热交变应力

合集下载

转炉汽化冷却烟道失效常见原因及其处理

转炉汽化冷却烟道失效常见原因及其处理

2019年第5期汽化冷却烟道与转炉氧枪连锁控制,主要由活动烟罩(裙罩)、固定段烟道、可移动段烟道、冷却烟道和斜弯烟道组成。

转炉吹氧炼钢时炉口喷出大量高温煤气,遇空气少部分燃烧后温度高达1700℃左右,汽化冷却烟道的工作原理与换热器相同,利用高温烟气的热量将通过软化处理和除氧处理的冷却水蒸发,利用水的汽化潜热带走冷却部件的热量来达到后续的除尘净化和煤气回收以及环境保护的工艺要求。

因工况环境十分恶劣,导致转炉生产运行过程中经常会出现水冷壁钢管破裂爆管等泄漏现象,严重影响到转炉的正常运转。

严重漏水还会产生蒸汽使烟道的过风量变大,可能造成烟气外溢造成污染,影响煤气的回收率和烟道余热的利用,大量软水被浪费,检修频繁,不仅对汽化冷却烟道的安全平稳运行产生重大隐患,还严重降低了生产效率。

为此,阅读文献可望找出冷却烟道失效的原因及其处理措施。

汽化冷却烟道失效常见原因分析(一)周期性交变热应力以某钢厂120t 的转炉生产为例,转炉一次炼钢周期为35min 左右,吹氧时间段在炼钢周期的中期,耗时约15min (补吹除外),进入汽化冷却烟道的炉气量可达76000m 3/h (标态下),温度高达1700℃左右,此时间段冷却烟道的热负荷急剧增加,管壁温度也陡增,转炉吹氧结束后,相应的热负荷也急剧降低,管壁温度随之下降,直到下个吹炼期,期间间隔20min 左右。

烟道内的热负荷频繁急剧变化,导致水冷管不仅受到周期性交变热应力,在热疲劳作用下的钢管表面通常会产生横向的疲劳裂纹,这与机械疲劳中观察到的疲劳裂纹相似。

管壁也会因频繁产生的轴向拉压应力而产生塑性变形,如此反复,烟道管就会产生大量竹节状热疲劳裂纹(蠕变),高温蠕变使得在金属管壁的微观结构中沿着固化晶界析出的碳化物会加速晶粒间裂纹的扩展。

裂纹扩展直至破裂,产生蒸汽泄露,影响汽化冷却烟道使用寿命。

(二)水循环恶化烟道结构设计不合理导致配水管不均匀,大部分烟道采用自然循环的水循环方式导致冷却水动力不足,上升管、下降管、受热管水循环阻力变大,冷却效果不好,造成冷却水管因水循环不良引起局部过热,循环水不能快速有转炉汽化冷却烟道失效常见原因及其处理程晓恬(广西钢铁),庞通,潘刚(技术中心)钢厂交流132019年第5期效地冷却管壁,管壁超温破裂漏水;同时,水循环异常波动引起水冷管液面脉动,当脉动表现为剧烈的水击现象时,会使焊缝断裂;在热流密度过大,热量陡增的过程中,受热管中水容易由核态沸腾转变为膜态沸腾,传热受到汽膜的阻隔,管子内壁得不到水的连续冷却,冷却水与管壁发生传热恶化,管子因管壁温度超高过热受损;热流场强度分布不均,特别在烟气侧涡流区部位,导致局部受热面热流密度过高,冷却水不能连续汽化,在蒸汽及饱和水的交替作用下,汽化点由于高频率水击引发疲劳损伤爆管。

