浙教版八上 2.5直角三角形(1) 课堂练习
浙教版数学八年级上册第1章《三角形的初步知识》测试卷含答案解析和双向细目表-八上1

浙教版数学八年级上册第1章《三角形的初步知识》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列各组长度的三条线段能组成三角形的是()A.1,2,3B.2,2,4C.1,2,2D.1,5,72.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性(第3题)(第2题)3.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED4.下列命题中真命题是()A.无限小数都是无理数B.9的立方根是3C.倒数等于本身的数是±1D.数轴上的每一个点都对应一个有理数5.已知,在△ABC 中,∠B 是∠A 的3倍,∠C 比∠A 大30°,则∠A 的度数是( ) A.30°B.50°C.70°D.90°6.如图所示,平行四边形ABCD 中,AC 的垂直平分线交于点E ,且△CDE 的周长为10,则平行四边形ABCD 的周长是( ) A.10B.14C.18D.207.将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1= 115°,则∠BFG 的大小为( ) A.125°B.115°C.110°D.120°8.如图,在△ABC 中,AD 是高, AE 、BF 是两内角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数之和为( ) A.115°B.120°C.125°D.130°9.如图,对(第6题)(第7题)(第8题)(第9题)任意的五角星,结论正确的是( ) A.∠A+∠B+∠C+∠D+∠E=90°B .∠A+∠B+∠C+∠D+∠E=180°C .∠A+∠B+∠C+∠D+∠E=270°D .∠A+∠B+∠C+∠D+∠E=360° 10.如图,在△ABC 中,∠B+∠C=α,按图进行翻折,使B'D//C'G//BC , B'E//FG ,则∠C"FE 的度数是( ) A.2αB.90°-2αC.α-90°D.2α-180°二.填空题:本大题有6个小题,每小题4分,共24分。
浙教版八年级上册数学第1章 三角形的初步知识含答案

浙教版八年级上册数学第1章三角形的初步知识含答案一、单选题(共15题,共计45分)1、如图所示,矩形ABCD中,AE平分交BC于E,,则下面的结论:①是等边三角形;②;③;④,其中正确结论有()A.1个B.2个C.3个D.4个2、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°3、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.50°D.60°4、如图,点D,E分别在AB、AC上,BE,CD相交于点F,设S四边形EADF =S1, S△BDF =S2, S△BCF=S3, S△CEF=S4,则S1S3与S2S4的大小关系是( )A.不能确定B.S1S3<S2S4C.S1S3=S2S4D.S1S3>S2S45、如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°6、小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块7、如图,在中,,,若将沿CD折叠,使B 点落在AC 边上的E处,则的度数是A.30 0B.40 0C.50 0D.55 08、含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°9、如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.4 C.2 D.510、如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角,尺规作图及步骤如下:步骤一:以点为圆心,为半径画弧;步骤二:以点为圆心,为半径画弧,两弧交于点;步骤三:连接,交延长线于点.下面是四位同学对其做出的判断:小明说:;小华说:;小强说:;小方说:.则下列说法正确的是()A.只有小明说得对B.小华和小强说的都对C.小强和小方说的都不对D.小明和小方说的都对11、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50°B.75°C.100°D.120°12、如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.313、在△ABC中,∠A:∠B:∠C=1:2:6,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断14、如图,在△ABC中,∠A=α,点D,E,F分别在BC,AB,AC上,且∠1+∠2=120°,则∠EDF的度数为()A.120°+αB.120°-αC.240°-αD.