第六版材料力学知识点总结
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 x22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论xσ*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r 六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul=λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学知识点总结

材料力学知识点总结嘿,朋友们!咱们今天来好好唠唠材料力学这门课的知识点。
先来说说啥是材料力学吧。
简单来讲,材料力学就是研究材料在各种外力作用下产生的应变、应力和强度等问题的一门学问。
这可跟咱们的日常生活息息相关呢!比如说,你看那建筑工地的塔吊,为啥它能吊起那么重的东西还稳稳当当的?这就离不开材料力学的知识啦。
塔吊的钢梁得有足够的强度和刚度,才能承受住重物的拉力和压力,不至于弯曲变形甚至断裂。
咱们先来讲讲应力和应变。
应力呢,就好比材料内部受到的“挤压力”或者“拉伸力”。
想象一下,你用力拉一根橡皮筋,橡皮筋内部就产生了应力。
应变呢,则是材料在应力作用下发生的形状改变的程度。
还是拿橡皮筋举例,你一拉它,它变长了,这个长度的变化比例就是应变。
再说说拉伸和压缩。
这俩可是材料力学里的“常客”。
当一个杆件受到拉力时,它会伸长,横截面积会变小;受到压力时,就会缩短,横截面积变大。
这里面有个很重要的概念叫胡克定律,它告诉我们在弹性范围内,应力和应变成正比。
还有扭转。
就像拧毛巾一样,杆件受到扭矩作用会发生扭转。
这时候,要注意杆件表面的剪应力分布,最大剪应力通常在表面处。
弯曲也是个重要的部分。
想象一下一根扁担挑着重物,它会弯曲变形。
这里面就涉及到弯矩、剪力这些概念。
通过计算,可以知道扁担在哪个位置容易断裂,从而选择合适的材料和尺寸。
我记得有一次去工厂参观,看到工人师傅在加工一根轴。
他们特别仔细地计算着轴的尺寸和能承受的力。
师傅跟我说,如果材料力学没学好,这轴做出来可能用不了多久就坏了,那损失可就大了。
这让我深刻体会到了材料力学在实际工程中的重要性。
说到强度理论,这可是判断材料是否会失效的重要依据。
像最大拉应力理论、最大伸长线应变理论等等,它们能帮助我们在设计零件时,确保材料不会因为受力过大而损坏。
还有组合变形,就是杆件同时受到多种基本变形的作用。
这时候就得综合考虑各种变形的影响,进行复杂的计算和分析。
材料的力学性能也不能忽视。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

圣才电子书
ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。
材料力学基础知识点整理

材料力学基础知识点整理引言本文旨在整理材料力学的基础知识点,帮助读者更好地理解和掌握这一领域的基本概念和原理。
1. 应力和应变- 应力:应力是物体内部的力与物体横截面积的比值,描述了单位面积内的力的大小和方向。
- 应变:应变是物体在受到外力作用下产生的形变或变形量,描述了物体形变程度的量度。
2. 弹性力学- 弹性材料:弹性材料受到外力作用后可以恢复原来形状和大小的材料。
- 弹性常数:描述了材料的弹性性质,包括弹性模量、剪切模量和泊松比等。
- 弹性变形:弹性变形是指材料在受到外力作用下产生的可恢复的形变。
- 胡克定律:弹性力学中的基本定律,描述了弹性材料应力与应变之间的线性关系。
3. 塑性力学- 塑性材料:塑性材料在受到外力作用后会发生不可逆的形变和破坏。
- 屈服点:塑性材料受到应力作用达到一定值时开始发生可观察的塑性变形的应力值。
- 塑性变形:塑性变形是指材料在受到外力作用下产生的不可恢复的形变。
- 塑性流动:塑性材料在受到应力作用下发生塑性变形的过程。
4. 破裂力学- 破裂点:材料在受到应力作用下失效的应力值,也是材料破裂的起始点。
- 断裂韧性:材料抵御破裂的能力,即材料在受到应力作用下能吸收的能量大小。
- 破裂模式:根据材料破裂的形式和特征进行分类,如脆性破裂和韧性破裂等。
5. 疲劳力学- 疲劳现象:材料在循环加载下产生的疲劳破坏现象,即反复加载引起的损伤和破裂。
- 疲劳寿命:材料在特定加载条件下能够承受的循环次数或应力循环次数。
- 疲劳强度:材料在特定寿命下能够承受的最大应力。
结论本文对材料力学基础知识点进行了整理和概述,包括应力和应变、弹性力学、塑性力学、破裂力学和疲劳力学等内容。
希望这些知识点能够帮助读者建立对材料力学基础的扎实理解,为进一步学习和研究提供基础。
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。
因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。
应力的单位是帕斯卡(Pa),即XXX/平方米。
第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。
应变分为线性应变和非线性应变两种。
线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。
非线性应变则不满足这个比例关系。
2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。
3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。
XXX模量的大小反映了材料的柔软程度和刚度。
杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。
综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。
构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。
截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。
胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。
应力是指在截面m-m上某一点K处的力量。
它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。
其中,σ称为正应力,τ称为切应力。
将应力的比值称为微小面积上的平均应力,用表示。
在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。
杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。
某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。
材料力学复习总结知识点

