,矩形的宽b 的值为()A .14dB .13dC .22d D .33d 7.十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段(13,23),记为第一次操作;再将剩下的两个区间[0,13],[23,1]分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:……;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n 的最小值为()(参考数据:lg 2=0.3010,lg 3=0.4771)A .4B .5C .6D .78.过点(0,b)作曲线y =e x 的切线有且只有两条,则b 的取值范围为()A .(0,1)B .(-∞,1)C .(-∞,1]D .(0,1]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知等差数列{a n }的公差为d ,前n 项和为S n ,且S 9=S 10<S 11,则()A .d <0B .a 10=0C .S 18<0D .S 8<S 910.已知函数f(x)与f′(x)的图象如图所示,则下列结论正确的为()A .曲线m 是f(x)的图象,曲线n 是f′(x)的图象B .曲线m 是f′(x)的图象,曲线n 是f(x)的图象C x )>f′(x )的解集为(0,1)D x )>f′(x )的解集为(1,43)11.已知函数f(x)=ln xx ,e 为自然对数的底数,则()A .f(2)<f (11)B .f (e )<f (π)C .f(8)<f(e 2)D .f (22)>1e12.某企业为一个高科技项目注入了启动资金2000万元,已知每年可获利20%,但由于竞争激烈,每年年底需从利润中取出200万元资金进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过n 年之后,该项目的资金为a n 万元.(取lg 2≈0.30,lg 3≈0.48),则下列叙述正确的是()A .a 1=2200B .数列{a n }的递推关系是a n +1=a n ×(1+20%)C .数列{a n -1000}为等比数列D .至少要经过6年,该项目的资金才可以达到或超过翻一番(即为原来的2倍)的目标三、填空题(本大题共4小题,每小题5分,共20分.)13.设数列{a n }为等差数列,若a 2+a 5+a 8=15,则a 5=________.14.在等比数列{a n }中,a 3=2,则前5项之积为____________.15.已知函数f(x)=e x -a(x +3),若f(x)有两个零点,则a 的范围是________________.16.已知函数f(x)=e x (x -1),则f(x)的极小值为____________;若函数g(x)=mx -12,对于任意的x 1∈[-2,2],总存在x 2∈[-1,2],使得f(x 1)>g(x 2),则实数m 的取值范围是____________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知等差数列{a n}满足a3=2,前4项和S4=7.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b4=a15,求数列{b n}的通项公式.18.(12分)记正项数列{a n}的前n项和为S n,已知a1=2,____________.从①S n=n2+3n2;②a n+1a n=n+2n+1;③a2n+1-a2n=a n+1+a n这三个条件中选一个补充在上面的横线处,并解答下面的问题:(1)求数列{a n}的通项公式;(2)的前n项的和T n,求证:T n<1.19.(12分)已知函数f(x)=-13x3+x2+3x+1.(1)求f(x)的单调区间及极值;(2)求f(x)在区间[0,6]上的最值.20.(12分)已知数列{a n}的通项公式为:a n+1n,0≤a n<12n-1,12≤a n<1,其中a1=67.记S n为数列{a n}的前n项和.(1)求a2021,S2022;(2)数列{b n}的通项公式为b n=S3n·2n-1,求{b n}的前n项和T n.21.(12分)已知函数f(x)=x sin x.(1)判断函数f(x)上的单调性,并说明理由;(2)求证:函数f(x)上有且只有一个极值点.22.(12分)已知函数f(x)=x-x ln x-1.(1)证明:f(x)≤0;(2)若e x≥ax+1,求a.答案解析1.解析:令a n=n2+n=12,解得:n=3(n=-4舍去).故选B.答案:B2.解析:由题意,h′(t)=-10t+5,故该运动员在起跳后1秒时的瞬时速度为h′(1)=-10+5=-5,故选D.答案:D3.解析:由题得S9=92(a1+a9)=92(a3+a7)=92×6=27.