α-60°15、如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5B.7C.14D.28二、填空题(共10题,共计30分)16、如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=________°.17、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=5,则点P到AB的距离是________.18、如图,点O是△ABC的外心,∠A=50°,则∠OBC=________°.19、如图所示,已知△ABC≌△DFE,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=________°,∠F=________°,DE=________,BE=________.20、如图,若△OAD≌△OBC,且∠O=75o,∠C=10o,则∠OAD=________°.21、如图,已知直线与x轴、y轴分别交于两点,点P是以为圆心,2为半径的圆上一动点,连接,,则的面积最大值是________.22、如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为________.23、如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=________°.24、如图,点A,B,C在上,点D在内,则________.(填“>”,“=”或“<”)25、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.三、解答题(共5题,共计25分)26、已知:a、b、c是△ABC的三边长,化简.27、甲、乙、丙、丁、戊五个人在运动会上分获百米、二百米、跳高、跳远和铅球冠军,有四个人猜测比赛结果:A说:乙获铅球冠军,丁获跳高冠军.B说:甲获百米冠军,戊获跳远冠军.C说:丙获跳远冠军,丁获二百米冠军.D说:乙获跳高冠军,戊获铅球冠军.其中每个人都只说对一句,说错一句.求五人各获哪项冠军.28、已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.29、如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.30、如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。
新浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

新浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题本文介绍了八年级上册数学第一章《三角形的初步知识》的知识点及典型例题。
其中,三角形按角分类分为锐角三角形、直角三角形和钝角三角形;按边的关系可分为等腰三角形、等边三角形和普通三角形。
文章还介绍了三角形的内角和定理、角平分线、重要线段中线和高线的定义、命题和证明步骤。
此外,文章还讲解了全等三角形、尺规作图、线段垂直平分线和角平分线的性质,以及如何利用这些知识点计算角度和线段长度。
最后,文章列举了八个考点,包括判断三条线段能否组成三角形、求三角形的某一边长或周长的取值范围、证明三角形全等等。
例题部分也包括了两个问题的解答。
1、正确画出AC边上的高的是(C)。
2、工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是(B)三角形具有稳定性。
3、不能唯一作出直角三角形的是(C)已知一锐角及其邻边。
4、已知AD、BE、CF是△ABC的三条中线,相交于点O,设△BDO面积为1,则S△ABC=(6)。
5、在图中,由于AB=CD。
AD=BC,所以△ABO≌△CDO,△ABO与△CDO的对应顶点分别为AO和CO,所以全等三角形的对数为1,选项A。
6、根据中线定理可知,DF=EF=BF=AF=1/2AC,所以四边形DCEF是平行四边形,面积为AC的一半,即22.5cm,选项B。
7、根据角平分线定理可知,BP/PC=AB/AC,所以BP/AB=PC/AC,由此可得△BPC与△ABC相似,所以∠BPC=2∠A,选项A。
8、由于BD是BC边上的垂直平分线,所以BD=DC=4,由勾股定理可得AD=3,所以AB=5,所以ΔABD的周长为12,选项D。
9、将三角形按照图中的方式编号,可以发现只有第3块的形状与原来的三角形相同,所以应该带第3块去。
10、以B为顶点的外角为∠ABC=180°-∠A=130°,以C为顶点的外角为∠ACB=180°-∠A=130°,由于外角和等于360°,所以两个外角的平分线的夹角为130°/2=65°,选项A。
浙教版八年级上2.6直角三角形(1)课件

D
A
o 30
B
E
C
在直角三角形中,
30°角所对的直角边等于斜边的一半。
∵△ABC是直角三角形, ∠B=30°
B 1 C ∴AC= 2 AB (在直角三角形中,30°角所对的直角边等于斜边的 一半)
30°
A
动动口
说一说
本节中的知识:
1、直角三角形的两个锐角互余。 2、直角三角形斜边上中线等于斜边的一半。 3、直角三角形中,30°的锐角所对的直角边等于 斜边的一半。
C
D
B
例如:如图,在Rt△ABC中,
∠ACB=90°,∠A= 30° ,CD是斜边上
的中线,则能得到什么结论?
A
可得到: △ADC是等腰三角形 △BDC是正三角形 AD=BD=CD=BC
30°
D
C
B
例2:如图,一名滑雪运动员沿着倾斜角 为30°的斜坡,从A滑至B.已知
AB=200m,问这名滑雪运动员的高度下降
Rt△ABC、 Rt△ACD、Rt△BCD
C
1 2
(2)图中有几对互余的角?
D
B
∠A与∠B、 ∠A与∠1、 ∠B与∠2 、 ∠1与∠2
(3)图中有几对相等的角?