热应力计算公式

热应力计算公式

热应力的计算公式可以通过热应力理论和弹性力学给出。

根据不同的情境和需要,热应力的计算公式有多种形式。

在材料力学的热应力计算中,热应力等于弹性模量乘以应变,而应变等于变形量除以原值。

热变形量则等于原值乘以热胀系数再乘以温差。

综合这些因素,可以得到热应力产生的推力等于截面积乘以弹性模量乘以热胀系数和温差。

这个公式可以表示为:σ= α × ΔT × E,其中σ是热应力,α是线膨胀系数,ΔT是温度变化,E是杨氏模量。

另一种热应力计算公式则考虑了泊松比的影响,公式为:σ_{th} = E(1 - v)(β_A - β_g)ΔT,其中E为杨氏模量,v为泊松比,β_A和β_g分别为陶瓷和玻璃的热膨胀系数,ΔT为温度变化范围。

请注意,以上公式中的单位需要统一。

例如,热应力可以有不同的单位,其中最常用的单位是MPa(兆帕),有时也会使用ksi(千克力/平方英寸)或其他单位。

线膨胀系数通常以℃为单位,杨氏模量以GPa(吉帕)为单位。

在实际应用中,需要根据具体的材料和工况选择合适的公式进行计算,并注意单位换算和参数取值。

同时,为了得到更准确的结果,还可以考虑使用有限元分析等数值方法进行热应力计算。

交变应力

交变应力

第13章 交变应力§13-1 交变应力与疲劳失效1.交变应力:构件内随时间作周期性变化的应力,称交变应力。

2.疲劳与疲劳失效:结构的构件或机械、仪表的零部件在交变应力作用下发生的破坏现象,称为疲劳失效,简称疲劳。

3.构件承受交变应力的例子:a.齿轮啮合时齿根A 点的弯曲正应力 σ 随时间作周期性变化。

如图13-1。

b.火车轮轴横截面边缘上点的弯曲正应力 A σ 随时间 作周期性变化,如图13-2。

tt sin I rM I y M ZZ ωσ⋅=⋅=c.电机转子偏心惯性力引起强迫振动梁上的危险点正应力随时间作周期性变化。

如图13-3。

4.疲劳失效的特点与原因简述 构件在交变应力作用下失效时,具有如下特征:1)破坏时的名义应力值往往低于材料在静载作用下的屈服应力; 2)构件在交变应力作用下发生破坏需要经历一定数量的应力循环;3)构件在破坏前没有明显的塑性变形预兆,即使韧性材料,也将呈现“突然”的脆性断裂; 4)金属材料的疲劳断裂断口上,有明显的光滑区域与颗粒区域。

如图13-4。

疲劳失效的机理:交变应力引起金属原子晶格的位错运动→位错运动聚集,形成分散的微裂纹→微裂纹沿结晶学方向扩展(大致沿最大剪应力方向形成滑移带)、贯通形成宏观裂纹→宏观裂纹沿垂直于最大拉应力方向扩展,宏观裂纹的两个侧面在交变载荷作用下,反复挤压、分开,形成断口的光滑区→突然断裂,形成断口的颗粒状粗糙区。