故选B.答案:B4.解析:因为{a n}为等比数列,所以a1a5=a2a4=36,所以1a2+1a4=a2+a4a2a4=a2+a436=1336,则a2+a4=13,又{a n}单调递增,所以q>1,解得:a2=4,a4=9,则q2=94,因为q>1,所以q=32.故选A.答案:A5.解析:f′(x)=cos x-m,由函数f(x)=sin x-mx为增函数,所以f′(x)=cos x-m≥0恒成立,即m≤cos x,由-1≤cos x≤1,所以m≤-1.故选A.答案:A6.解析:由题意,W=16bh2=16b(d2-b2)=-16b3+16d2b,故W′=-12b2+16d2=-12(b+3 3d)(b-33d),故当0<b<33d时,W′>0,当b>33d时,W′<0,故当b=33d时W取最大值.故选D.答案:D7.解析:第一次操作去掉的区间长度为13,第二次操作去掉两个长度为19的区间,长度和为29,第三次操作去掉四个长度为127的区间,长度和为427,……,第n 次操作去掉2n -1个长度为13n 的区间,长度和为2n -13n,于是进行了n 次操作后,所有去掉的区间长度之和为S n =13+29+…+2n -13n=1311-23=1-(23)n ,由题意可知,1-(23)n ≥45,即n lg 23≤lg 15,解得n ≥3.97,又n 为整数,所以需要操作的次数n 的最小值为4.故选A.答案:A8.解析:设切点为P (x 0,y 0),y ′=e x ,故过P (x 0,y 0)的切线方程为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0.故b =(1-x 0)e x 0有且仅有两根.设g (x )=(1-x )e x ,则g ′(x )=-x e x ,令g ′(x )>0则x <0,令g ′(x )<0则x >0,且g (0)=e 0=1,又当x <0时,g (x )>0,g (1)=0.故b=(1-x 0)e x 0有且仅有两根,则b 的取值范围为(0,1).故选A.答案:A9.解析:∵S 9=S 10,∴a 10=S 10-S 9=0,所以B 正确;又S 10<S 11,∴a 11=S 11-S 10=a 10+d >0,∴d >0,所以A 错误;∵a 10=0,d >0,∴a 9<0,S 18=18(a 1+a 18)2=9(a 1+a 18)=9(a 9+a 10)=9a 9<0,故C 正确;∵a 9<0,S 9=S 8+a 9,∴S 8>S 9,故D 错误.故选BC.答案:BC10.解析:对于AB ,若n 是f ′(x )的图象,则当0<x <2时,f ′(x )<0,则f (x )在(0,2)上递减,与曲线m 在(0,2)上不单调相矛盾,所以n 是f (x )的图象,m 是f ′(x )的图象,所以A 错误,B 正确;对于CD x )>f ′(x)x <2x <1x <2,解得0<x <1,所以不等式组的解集为(0,1),所以C 正确,D 错误.故选BC.答案:BC11.解析:由题得f ′(x )=1-ln xx2,x >0,所以当x ∈(0,e)时,f ′(x )>0,函数f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )单调递减.A.11<4,∴f(4)<f(11),∵f(4)=f(2)=ln22,所以f(2)<f(11),所以该选项正确;B.因为0<e<π,所以f(e)<f(π),所以该选项正确;C.因为e<e2<8,所以f(8)<f(e2),所以该选项正确;D.f(x)max=f(e)=1e ,所以f(22)<1e,所以该选项错误.故选ABC.答案:ABC12.解析:根据题意:经过1年之后,该项目的资金为a1=2000(1+20%)-200=2200万元,A正确;a n+1=a n×(1+20%)-200=1.2a n-200,B不正确;∵a n+1=1.2a n-200,则a n+1-1000=1.2(a n-1000),即数列{a n-1000}是以首项为1200,公比为1.2的等比数列,C正确;a n-1000=1200×1.2n-1=1000×1.2n,即a n=1000(1.2n+1),令a n=1000(1.2n+1)≥4000,则n≥log1.23=lg32lg2+lg3-1≈6,至少要经过6年,该项目的资金才可以达到或超过翻一番(即为原来的2倍)的目标,D 正确.故选ACD.答案:ACD13.解析:∵数列{a n}为等差数列,∴a2+a8=2a5,又a2+a5+a8=15,∴3a5=15,解得a5=5.答案:514.解析:由等比数列的性质可得a1a5=a2a4=a23,则a1a2a3a4a5=a53=25=32.答案:3215.