∠1=∠ B、 ∠2=∠A
已知:如图,D是Rt△ABC斜边AB上的一点, BD=CD. A 求证:AD=CD. D 证明:∵BD=CD (已知) ∴∠B=∠DCB (等边对等角) ∵Rt△ABC中, ∠A+∠B=∠ACD+∠DCB=90° B ∴∠A=∠ACD (等角的余角相等) ∴AD=CD (等角对等边)
三角形按角的分类
锐角三角形 ——三个角都是锐角。
直角三角形 ——有一个角是直角。
2022-2023学年浙教版数学八上期中复习专题8 直角三角形(教师版)

2022-2023学年浙教版数学八上期中复习专题8 直角三角形一、单选题(每题3分,共30分)1.(2021八上·台州期中)如图,在四边形ABCD 中, AD =4 , BC =1 , ∠B =90°∠A =30° ,∠ADC =120° ,则 CD 的长为( )A .2B .1.5C .3D .2.5【答案】A【知识点】含30°角的直角三角形【解析】【解答】解:过D 作DE⊥AB 于E ,过C 作CF⊥ED 于F 点,∵⊥A=30°,∴DE=12AD=2,⊥ADE=90°-⊥A=60°,∴⊥CDF=⊥ADC -⊥ADE=60°, ∴⊥FCD=30°,∴CD=2FD=2. 故答案为:A.【分析】过D 作DE⊥AB 于E ,过C 作CF⊥ED 于F 点,根据含30°角的直角三角形的性质求出DE ,根据角的和差关系求出⊥CDF ,再根据含30°角直角三角形的性质求CD 即可.2.(2021八上·绍兴期中)如图,在Rt⊥ABC 中,⊥ACB=90°,⊥A=30°,BC=3,点D 在AB 上且AB=3AD ,那么CD 的长是( )A .2 √3B .√13C .2 √6D .4【答案】B【知识点】含30°角的直角三角形;勾股定理 【解析】【解答】解:如图,作CE⊥AB 于E ,∵⊥A=30°,⊥ACB=90°, ∴AB=2BC=6, ∵⊥BEC=90°, ∴⊥BCE=90°-⊥B=30°,∴BE=12BC=1.5,CE=√BC 2−BE 2=3√32,∵AB=3AD ,∴BD=23AB=4,∴DE=BD -BE=4-1.5=2.5,∴CD=√CE 2+DE 2=√(3√32)2+(52)2=√13.故答案为:B.【分析】作CE⊥AB 于E ,根据含30°角的直角三角形的性质求出AB ,BE 和CE ,然后根据AB=3AD 求出BD , 再根据线段间的和差关系求出DE ,最后在Rt⊥CED 中,根据勾股定理求CD 长即可.3.(2021八上·萧山期中)在Rt⊥ABC 中,CD 是斜边AB 上的中线,则以下判断正确的是( )A .BC =2CDB .CD =2ABC .AC =2CD D .CD =BD【答案】D【知识点】直角三角形斜边上的中线【解析】【解答】解:∵CD 是斜边AB 的中线,∴AB=2CD ,故A 、B 、C 不符合题意; ∴CD=BD ,故D 符合题意; 故答案为:D.【分析】利用直角三角形斜边上的中线等于斜边的一半,可得到AB=2CD ,CD=BD=AD ,由此可得到正确结论的选项.4.(2021八上·萧山期中)如图:BD⊥AC 于点B ,G 是线段BD 上一点(不与点B ,点D 重合),且AB=BG ,BD=BC ,E ,F 分别为AD ,CG 的中点,AD=6,连结EF ,DF ,若⊥DEF 为直角三角形,则DF 的长度为( )A .3B .√27C .3或 √27D .3或 √27 或 √18【答案】B【知识点】等腰三角形的性质;勾股定理;三角形全等的判定(SAS );直角三角形斜边上的中线 【解析】【解答】解:连接BE ,BF ,∵BD⊥AC ,∴⊥ABD=⊥GBC=90°, 在⊥ABD 和⊥GBC 中{AB =GB∠ABD =∠GBC BD =BC∴⊥ABD⊥⊥GBC (SAS ) ∴⊥A=⊥BGC ,AD=CG=6; ∵E ,F 分别为AD ,CG 的中点,∴AE=DE=BE=12AD=3,GF=FC=BF=12GC=3,∴⊥ADB=⊥EBD ,⊥BGF=⊥FBG , ∵⊥A+⊥ADB=90° ∴⊥A+⊥EBD=90°, ∴⊥BGF+⊥EBD=90°,∴⊥EBD+⊥FBG=90°即⊥EBF=90°, ∴BE=BF=3∴EF =√32+32=3√2,∵⊥DEF 是直角三角形,DE <EF , 当⊥EDF=90°时DF =√EF 2−ED 2=√(3√2)2−32=3; 当⊥DEF=90°时,DF =√EF 2+ED 2=√(3√2)2+32=3√3,故答案为:C.