§13-2循环特征 应力幅 平均应力交变应力有恒幅与变幅之分,现考察按正弦曲线变化的恒幅交变应力σ 与时间的关系,如图13-5。

t1.应力循环:图中应力大小由 a 到 b 经历了一个全过程变化又回到原来的数值,称为一个应力循环。

完成一个应力循环所需的时间 ,称为一个周期t 。

2.循环特征或应力比:一个应力循环中最小应力 min σ 与最大应力 max σ 的比值:maxmin σσ=r称为交变应力的循环特征或应力比。

什么是热应力、热疲劳、热松弛

什么是热应力、热疲劳、热松弛

什么是热应力、热疲劳、热松弛
1、什么是热应力?
由于零部件内、外或两侧温差引起的零部件变形受到约束而在物体内部产生的应力,称为热应力。

2、什么是热冲击?
金属材料受到急剧的加热或冷却时,其内部将产生很大的温差,从而引起很大的冲击热应力,这种现象称为热冲击。

一次大的热冲击,产生的热应力能超过材料的屈服极限,从而导致金属部件的损坏。

3、什么是热疲劳?
金属零部件被反复加热和冷却时,其内部产生交变热应力,在此交变热应力反复作用下,零部件遭到破坏的现象叫热疲劳。

4、、什么是蠕变?
金属材料长期处于高温条件下,在低于屈服点的应力作用下,缓慢
而持续不断地增加材料塑性变形的过程叫蠕变。

5、什么是应力松施?
金属零件在高温和某一初始应力作用下,若维持总变形不变,则随时间的增加,零件的应力会逐渐地降低,这种现象叫应力松施,简称松施。

6、什么是脆性转变温度?发生低温脆性断裂事故的必要和充分条件是什么?
脆性转变温度是指在不同的温度下对金属材料进行冲击试验,脆性断口占试验断口 50%时的温度,用 FATT 表示。

含有缺陷的转子如果工作在脆性转变温度以下,其冲击韧性会显著下降,就容易发生脆性破坏。

发生低温脆性断裂事故的必要和充分条件是:
①金属材料在低于脆性转变温度的条件下工作;
②具有临界应力或临界裂纹,这是指材料已有一定尺寸的裂纹且应力很大。

一次应力,二次应力,偶然应力和失效准则

一次应力,二次应力,偶然应力和失效准则

⼀次应⼒,⼆次应⼒,偶然应⼒和失效准则1.在图中讲了,重量和压⼒导致的⼀次应⼒⽤热态许⽤应⼒来控制。

温度引发的弯头和三通处⼆次应⼒⽤安定性条件来控制,即三倍许⽤应⼒3*Sh。

2.我们来看⼀个热⼒直埋管道,⼤家都知道管道有锚固段,有活动段,我们看看每个部分的具体失效形式。

导致国内CJJ规范对直管应⼒评定错误采⽤安定性3*Sh,是规范编制⼈误认为完全约束段的应⼒是温度引发的,温度引发的就是⼆次应⼒,⼆次应⼒就可以⽤安定性条件来判断。