功能原理 卡氏定理 虚 功 原 理
导出
F F M M T T N N d x d x d x i EA F EI F GI F i i p i l l l
ห้องสมุดไป่ตู้单 位 载 荷 法
莫尔积分
(线弹性)
图乘法 其他
M
C xc
ω
(等刚度直杆)
M
非线弹性
MC
1 Δ F d Δl M d T d N
2 2 M T , r 3 W 2 2 M 0 . 75 T r 4 W
2
四、压杆稳定
1. 欧拉公式:
2. 压杆的柔度: 细长杆
2 EI Fcr 2 ( l)
(适用范围:细长杆)
况) 长度因数(反应约束情 l i 截面形状、大小 i l 杆长
正负号规定: FQ (+) M (+ )
一、基本变形(2)
基本变形 拉(压)
外力 应力
FN A
扭转
弯曲
圆轴
T IP
τ
My IZ
FQ S Z IZb
*
拉 (+ )
(平面假设) d4
IP 32
d Wt 16
3
平面假设
σ τ
3 2 bh bh 矩形: IZ , W Z 12 6
强度计算11强度理论依据材料性质外力结构条件确定应力状态计算相当应力主应力表达一般应力表达内力表达主应力表达一般应力表达内力表达如r31133223r4?????tm22??w3r??22内容强度校核内容核强度校核669例例886计载荷设计9915计计计截面设计例例995533形式简单形式组合变形形式简单形式形组合变形99557711构构21构组合结构66题移动载荷问题661121反问题9918194
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六版材料力学知识点总结
第一章引言
本章主要介绍了力学在材料科学与工程中的地位和作用。
力学是分析物体受力情况和相应
变形的学科,这在材料科学与工程中具有重要意义。
本章的内容对整本教材的学习打下了
基础。
第二章应力
在本章中,主要介绍了材料在受到外力作用时所产生的应力的概念。
力的作用有拉伸作用、压缩作用和剪切作用三种,这些力对应的应力分别是拉应力、压应力和剪应力。
材料受力
会导致应力在材料内部的分布,通过一些基本方程来描述材料受力的情况。
第三章应变
这一章主要介绍了材料在受到外力作用时所产生的应变的概念。
应变是指材料在外部力作
用下所产生的形变。
介绍了应变的三种基本形式:线性应变、剪切应变和体积变形。
第四章弹性模量
本章介绍了材料的弹性行为及其数学描述。
材料在受力时会发生形变,而且形变是可逆的,这种性质称为弹性。
对材料的弹性行为进行了分析,并引入了弹性模量这一概念,分别是
杨氏模量、剪切模量和泊松比。
这些弹性模量对于描述材料的弹性行为有着重要的意义。
第五章弯曲
这一章介绍了材料在受力时进行弯曲变形的物理过程和数学描述。
利用梁的理论分析了材
料受弯曲力时的受力和应变情况。
并引入了一些相关参数,并给出了一些实际应用问题的
数学解析。
第六章扭转
这一章详细介绍了材料在受扭转力作用下的受力和应变情况。
对材料进行了基本的力学分析,并引入了剪切弹性模量,这对于描述材料的扭转弹性行为具有重要意义。
第七章变形与尺寸稳定性
本章主要介绍了材料在受力后的变形与尺寸稳定性。
材料在受力时会发生变形,而变形又
分为弹性变形和塑性变形,并且介绍了材料的屈曲现象和相应的数学分析,这在实际工程
中具有重要的意义。
第八章断裂
这一章详细介绍了材料在受到过大外力作用时的断裂过程。
材料的断裂可以分为塑性断裂
和脆性断裂,分析了断裂的过程及其影响因素,并引入了一些与断裂相关的参数。
第九章强度理论
这一章主要介绍了材料的强度理论。
介绍了强度概念以及与强度相关的一些理论模型,如
最大正应力理论、最大剪应力理论等。
这对于分析材料的强度行为具有重要的意义。
第十章疲劳
本章介绍了材料在长时间受到交变载荷作用时的疲劳现象。
对材料的疲劳断裂进行了分析,并引入了疲劳寿命和疲劳极限等概念。
疲劳现象在材料科学与工程中具有重要的意义,需
要进行深入的研究。
第十一章应力固化
这一章介绍了材料在受到一定应力时的应力固化现象。
应力固化是指材料在受到应力后,
其内部应力会随时间发生变化。
分析了应力固化的物理过程和数学模型,并引入了应力松
弛和应力蠕变等概念。
第十二章应变硬化
本章主要介绍了材料在受到变形后的应变硬化现象。
应变硬化是指材料在受到应变后,其
硬度会随着应变量的增加而增加。
对应变硬化进行了分析,并引入了一些相关的参数。
通过对第六版《材料力学》的知识点总结,我们可以看到材料力学在材料科学与工程中的
重要性。
材料力学的研究对于了解材料的力学行为,分析材料的强度、材料在受力时产生
的变形等具有重要意义。
对于学习材料科学与工程的学生和从事相关研究的科研人员来说,熟练掌握材料力学的知识是十分必要的。