【分析】连接BE,BF,利用垂直的定义可证得⊥ABD=⊥GBC,利用SAS证明⊥ABD⊥⊥GBC,利用全等三角形的性质可得到⊥A=⊥NGC,AD=CG=6;再利用直角三角形斜边上的中线等于斜边的一半,可求出BE,BF,ED的长,利用等边对等角可推出⊥ADB=⊥EBD,⊥BGF=⊥FBG,利用三角形的内角和定理去证明⊥EBF=90°,利用勾股定理求出EF的长;根据⊥DEF是直角三角形,DE<EF,分情况讨论:当⊥EDF=90°时;当⊥DEF=90°时;分别利用勾股定理求出DF的长.5.(2021八上·下城期中)如图,在⊥ABC中,⊥ACB=90°,D在BC上,E是AB的中点,AD、CE 相交于F,且AD=DB.若⊥B=20°,则⊥DFE等于()A.30°B.40°C.50°D.60°【答案】D【知识点】三角形的外角性质;等腰三角形的性质;直角三角形斜边上的中线【解析】【解答】解:∵在⊥ABC中,⊥ACB=90°,E是AB的中点,∴BE=CE,又∵⊥B=20°∴⊥ECB=⊥B=20°,∵AD=BD,⊥B=20°,∴⊥DAB=⊥B=20°,∴⊥ADC=⊥B+⊥DAB=20°+20°=40°,∴⊥DFE=⊥ADC+⊥ECB=40°+20°=60°.故答案为:D.【分析】根据直角三角形斜边上中线的性质可得BE=CE,由等腰三角形的性质可得⊥ECB=⊥B=20°,⊥DAB=⊥B=20°,由外角的性质可得⊥ADC=⊥B+⊥DAB=40°,⊥DFE=⊥ADC+⊥ECB,据此进行计算.6.(2021八上·台州期中)如图如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°【答案】B【知识点】三角形的外角性质;直角三角形的性质【解析】【解答】解:如图,取⊥2,∵⊥2=90°-45°=45°,∴⊥1=60°+45°=105°.故答案为:B.【分析】取⊥2,根据角的和差关系求出⊥2,再利用三角形外角的性质求⊥1即可.7.(2021八上·瑞安期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C 也是格点,且使得⊥ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个【答案】C【知识点】直角三角形的性质【解析】【解答】解:如图,分情况讨论:①AB 为直角⊥ABC 斜边时,符合条件的格点C 点有2个;②AB 为直角⊥ABC 其中的一条直角边时,符合条件的格点C 点有1个. 故共有3个点. 故答案为:C.【分析】分AB 为斜边以及直角边,根据直角三角形两直角边垂直找出点C 的位置,据此解答.8.(2020八上·温州期中)如果直角三角形的两条直角边的长分别为6cm 和8cm ,那么斜边上的中线等于( ) A .2.4cmB .4.8cmC .5cmD .10cm【答案】C【知识点】直角三角形的性质【解析】【解答】解:∵直角三角形的两条直角边的长分别为6cm 和8cm ,∴斜边长为:√62+82=10(cm ),∴斜边上的中线长为:12×10=5(cm ).故答案为:C.【分析】根据勾股定理求得斜边长,再由直角三角形中,斜边上的中线等于斜边的一半,从而得出答案.9.(2021八上·温州期中)如图,在 △ABC 中, AB =4,BC =3,∠B =60∘,M 是 BC 延长线上一点, CM =2,P 是边 AB 上一动点, 连结 PM ,作 △DPM 与 △BPM 关于 PM 对称 (点 D 与点 B 对应),连结 AD ,则 AD 长的最小值是( )A .0.5B .0.6C .5−√21D .√13−3【答案】C【知识点】含30°角的直角三角形;勾股定理;翻折变换(折叠问题)【解析】【解答】解:如图,过点A作AE⊥BC于点E,当点A在DM的上时AD的值最小,如图,∵CM=2,BC=3,∴BM=BC+CM=5,由折叠得:DM=BM=5,∵⊥B=60°,∴⊥ BAE=90°−60°=30°,又AB=4,BC=3,∴BE=12AB=2,在中RtΔABE中,∵AE2+BE2=AB2,∴AE=√AB2−BE2=√42−22=2√3,∴EM=BM−BE=5−2=3,在RtΔAEM中,∵AE2+EM2=AM2,∴AM=√AE2+EM2=√(2√3)2+32=√21,∴AD=DM−AM=5−√21.