电磁场实验
最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
电磁场与微波技术实验报告(全)

信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。
二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。
匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。
并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。
双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。
而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。
三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。
2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。
哈工大电磁场与电磁波实验报告

哈⼯⼤电磁场与电磁波实验报告电磁场与电磁波实验报告班级:学号:姓名:同组⼈:实验⼀电磁波的反射实验1.实验⽬的:任何波动现象(⽆论是机械波、光波、⽆线电波),在波前进的过程中如遇到障碍物,波就要发⽣反射。
本实验就是要研究微波在⾦属平板上发⽣反射时所遵守的波的反射定律。
2.实验原理:电磁波从某⼀⼊射⾓i射到两种不同介质的分界⾯上时,其反射波总是按照反射⾓等于⼊射⾓的规律反射回来。
如图(1-2)所⽰,微波由发射喇叭发出,以⼊射⾓i设到⾦属板MM',在反射⽅向的位置上,置⼀接收喇叭B,只有当B处在反射⾓i'约等于⼊射⾓i时,接收到的微波功率最⼤,这就证明了反射定律的正确性。
3.实验仪器:本实验仪器包括三厘⽶固态信号发⽣器,微波分度计,反射⾦属铝制平板,微安表头。
4.实验步骤:1)将发射喇叭的衰减器沿顺时针⽅向旋转,使它处于最⼤衰减位置;2)打开信号源的开关,⼯作状态置于“等幅”旋转衰减器看微安表是否有显⽰,若有显⽰,则有微波发射;3)将⾦属反射板置于分度计的⽔平台上,开始它的平⾯是与两喇叭的平⾯平⾏。
4)旋转分度计上的⼩平台,使⾦属反射板的法线⽅向与发射喇叭成任意⾓度i,然后将接收喇叭转到反射⾓等于⼊射⾓的位置,缓慢的调节衰减器,使微µ)。
安表显⽰有⾜够⼤的⽰数(50A5)熟悉⼊射⾓与反射⾓的读取⽅法,然后分别以⼊射⾓等于30、40、50、60、70度,测得相应的反射⾓的⼤⼩。
6)在反射板的另⼀侧,测出相应的反射⾓。
5.数据的记录预处理记下相应的反射⾓,并取平均值,平均值为最后的结果。
5.实验结论:?的平均值与⼊射⾓0?⼤致相等,⼊射⾓等于反射⾓,验证了波的反射定律的成⽴。
6.问题讨论:1.为什么要在反射板的左右两侧进⾏测量然后⽤其相应的反射⾓来求平均值?答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。
电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场;点电荷q 在无限大真空中产生的电场强度E 的数学表达式为204qE r r πε= r 是单位向量 1-1真空中点电荷产生的电位为04qr ϕπε= 1-2其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为1221014ni n i i i q E E E E r r πε==+++=∑ i r 是单位向量1-3 电位为121014ni n i i q r ϕϕϕϕπε==+++=∑ 1-4 本章模拟的就是基本的电位图形;4.实验内容及步骤1 点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图;程序1:负点电荷电场示意图clearx,y=meshgrid-10:1.2:10;E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;E=-q./m1.r;surfcx,y,E;负点电荷电势示意图clearx,y=meshgrid-10:1.2:10; E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;z=-q./m1surfcx,y,z;xlabel'x','fontsize',16ylabel'y','fontsize',16title'负点电荷电势示意图','fontsize',10程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;Z=qk1./R2-1./R1;ex,ey=gradient-Z;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminZ,maxmaxZ,40; contourX,Y,Z,cv,'k-';hold onquiverX,Y,ex,ey,0.7;clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;U=qk1./R2-1./R1;ex,ey=gradient-U;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminU,maxmaxU,40; surfcx,y,U;实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理电场的大小和方向均不随时间变化的场称为恒定电场,如直流导线,虽说电荷在导线内运动,但电场不随时间变化而变化,所以,直流导线形成的电场是恒定电场;对于恒定电场,我们可以假设其为静电场,假设有静止不动的分布在空间中的电量q产生了这一电场;通过一些边界条件等确定自己所需要的变量,然后用静电场的方法来求解问题;4.实验内容及步骤1高压直流电线表面的电场分布仿真题目:假设两条高压导线分别是正负电流,线间距2m,线直径0.04m,电流300A,两条线电压正负110kV,求表面电场分布;程序clearx,y=meshgrid -2:0.1:2; r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx -1.^2+y.^2+0.14; k=100/log1/0.02; E=k1./r1-1./r2; surfcx,y,E;xlabel'x','fontsize',16 ylabel'y','fontsize',16 title'E','fontsize',10 RR D=2m X Y P 图2-1高压直流电线示意图 R2 R1clearx,y=meshgrid-2:0.1:2;r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx-1.^2+y.^2+0.14; k=100/log1/0.02;m=log10r2./r1;U=km;surfcx,y,U;xlabel'x','fontsize',16 ylabel'y','fontsize',16title'U','fontsize',10实验三 恒定磁场的仿真1.实验目的建立恒定磁场中磁场空间分布的直观概念;2.实验仪器计算机一台3.基本原理磁场的大小和方向均不随时间变化的场,称为恒定磁场; 线电流i 产生的磁场为:024IdldB r μπ=说明了电流和磁场之间的关系,运动的电荷能够产生磁场;4.实验内容及步骤圆环电流周围引起的磁场分布仿真题目:一个半径为0.35的电流大小为1A 的圆环,求它的磁场分布;分析:求载流圆环周围的磁场分布,可以用毕奥—萨伐尔定律给出的数值积分公式进行计算:图3-1载流圆环示意图程序 clear x=-10:0.5:10; u0=4pi10^-7; R=0.35;I=1;B=u0IR.^2./2./R.^2+x.^2.^3/2; plotx,B;RrpxdB实验四电磁波的反射与折射1.实验目的1熟悉相关实验仪器的特性和使用方法2掌握电磁波在良好导体表面的反射规律2.实验仪器DH1211型3厘米信号源1台、可变衰减器、频率调节器、电流指示器、喇叭天线、金属导体板1块、支座一台;3.基本原理电磁波在传播过程中如遇到障碍物,必定要发生反射;当电磁波入射到良好导体近似认为理想导体平板上时将发生全反射;电磁波入射到良好导体近似认为理想导体平板时,分为垂直入射和以一定角度入射称为斜入射;如图4-1所示;入射线与分界面法线的夹角为入射角,反射线与分界面法线的夹角为反射角;垂直入射斜入射入射角0°、反射角0°入射角45°、反射角45°图4-1用一块金属板作为障碍物,测量当电波以某一入射角投射到此金属板上的反射角,验证电磁波的反射规律:1电磁波入射到良好导体近似认为理想导体平板上时将发生全反射; 2入射角等于反射角;4.实验内容及步骤1熟悉仪器的特性和使用方法 2连接仪器,调整系统3测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致;而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致;这时小平台上的00刻度就与金属板的法线方向一致;转动小平台,使固定臂指针指在某一角度处,这一角度的读数就是入射角,然后转动活动臂在表头上找到一个最大指示,此时活动臂上的指针所指的刻度就是反射角;支座 喇叭天线金属导体铝板频率调节器DH1121B 3厘米信号源可变衰减器电流指示器检波器活动臂。
北邮电磁场与电磁波实验 心得体会总结