这是错误的,这地⽅的应⼒不是疲劳交变应⼒,管道仅仅处于热态受压,冷态基本⾃由。

管道完全受压的破坏是失稳,不是疲劳。

欧洲EN13941和俄罗斯GOST55596,以及美国的油⽓规范都是这么样做的。

管道的失效有三种:⼀次失效(管道承压问题--》爆裂,承重问题---》垮塌),⼆次失效(弯头和三通的疲劳破坏),刚度丧失(稳定性失效)。

埋地管道这三种失效都有,⽽架空管道既有⼀次和⼆次失效。

导致规范编制⼈出现这样错误,是对国外规范不了解或了解不透彻,对结构失效的三种形式不清楚,以遇到温度就归为⼆次应⼒,⼀旦是⼆次应⼒就是疲劳安定性问题。

补充前⾯的讲解。

⼀次应⼒往往控制在许⽤应⼒范围内,及弹性设计。

⼆次应⼒,交变应⼒,运⾏升温⾸次过屈服,后来的冷热交变在3*Sh内,⽤弹塑性设计安定性原理来控制。

管道受压失稳,要通过临界许⽤压应⼒来控制,埋地管道失稳由于管径的变化,有整体失稳控制和局部失稳控制两个部分。

我们切记,完全约束部分是失稳破坏,不是疲劳破坏。

这是整个国内埋地热⼒管道设计规范和很多⼈的误区。

管道能否做⽆补偿冷安装,不是什么神秘,也不是弹塑性安定性来⽀持的。

是你的温差和你的径厚⽐,埋深决定的。

理论上讲都可以做⽆补偿,但问题在于,你的活动段,折⾓处,三通处,截断阀怎么处理。

交变应力的定义

交变应力的定义

交变应力的定义交变应力是材料力学中的一个重要概念,它指的是物体受到交变载荷作用时所产生的应力。

在日常生活和工程实践中,我们经常会遇到交变载荷的情况,比如机械零件的振动、汽车的行驶、桥梁的风荷载等,这些都会对材料产生交变应力的影响。

交变应力的定义是指在交变载荷作用下,物体内部发生的应力变化。

交变应力通常由交变载荷引起的应力循环引起,这种应力循环会导致材料内部的应力不断变化,从而对材料的力学性能产生影响。

交变应力的产生原因主要有两个方面。

一方面是由于交变载荷作用下物体的形变,使得物体内部的应力状态发生变化。

另一方面是由于交变载荷引起的应力循环,使得物体内部的应力不断变化。

在交变载荷作用下,物体内部的应力会随着载荷的变化而变化。

当载荷增加时,物体内部的应力也会增加;当载荷减小时,物体内部的应力也会减小。

这种应力的变化可以是周期性的,也可以是随机的。

交变应力的大小与载荷的幅值、频率和载荷的形式有关。

幅值越大、频率越高、载荷形式越复杂,交变应力的大小就越大。

例如,当物体受到周期性的交变载荷作用时,交变应力的大小与载荷的幅值成正比,与载荷的频率成反比。

交变应力对材料的影响主要体现在疲劳寿命和疲劳强度两个方面。

疲劳寿命是指材料在交变载荷作用下能够承受的循环次数,而疲劳强度则是指材料在交变载荷作用下能够承受的最大应力。

交变应力越大,疲劳寿命就越短,疲劳强度也就越低。

为了提高材料的抗疲劳性能,可以采取一些措施。

例如,可以通过合理设计材料的形状和结构,使得材料的应力分布更加均匀,减小交变应力的大小。

此外,还可以通过材料的热处理和表面处理等方法,提高材料的强度和硬度,增强材料的抗疲劳性能。

交变应力是材料力学中一个重要的概念,它指的是物体在交变载荷作用下所产生的应力。

交变应力的大小与载荷的幅值、频率和形式有关,对材料的疲劳寿命和疲劳强度有着重要的影响。

为了提高材料的抗疲劳性能,可以采取合理的设计和处理方法。

通过对交变应力的研究和理解,可以更好地应对工程实践中的交变载荷问题,保证材料的安全可靠性。

材料力学 交变应力

材料力学 交变应力

的 应力幅
s max
用sa 表示
sa
smaxsmin
2
O
s min
4.平均应力
sa sa
t
最大应力和最小应力代数和的一半,称为交变应力的
平均应力.
用sm表示.
smsmax2smin
二、交变应力的分类
1.对称循环
在交变应力下若最大应力与最小应力等值而反号.
smin= - smax或 min= - max
限;
表示光滑小试样的持久极
限。
显然,有:
s 1, 1
右边表 格给出了在 弯,扭的对称 应力循环时 的尺寸因数.
表11-1 尺寸因数
直径 d(mm)
s
碳钢
合金钢
>20 ~30
0.91
>30 ~40
0.88
0.83 0.77
>40 ~50
0.84
0.73
>50 ~60
0.81
0.70
>60 ~70
0.78
r smin 1
s
smax
r = -1 时的交变应力,称为 O
对称循环交变应力.
smax
smin
t
sa smax sm0
2.非对称循环
r1时的交变应力,称为非对称循环 交变应力.
(1)若 非对称循环交变应力中的最小应力等于零( smin=0)
s
r s min 0 s max
smax
O
s三、疲劳破坏
材料在交变应力作用下的破坏习惯上称为疲劳破坏
1.疲劳破坏的特点
(1)交变应力的破坏应力值一般低于静载荷作用下的强度 极限值,有时甚至低于材料的屈服极限.