故答案为:C.【分析】过点A作AE⊥BC于点E,当点A在DM的上时AD的值最小,根据CM、BC的值可得BM,由折叠的性质得DM=BM=5,易得⊥BAE=30°,则BE=12AB=2,在Rt⊥ABE中,应用勾股定理求出AE,进而可得EM,然后在Rt⊥AEM中,由勾股定理求出AM,进而可得AD.10.(2021八上·下城期末)在⊥ABC中,⊥BAC=90°,点D在边BC上,AD=AB ()A.若AC=2AB,则⊥C=30°B.若AC=2AB,则3BD=2CDC.若⊥B=2⊥C,则AC=2AB D.若⊥B=2⊥C,则S⊥ABD=2⊥ACD【答案】B【知识点】等腰三角形的性质;等边三角形的判定与性质;含30°角的直角三角形;勾股定理;直角三角形的性质【解析】【解答】解:由题,⊥BAC=90°,点D在BC边上,AD=AB,A、若AC=2AB,则BC=√AB2+AC2=√5AB,若⊥C=30°,BC=2AB,故A选项错误;B、如图:若AC=2AB,则BC=√AB2+AC2=√5AB,作AE⊥BC,则S△ABC=12AB⋅AC=12BC⋅AE,可得AE=AB⋅ACBC=√5AB=2√55AB,∵AD=AB,∴BE=DE=√AB2−AE2=√55AB,∴BD=2√55AB,DC=BC−AB=3√55AB,∴3BD=2CD,故B选项正确;C、若⊥B=2⊥C,∵⊥BAC=90°,∴⊥B+⊥C=90°,∴⊥C=30°,⊥B=60°,∴BC=2AB,AC<2AB,故C选项错误;D、若⊥B=2⊥C,由选项C可得⊥C=30°,⊥B=60°,∵AD=AB,∴⊥ABD为等边三角形,∴⊥ADB=60°,∴⊥DAC=⊥ADB-⊥C=30°=⊥C,∴AD=DC=BD,即AD为⊥ABC的中线,∴S⊥ABD=S⊥ACD,故D选项错误.故答案为:B.【分析】A、根据含30°角的直角三角形的性质,可得BC=2AB,据此判即可;B、作AE⊥BC,利用勾股定理及直角三角形面积等积法分别求出BD、CD的长,从而确定BD与CD 的关系,然后判断即可;C、若∠B=2∠C,可求出⊥C=30°,根据含30°角的直角三角形的性质,可得BC=2AB,据此判即可;D、若⊥B=2⊥C,由选项C可得⊥C=30°,⊥B=60°,可证⊥ABD为等边三角形,继而求出AD为⊥ABC 的中线,可得S⊥ABD=S⊥ACD,据此判断即可.二、填空题(每题4分,共24分)11.(2020八上·湖州期中)在Rt△ABC中,锐角⊥A=25°,则另一个锐角⊥B=°.【答案】65【知识点】直角三角形的性质【解析】【解答】解:∵在Rt△ABC中,∠A=25°,∴另一个锐角∠B=90°−∠A=65°,故答案为:65.【分析】根据直角三角形的两锐角互余即可得.12.(2021八上·鹿城期中)如图,⊥ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连接EF,则EF的最小值为.【答案】√10【知识点】垂线段最短;含30°角的直角三角形;勾股定理;等腰直角三角形【解析】【解答】解:∵⊥ADE是等腰直角三角形,∴⊥ADE=⊥EDF=90°,∵AD=DE=1,∴EF=√DE2+DF2=√12+DF2,∴当DF的值最小时,EF的值最小,∵AF⊥BC时,AF的值最小,∴DF的值最小,∵⊥B=30°,∴此时AF=12AB=4,DF=3,EF=√10.故答案为:√10.【分析】由等腰直角三角形的性质可得⊥ADE=⊥EDF=90°,AD=DE=1,由勾股定理表示出EF,推出AF⊥BC时,AF的值最小,则DF的值最小,据此求解.13.(2021八上·绍兴期中)如图⊥MAN=60°,若⊥ABC的顶点B在射线AM上,且AB=6,动点C 从点A出发,以每秒1个单位沿射线AN运动,当运动时间t是秒时,⊥ABC是直角三角形.【答案】3或12【知识点】含30°角的直角三角形【解析】【解答】解:如图:当⊥ABC是以⊥ACB=90°的直角三角形时,∵⊥MAN=60°,∴⊥ABC=30°,∴AC= 12AB=3,∴运动时间t= AC1=31=3秒,当⊥ABC是以⊥ABC=90°的直角三角形时,∵⊥MAN=60°,∴⊥ACB=30°,∴AC= 2AB=12,∴运动时间t= AC1=121=12秒,当运动时间t是3或12秒时,⊥ABC是直角三角形.