电磁场与微波测量实验总结学院:班级:姓名:学号:一、实验建议八周的电磁场与微波实验让我收获了很多知识与经验,也培养了我实验动手的能力,但与此同时我也发现了实验的一些不足之处,下面是我对部分实验的看法和建议:1、课程安排不太合理微波工程是上学期学的,大家还有比较深刻的印象,对实验原理理解的比较快,实验进行得也比较顺利。
但电磁场是大二学的,已经基本都遗忘了,预习起来比较吃力,理解得也要慢一些。
2、希望学校能加强对实验器材的管理实验中,我们很多次发现许多器件不足,需要各个组之间相互借用,有时还需要等到其他组做完才能继续实验。
这不利于同学们完成实验,而且对于实验室的器材维护也会产生不利的影响。
建议实验室以后加强对于实验器材的管理与维护,同时也加强同学们对实验器材的重视和爱护,共同努力,创造一个更好的实验环境。
3、实验互相干扰太严重由于实验室较小,各组之间的干扰比较严重,几乎每次写实验误差分析的时候都要写上这一点。
其实可以通过合理安排小组进行实验的时间或者扩大实验场地。
二、提出新的实验用微波分光仪测量玻璃厚度1、实验目的深入理解电磁波的反射、折射和叠加2、实验仪器S426型分光仪的改进设备3、实验原理发射波在玻璃表面反射一次,透过玻璃后经反射板反射一次。
当两次反射博得路径相差波长的整数倍的时候,接受喇叭收到的信号最强。
设玻璃厚度为x,可以动板与玻璃距离为d,θ1和θ2分别为入射角和折射角,v1和v2分别为空气中速度和玻璃中速度。
其中θ2可由计算得出,λ、d、θ1均可以测量得到。
为减小实验误差可选取多个入射角进行测量。
玻璃的折射率可参考以下数据。
4、实验内容及步骤(1)将反射板紧贴玻璃,记下此时刻度d1;(2)移动反射板,观察接收信号,当信号出现一次最大值时记下此时刻度d2;(3)继续移动发射板,再次出现最大值时记下刻度d3;(4)更换入射角度,重复以上步骤;(5)将数据填入表格并进行计算。
5、数据记录λ=(d3-d2)*2 d=d2-d1带入公式(3),即可求出x三、实验总结电磁场与微波测量实验是通信工程、电子工程、自动控制、无线技术、微波工程、电磁兼容等专业的一门重要的基础实验课。
北京邮电大学电磁场与电磁波实验报告