解析:f′(x)=e x-a,当a≤0时,f′(x)>0,f(x)在(-∞,+∞)上为增函数,f(x)最多只有一个零点,不符合题意;当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)在(-∞,ln a)上为减函数,在(ln a,+∞)上为增函数,所以f(x)在x=ln a时取得极小值为f(ln a)=e ln a-a(ln a+3)=-2a-a ln a,也是最小值,因为当x趋近于正负无穷时,f(x)都是趋近于正无穷,所以要使f(x)有两个零点,只要-2a-a ln a<0,即a>1e2就可以了.所以a的范围是(1e2,+∞).答案:(1e2,+∞)16.解析:由f(x)=e x(x-1),得f′(x)=e x(x-1)+e x=x e x,令f′(x)=0,得x=0,列表如下:x (-∞,0)0(0,+∞)f ′(x )-+f (x )递减极小值递增所以,函数y =f (x )的极小值为f (0)=e 0(0-1)=-1;∀x 1∈[-2,2],∃x 2∈[-1,2],使得f (x 1)>g (x 2),即f (x )min >g (x )min ,∴g (x )min <f (x )min =-1.①当m >0时,函数y =g (x )单调递增,g (x )min =g (-1)=-m -12,∴-m -12<-1,即m >12;②当m <0时,函数y =g (x )单调递减,g (x )min =g (2)=2m -12,∴2m -12<-1,即m <-14;③当m =0时,g (x )=-12,不符合题意.综上:m ∈(-∞,-14)∪(12,+∞).答案:-1(-∞,-14)∪(12,+∞)17.解析:(1)设等差数列{a n }首项为a 1,公差为d.3=24=7,1+2d =2a 1+4×(4-1)2d =71=1=12,∴等差数列{a n }通项公式a n =1+(n -1)×12=12n +12.(2)设等比数列{b n }首项为b 1,公比为q ,2=a 3=24=a 15=8,1·q =21·q 3=8,解得:q 2=4,1=1=21=-1=-2,∴等比数列{b n }的通项公式为b n =2n -1或b n =-(-2)n -1.18.解析:(1)选择①,当n ≥2时a n =S n -S n -1=n 2+3n 2-(n -1)2+3(n -1)2=n +1,而n =1时,a 1=12+3×12=2满足左式,∴a n =n +1.选择②,n ≥2时,a n =a n a n -1·a n -1a n -2·a n -2a n -3…a 3a 2·a 2a 1·a 1=n +1n·n n -1…43×32×2=n +1,n =1时,a 1=2满足上式.选择③,∵a 2n +1-a 2n =a n +1+a n ,∴(a n +1+a n )(a n +1-a n -1)=0,∴a n +1-a n =1,从而得a n =n +1.(2)∵1a n ·(a n -1)=1n ×(n +1)=1n -1n +1,∴T n =(1-12)+(12-13)+(13-14)+…+(1n -1n +1)=1-1n +1,∵n ∈N *,∴1n +1>0,∴1-1n +1<1.∴T n <1.19.解析:(1)函数f (x )的定义域为R ,f ′(x )=-x 2+2x +3=-(x -3)(x +1).令f ′(x )=0,得x =-1或x =3.当x 变化时,f ′(x ),f (x )的变化情况如表所示.x (-∞,-1)-1(-1,3)3(3,+∞)f ′(x )-0+0-f (x )单调递减-23单调递增10单调递减故f (x )的单调增区间为[-1,3],单调减区间为(-∞,-1)和(3,+∞).当x =-1时,f (x )有极小值f (-1)=-23;当x =3时,f (x )有极大值f (3)=10.(2)由(1)可知,f (x )在[0,3]上单调递增,在[3,6]上单调递减,所以f (x )在[0,6]上的最大值为f (3)=10.又f (0)=1,f (6)=-17,f (6)<f (0),所以f (x )在区间[0,6]上的最小值为f (6)=-17.20.解析:(1)当n =1时,a 2=2a 1-1=57;当n =2时,a 3=2a 2-1=37;当n =3时,a 4=2a 3=67;∴数列{a n }是以3为周期的周期数列;∴a 2021=a 3×673+2=a 2=57,S 2022=674S 3=674×(67+57+37)=674×2=1348;(2)由(1)得:S 3n =nS 3=2n ,∴b n =2n ·2n -1=n ·2n ,∴T n =21+2×22+3×23+…+(n -1)·2n -1+n ·2n ,2T n =22+2×23+3×24+…+(n -1)·2n +n ·2n +1,两式作差得:T n =n ·2n +1-2-(22+23+ (2))=n ·2n +1-2(1-2n )1-2=(n -1)·2n +1+2.21.