故答案为:3或12.【分析】当⊥ABC是以⊥ACB=90°的直角三角形时,⊥ABC=30°,由30°所对的直角边为斜边的一半可得AC的值,然后除以速度可得时间;当⊥ABC是以⊥ABC=90°的直角三角形时,⊥ACB=30°,同理可得t的值.14.(2021八上·温州期中)如图,在直角三角形ABC中,⊥ACB=90°,AB=7,点D是AB的中点,点P是斜边AB上的一个动点,FG是线段CP的垂直平分线,Q是FG上的一个动点,则PQ+QD的最小值为.【答案】3.5【知识点】线段的性质:两点之间线段最短;线段垂直平分线的性质;直角三角形斜边上的中线 【解析】【解答】解:连接CQ 、CD ,∵FG 是线段CP 的垂直平分线,Q 是FG 上的一个动点, ∴CQ =PQ ,∴PQ+QD =CQ+QD ,∴当C 、Q 、D 共线时,PQ+QD 有最小值,最小值为CD , ∵⊥ACB =90°,AB =7,点D 是AB 的中点,∴CD = 12AB =3.5.故答案为:3.5.【分析】连接CQ 、CD ,由垂直平分线的性质可得CQ =PQ ,推出当C 、Q 、D 共线时,PQ+QD 有最小值,最小值为CD ,然后结合直角三角形斜边上中线的性质进行解答.15.(2021八上·诸暨期中)直角三角形的两条直角边为6和8,则斜边上的中线长是 . 【答案】5【知识点】勾股定理;直角三角形斜边上的中线【解析】【解答】解:∵直角三角形的两条直角边为6和8,∴斜边长为√62+82=10,∴斜边上的中线长为12×10=5.故答案为:5.【分析】首先由勾股定理求出斜边长,然后根据直角三角形斜边上中线的性质进行求解.16.在⊥ABC 中,⊥C=90°,⊥A:⊥B=1: 2,则⊥B= . 【答案】60°【知识点】直角三角形的性质【解析】【解答】解:∵在⊥ABC 中,⊥C=90°,⊥A:⊥B=1: 2设⊥A=x ,则⊥B=2x , ∴⊥A+⊥B=90°即x+2x=90° 解之:x=30°,∴⊥B=2×30°=60°.故答案为:60°.【分析】由已知设⊥A=x,则⊥B=2x,利用直角三角形的两锐角互余,建立关于x的方程,解方程求出x的值,然后求出⊥B的度数。
(突破训练)浙教版八年级上册数学第1章 三角形的初步知识含答案

浙教版八年级上册数学第1章三角形的初步知识含答案一、单选题(共15题,共计45分)1、在△ABC和△DEF中,已知∠C=∠D, ∠B =∠E,要判断这两个三角形全等,还需添加条件()A. AB=ED.B. AB=FD.C. AC=FD. D.∠ A=∠ F.2、在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定3、若一个三角形的两边长分别是4cm和10cm,那么第三边的长度不可能是()A.6cmB.7cmC.8cmD.9cm4、如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30 °B.40 °C.50 °D.60 °5、如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°6、如图,虚线部分是小刚作的辅助线,你认为线段CD()A.是AC边上的高B.是BC边上的高C.是AB边上的高D.不是△ABC的高7、如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C 地,分别连接AB、AC、BC,形成一个三角形。
若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处 C.△ABC三条角平分线的交点处 D.△ABC三边的垂直平分线的交点处8、下列长的三条线段三角形的是()A.1,2,3B.3,4,8C.4,5,6D.3,3,69、小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点 C.AB,AC边上的高所在直线的交点 D.∠BAC与∠ABC的角平分线的交点10、在下列条件中,不能说明△ABC≌△A′B′C'的是( )A.∠A=∠A′,∠C=∠C′,AC=A'C'B.∠B=∠B′,∠C=∠C′,AB=A′B' C.