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀主要内容:主要介绍汽轮机的热应力、热膨胀和热变形;汽轮机寿命及如何进行汽轮机的寿命管理。

Ⅰ汽轮机的受热特点一、汽缸壁的受热特点汽轮机启停过程是运行中最复杂的工况。

在启停过程中,由于温度剧烈变化,各零部件中及它们之间形成较大的温差。

导致零部件产生较大的热应力,同时还引起热膨胀和热变形。

当应力达到一定水平时,会使高温部件遭受损伤,最终导致部件损坏。

1.汽缸的受热特点(1)启动时,蒸汽的热量以对流方式传给汽缸内壁,再以导热方式传向外壁,最后经保温层散向大气,汽缸内外壁存在温差,内壁温度高于外壁温度,停机过程则产生相反温差。

(2)影响内外壁温差的主要因素:①汽缸壁厚度δ,汽缸壁越厚,内外温差越大。

②材料的导热性能;③蒸汽对内壁的加热强弱。

加热急剧:温度分布为双曲线型,温差大部分集中在内壁一侧,热冲击时;加热稳定:温度分布为直线型,温差分布均匀,汽轮机稳定运行工况;缓慢加热:温度分布为抛物线型,内壁温差较大,实际启动过程中;2.转子的受热特点蒸汽的热量以对流方式传给转子外表面,再以导热方式传到中心孔,通过中心孔散给周围环境,在转子外表面和中心孔产生温差,温差取决于转子的结构、材料的特性及蒸汽对转子的加热程度。

Ⅱ汽轮机的热应力一、热应力热应力概念:当物体温度变化时,热变形受到其它物体约束或物体内部各部分之间的相互约束所产生的应力。

①温度变化时,物体内部各点温度均匀,变形不受约束,则物体产生热变形而没有热应力。

当变形受到约束时,则在内部产生热应力。

②物体各处温度不均匀时,即使没有外界约束条件,也将产生热应力;在温度高的一侧产生热压应力,在温度低的一侧产生热拉应力。

二、汽缸壁的热应力1.启动时,汽缸内壁为热压应力,外壁为热拉应力,且内外壁表面的热压和热拉应力均大于沿壁厚其他各处的热应力。

内壁;t E i ∆⋅-⋅-=μασ132 外壁:t E ∆⋅-⋅-=μασ1310 在停机过程中,内壁表面热拉应力,外壁表面热压应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热交变应力
《热交变应力》
一、热交变应力介绍
热交变应力是指在固体材料受力作用时,使材料经历温度变化,而引起的应力变化。

材料受力时会受到温度的影响,当温度变化时,材料的尺寸和形状也会有所改变,从而产生新的应力。

这种由温度变化引起的应力叫做热交变应力,它是材料结构拉伸抗力的一个重要组成部分。

热交变应力造成的损坏常见于铸件、焊件、焊接组件等结构件中,这些构件受力作用时,经历温度变化所产生的应力变化,因而会出现裂纹或变形等现象,严重影响其使用寿命和安全性。

因此,对热交变应力的研究,起着重要的工程意义。

二、热交变应力产生机理
当受力构件在高温下受拉力作用时,温度强度曲线的上升使拉伸应力减小;对受力构件在低温下受拉力作用时,温度强度曲线的下降使拉伸应力增大,这就是热交变应力的过程。

当受力构件在不同温度下受拉力作用时,构件的尺寸有所变化,因此,这些构件中就会产生新的应力,这就是热交变应力。

热交变应力是材料结构拉伸抗力的一个重要组成部分。

三、热交变应力的防治措施
1、采用改善材料结构的技术:这种方法可以提高材料结构的抗热交变应力性能,如改变焊缝形状、增加焊缝的热稳定性,采用特殊
材料,如高强度、高韧性、高抗热等特殊材料,可以显著提高构件的抗热交变应力能力。

2、平衡热交变应力:通过对结构构件进行热处理,改变其热膨胀特性,以达到平衡构件在不同温度作用下的热交变应力,从而减少构件受力时的热交变应力。

3、采用结构抗热交变应力措施:这种方法是将结构连接方式改变,使它可以容忍温度之间的变化,减少或消除构件在不同温度作用下的热交变应力,使构件能在更高或更低温度作用下的热交变应力。

相关文档
最新文档