解析:(1)函数f(x)在区间(0,π2)上单调递增,f′(x)=sin x+x cos x,因为x∈(0,π2),所以sin x>0,cos x>0,所以f′(x)>0,所以函数f(x)在区间(0,π2)上单调递增.(2)证明:令h(x)=f′(x),则h′(x)=2cos x-x sin x,当x时,h′(x)<0,h(x)单调递减,又因为f=1>0,f′(π)=-π<0,所以存在唯一x0,使得f′(x0)=0,随着x变化f′(x),f(x)的变化情况如下;x(π2,x0)x0(x0,π)f′(x)+0-f(x)递增极大值递减所以f(x)在(π2,π)内有且只有一个极值点.22.解析:(1)证明:f(x)=x-x ln x-1的定义域为(0,+∞),且f′(x)=1-(ln x+x·1x)=-ln x.令f′(x)=0,得x=1.当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=0,所以f(x)≤0.(2)令g(x)=e x-ax-1,则g′(x)=e x-a.当a≤0时,有g(-1)=e-1+a-1<0,与题设矛盾,故舍去.当a>0时,令g′(x)=0,得x=ln a.当x<ln a时,g′(x)<0,g(x)单调递减;当x>ln a时,g′(x)>0,g(x)单调递增,所以g(x)min =g(ln a)=a-a ln a-1≥0.由(1)知,a-a ln a-1≤0(当且仅当a=1时,取等号),所以a-a ln a-1=0,所以a=1.。
高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件
量
9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.
高中数学课课练必修2_答案

第一章 立体几何初步§1.1 棱柱、棱锥、棱台1.C2.C3.D4.B5.④6.④7.六8. 这些集合间的包含关系为Q NP 刎9.10.发现有关系:n 棱锥的棱数有2n 条,n 棱锥面数有n +1个; n 棱柱(棱台)的棱数有3n 条, n 棱柱(棱台)的面数有n +2个.§1.2 圆柱、圆锥、圆台和球1.B2.C3.D4.D5. 126.12π7.3π 8.略9. 上底面半径为a ,下底面半径为2a ,两底面面积之和为25a π. 10、12或32.§1.3 中心投影和平行投影1.A2.D3.B4.B5.③6. 长度与高度,长度与宽度,宽度与高度7. 848.略9.略10. 根据三视图可以画出该多面体形状如右:§1.4 直观图画法1.C2.C3.C4.B5. ①6. 8 8. 略 9. 略. 10. 如右图:§1.5 平面的基本性质1.B2.C3.D4.B5.④6. ②③⑤7. 4; 6; 7; 88. 提示:只要证明点P 同时在平面ABD 与平面BCD 内.9.略10. 证明:a //b ⇒a 、b 确定一平面α⇒a α⊂,a c A = ⇒A a ∈又a α⊂⇒A α∈,同理B α∈,∴AB α⊂即c α⊂, ∴直线a 、b 、c 共面于一个平面α.§1.6 平行直线1.D2.C3.D4.C5.30150︒︒或6.平行四边形7. 1//3DE AC DE AC =且 8. 略.9. 证明:如图,连结BD,∵EH 是△ABC 的中位线,∴EH//BD, EH=12BD, 又在△BCD 中2,3CF CG CB CD == //,F G B D ∴ 2.//,3FG BD EH FG =∴,F G E H>又 四边形EFGH 是梯形。
∴B 、D 、F 、E 四点共面.(2)由(1)BE 、DF 共面,EF//DB 且EF<D B ''<DB,∴EFDB 是梯形, BE 、DF 必相交于一点P ,点P 既属于面DC '又属于面BC '⇒点P 属于这两个面的交线CC ', ∴BE 、DF 、CC '三线交于同一点P. §1.7 异面直线1.B2.D3.A4.A5. 相交、平行或成异面直线.6.90︒7. ③④8. 提示:取AB 中点H,先证明11//D F A H ,再证明1A AH ABE ∆≅∆. 从而求得所求角是90︒. 9. 解:如图.11111,,,,A DC C DC EF DC C EF EF AC ∉∈⊂∉ 面面又面且由异面直线判定定理,得与是异面直线。
高一人教A版高中数学必修第二册《6.2.3向量共线定理》课件

6.2.3向量共线定理
学习目标:
1.学习并掌握向量共线定理 2.能够灵活应用向量共线定理:能用向量的共线定理证明三点共线,
能用向量共线定理构建方程组求参数
复习回顾
向量的数乘:
实数与向量a的积是一个向量,这种运算 叫做向量的数乘,记为 a
其方向和长度规定如下:
(1) a a ;
2
2
(1 3 )
a
2 t
b (3)
2
由于a和b是两个不共线向量,可知
t 0
2
1 3 0
2
解得t= 1 3
例题反思:
向量共线定理的应用,体现向量线性 运算和方程组的综合应用。解题的关键是 依据向量共线的充要条件,先列出向量的 关系式,再转化为解方程组求参数问题, 这是向量共线定理的一个常规解题思路。
定理应用
例2.已知 a、b 是两个不共线向量,向量b-ta , 1 a 3 b 共线,求实数t的值。 22
解:由于 a 和 b是两个不共线向量,所以 1 a 3 b 为非零向量, 22
向量b-ta , 1 a 3 b 共线,则b-ta (1 a 3 b) (1)
22
22
即(t )a (1 3 )b (2)
学法指导
新课程标准有以下几项变化,一是理念变化:确立核心素养导向的课 程目标;二是结构变化:明确学业要求与学业质量标准;三是内容变化: 调整教学要求和增加教学内容。最终是要结合学生认知水平和生活经验, 设计合理的生活情境、数学情境、科学情境。关注情境的真实性,适当引 入数学文化,真正让学生感受数学与生活的密切关系和对生活的影响以及 作用。培养学生的核心素养目标,从本质上提升教学质量。
高中数学必修2第1、2章知识点+习题
第一章 空间几何体1.1柱、锥、台、球的结构特征1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).222r rl S ππ+=主视图 左视图 俯视图 (第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+ C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ). A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ). A .3∶1B .3∶2C .2∶3D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29π B .27π C .25π D .23π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5C .6D .215 9.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
高中数学必修二公式汇总与整理
高中数学必修二公式汇总与整理一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质3.绝对值不等式的性质(1)如果a>0,那么(2)|a?b|=|a|?|b|.(3)|a|-|b|≤|a±b|≤|a|+|b|.(4)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同四、《不等式》解不等式的途径,利用函数的性质。
2019年高中数学人教版必修2全套教案
目录第一章:空间几何体 (1)第二章直线与平面的位置关系 (10)第三章直线与方程 (28)第四章圆与方程 (50)第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
高中数学必修第二册人教A版-第六章-6.4.3余弦定理、正弦定理课件
平面向量的应用
第六章
6.4.3 余弦定理(1)
学习目标
1.掌握余弦定理的两种表示情势及证明方法. 2.会运用余弦定理解决两类基本的解三角形问题. 核心素养:数学抽象、逻辑推理、数学运算
新知学习
知识点一 余弦定理
在△ABC中,角A,B,C的对边分别是a,b,c,则有
三角形中任何一边的平方,等于_其___他__两__边__平__方___的__和__减_ 去 语言叙述
例 2 在△ABC 中,已知 a=2 6,b=6+2 3,c=4 3,求 A,B,C
的大小.
解 根据余弦定理,得 cos A=b2+2cb2c-a2
=6+22×342+3×463+22-32
62=
3 2.
∵A∈(0,π),∴A=6π,
cos C=a2+2ba2b-c2=2
62+6+2 32-4 2×2 6×6+2 3
2
跟踪训练
在△ABC中,A=60°,a2=bc,则△ABC一定是
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等边三角形
D解析 在△ABC中,因为A=60°,a2=bc, 所以由余弦定理可得,a2=b2+c2-2bccos A=b2+c2-bc, 所以bc=b2+c2-bc,即(b-c)2=0, 所以b=c,结合A=60°可得△ABC一定是等边三角形.
,
a2+c2-b2
cos B=
2ac ,
a2+b2-c2 cos C=_____2_a_b___
思考 在a2=b2+c2-2bccos A中,若A=90°,公式会变成什么? 答案 a2=b2+c2,即勾股定理.
知识点二 解三角形
一般地,三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的 元素 其他元素的过程叫做解三角形 .