∠A=∠A′,AB=A′B′,BC=B'C' D.AB=A′B′,BC=B'C,AC=A′C'11、下列长度的每组三根小木棒,能组成三角形的一组是()A.3,3,6B.4,5,10C.3,4,5D.2,5,312、如图,在△ABC中,D是BC上的一点,已知AC=5,AD=6,BD=10,CD=5,则△ABC的面积是()A.30B.36C.72D.12513、等腰三角形两边长分别是3和8,则它的周长是()A.14B.19C.11D.14或1914、已知等腰三角形两边长分别为2和4,则此等腰三角形的周长是()A.10B.8C.8或10D.7或815、如图,网格中小正方形的边长都为1,点A,B,C在正方形的顶点处,则cos∠ACB的值为()A. B. C. D.二、填空题(共10题,共计30分)16、已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为________.17、如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB= ________ °.18、一个正多边形每一个外角为36°,则这个多边形的内角和为________.19、如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是________.20、如图,坐标平面上,△ABC≌△DEF,其中A,B,C的对应顶点分别为D,E,F,且AB=BC=5.若A点的坐标为(-3,1),B,C两点的纵坐标都是-3,D,E两点在y轴上,则点F到y轴的距离为________.21、如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E,D,BD=CF,BE=CD.若∠AFD=155°,则∠EDF=________.22、如图,∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC的度数为________.23、如图,△ABC中,∠A=80°,剪去∠A后,得到四边形BCDE,则∠1+∠2=________。
浙教版数学八年级上册直角三角形课件

E B
D
C
练一练:
如图,已知在△ABC中,∠B=∠C,
AD⊥BC于D,E为AC的中点,AB=6,
求DE的长.
A
E
B
D
C
例:如图,△ABC和△BCD是以BC为公共斜边的两 个Rt△,M是BC的中点。 求证:(1)AM=DM;
A .N D
B
M
C
(2)连结AD,取AD的中点N,连结MN,你 能判断MN与AD的位置关系吗?
直角的角平分线?
斜边上的中线?
B
D
C
直角三角形的性质:
直角三角形斜边上的中线等于斜边的一半。
已知:CD是Rt △ ABC斜边AB上的中线,C
求证:CD= 1 AB.
证明:
2
A
D
B
延长CD至E,使DE=CD,连结BE.
几何语言:
E
∵ ∠ ACB=900 ,CD是AB边上的中线
∴CD= AB
练一练:
1、在Rt△ABC中,CD是斜边AB上的中线,若
CD=3.5厘米,则AB=__厘米
2、已知△ABC中,∠A=90°, BC=20cm,则BC边上的中线为
3、已知如图在△ABC中,∠ACB=90°,
AC=6,∠B=300,D是AB的中点,
A
则AB=
,CD=
D
B C
如图,是一副三角尺拼成的四边形ABCD, E为BD的中点,点E与点A,C的距离相等吗?
直角三角形
一、直角三角形的定义
A
有一个角是直角的三角形叫做直角三角形
直角三角形表示: Rt△
斜边
直
角
边
B
直角三角形ABC表示为Rt△ABC, ∠ACB为Rt∠
2019秋浙教版八年级数学上册习题课件:2.6 直角三角形 第1课时

测得AM的长为1.2 km,则M,C两点间D的距离为( )
A.0.5 km
B.0.6 km
C.0.9 km
D.1.2 km
5.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交 BC于点D,点E为AC的中点,连结DE,则△CDCE的周长为( )
A.20 B.12 C.14 D.13
6.如图所示,PA⊥OA,PB⊥OB,垂足分别是A和B,点D是OP的
中点,则DA与DB的长相度等关系是
.
7.如图,直角三角形ABC中,∠BAC=90°,AD⊥BC,AE是BC
边上的中线,①若∠C=40°,则∠10DA°E=
;②若∠DAE=
20°,35则∠°C= .