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号指导老师:日期:2012年4月目录一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4、建筑物的穿透损耗的定义 (3)三、实验内容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (5)3、数据录入 (5)4、数据处理 (6)五、实验结果与分析 (7)1、磁场强度地理分布 (7)2、磁场强度统计分布 (13)3、建筑物的穿透损耗 (18)六、问题分析与解决 (18)1、测量误差分析 (18)2、场强分布的研究 (19)七、分工安排 (19)八、心得体会 (19)九、附录:数据处理过程 (21)一、实验目的1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法;2. 研究校园内各种不同环境下阴影衰落的分布规律;3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5. 研究建筑物穿透损耗与建筑材料的关系。
二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。
对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。
因此基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落, 接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。
电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。
电磁场电磁波实验报告

第二师学院学生实验报告一相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。
本实验重点介绍其中的一种半波天线。
半波天线又称半波振子,是对称天线的一种最简单的模式。
对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。
这种天线是最通用的天线型式之一,又称为偶极子天线。
而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。
半波振子因其一臂长度为λ/4 ,全长为半波长而得名。
其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。
sinθ=[60Im/R 。
]│f(θ)│式中,f(θ) 为方向函数。
对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中fmax 是f(θ) 的最大值。
由上式可画出半波振子的方向图如下:半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。
在E 面的方向图为8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大L ,辐射的最大方向将偏离θ=π/2 方向。
【实验容】第二师学院学生实验报告三第二师学院学生实验报告四律,就称电磁波为极化电磁波(简称极化波)。
如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。
电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。
天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在表面产生极化电流,极化电流因受阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
电磁感应实验

电磁感应实验电磁感应是指通过电磁场的变化引发电流产生的现象。
在科学研究和实际应用中,电磁感应实验被广泛应用于电力工程、电子技术、通信等领域。
本文将介绍电磁感应实验的原理、步骤和实验结果。
一、实验原理电磁感应实验基于法拉第电磁感应定律,即磁场的变化会诱发电场,进而引发电流。
根据这个原理,我们可以通过改变磁场的强度或方向来观察电流的产生。
二、实验材料和设备1. 电源:提供电流源,稳定电流的输出。
2. 导线:用于连接电源、电磁铁以及其他电路元件。
3. 电流表:用于测量电流的大小。
4. 电阻器:用于调节电流的大小。
5. 磁体:可以是电磁铁或永磁体,用于产生磁场。
三、实验步骤1. 将电磁铁连接到电源,并调节电流的大小。
2. 将导线连接到电磁铁的两端。
3. 在导线的两端插入电流表,测量电流的大小。
4. 改变电磁铁的电流,观察电流表的变化。
5. 在导线中插入电阻器,调节电流的大小。
6. 改变磁体的位置或者方向,观察电流表的变化。
7. 记录实验结果,并进行分析和总结。
四、实验结果通过电磁感应实验,我们可以得到以下几个结果:1. 当电磁铁通电时,导线中会产生电流。
当改变电磁铁的电流时,导线中的电流也会发生变化。
2. 当改变导线中电流的大小时,可以观察到电磁铁的磁场发生变化。
3. 改变磁体的位置或方向时,导线中的电流也会发生变化。
根据实验结果,我们可以得出结论:改变电磁场的强度或方向会引发电流的变化,这正是电磁感应现象的基本原理。
五、实验应用电磁感应实验在现实生活中有着广泛的应用。
以下是几个常见的示例:1. 发电机:通过旋转磁体在线圈附近产生变化的磁场,实现机械能转化为电能。
2. 变压器:利用电磁感应原理将电压从一个线圈转移到另一个线圈,实现电能的传输和变换。
3. 感应炉:通过交变磁场感应在金属导体中产生涡流,实现加热金属的目的。
六、实验注意事项1. 在实验过程中,应注意电流的大小,避免超过电路元件的承受范围。
2. 实验过程中要注意安全,防止电路短路、触电等意外情况的发生。