8.如图,在△ACB中,∠ACB=90°,CD⊥AB于D. (1)求证:∠ACD=∠B; (2)若AF平分∠CAB分别交CD,BC于E,F,求证:∠CEF= ∠CFE. 解:(1)证明:∵∠ACB=90°,CD⊥AB于D, ∴∠ACD+∠BCD=90°,∠B+∠BCD=90°, ∴∠ACD=∠B; (2)在Rt△AFC中,∠CFA=90°-∠CAF, 同理,在Rt△AED中,∠AED=90°-∠DAE. 又∵AF平分∠CAB,∴∠CAF=∠DAE, ∴∠AED=∠CFE,又∵∠CEF=∠AED, ∴∠CEF=∠CFE.
第2章 特殊三角形
2.6 直角三角形
第1课时 直角三角形的性质
目标1 探索并掌握直角三角形的性质定理1 目标2 探索并掌握直角三角形的性质定理2
1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角
的度D数是( A.120°
) B.90°
C.60°
D.30°
2.如图,m∥n,直线l分别交m,n于点A,点B,AC⊥AB,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5直角三角形(1)
本课重点:1、理解直角三角形和等腰直角三角形的有关概念及表示;2、掌握直角三角形中
两锐角互余,会根据一个角、两个角的大小关系来判定直角三角形。
基础训练:1、填空题:
(1)在△ABC中,若∠A=∠B+∠C,则△ABC是 。
(2)在△ABC中,∠C=90°,∠A =2∠B,则∠A= ,∠B= 。
(3)在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC是 三角形。
(4)直角三角形两锐角之差是12度,则较大的一个锐角是 度。
2、选择题:
(1)如果三角形的一个角等于其他两个角的差,那么这个三角形是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、以上都错
(2)如果三角形的三个内角的比是3∶4∶7,那么这个三角形是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、锐角三角形或钝角三角形
(3)△ABC中,如果两条直角边分别为3,4,则斜边上的高线是( )
A、56 B、512 C、5 D、不能确定
(4)如图,△ABC中,∠ACB=Rt∠,在AB上截取AE=AC,
BD=BC,则∠DCE等于( )
A、45° B、60° C、50° D、65°
3、求直角三角形两锐角平分线所夹的锐角的度数。
4、给你一副三角板,你能用它拼出几个度数不同的角?请把它们都写出来。
5、已知等腰三角形一腰上的高与底边成45°角,若腰长为2cm,求它的面积。
拓展思考:
阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成长方形,
使△ABC的两个顶点为长方形一边的两个端点,第三个顶点落在长方形这一边的对边上,
那么符合要求的长方形可以画出两个:长方形ACBD和长方形AEFB(如图2)。
解答问题:
(1) 设图2中长方形ACBD和长方形AEFB的面积分别为S1,S2,则S1 S2(填“>”、
“=”或“<”)
(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成长方形,那么符合要求的长
方形可以画出 个,利用图3把它画出来。
(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成长
方形,那么符合要求的长方形可以画出 个,利用图4把它画出来。
(4)在(3)中所画出的长方形中,哪一个的周长最小?为什么?
火眼金睛:
下面是小明同学在学了等腰三角形后所做的一道题,题目是这样的:“已知△ABC是等
A B C 图1 A B C D E F 图2 A B C 图3 A
B C
图4
A
B C
A B
C
D E
腰三角形,BC边上的高恰好等于BC边长的一半,求∠BAC的度数。”
解:如图,∵AD⊥BC,AD=21BC=BD=CD,
∴∠BAD=∠B=∠C=∠CAD=45°,
∴∠BAC=90°
你认为小明的解答正确吗?若不正确,请你将它补充完整。
学习预报:阅读课本第二章第5节“直角三角形(2)”,并思考下列问题:
1、一个直角三角形斜边上的中线长与斜边长有什么关系?请你动手做做看。
2、在一个有30°角的直角三角形中,30°角所对的直角边与斜边之间有数量关系吗?若有,
是什么关系?反之它也成立吗?
参考答案
2.5(1)
基础训练:1、(1)直角(2)60°,30°(3)直角三角形(4)51°;2、(1)B(2)B(3)
B(4)A;3、45°;4、略;5、2cm2。
拓展思考:(1)=(2)1(3)3(4)以AB为边的长方形
火眼金睛:要分类讨论:1、BC为底边;90°;2、BC为腰,(1)顶角为锐角,75°;(2)
顶角为直角,不合题意;(3)顶角为钝角,15°。