七年级数学下册 5.3 简单的轴对称图形 第2课时 线段的垂直平分线习题课件 (新版)北师大版

合集下载

七年级数学下册 简单的轴对称图形(第二课时)课件 华师大版

七年级数学下册 简单的轴对称图形(第二课时)课件 华师大版

D
的距离是( ) B A.18 B.12
C.15 D.不能确定 A
5题
B
三、如左图所示,在△ABC中,∠C=
90°,BD是角平分线,交AC于点D,
DE⊥AB,垂足为点E,AD=3DE。AD
和3DC是什么关系?为什么?
解:∵ ∠C= 90°,BD是角平分线, DE⊥AB
∴ DE=DC(角平分线上的点到角两边的距离相等)
关系:PC与PD是能够互相重合的.即PC=PD
角平分线上的点到角两边的距离相等.
选择题:
1:下列两图中,能表示直线l1上一点P到直线l2 的距离的是( )
l1 P
l1 P
A
l2
图1
B
l2
图2
2:下列两图中,能表示角的平分线上的一点P 到角的边上的距离的是( )
M
P A
A
N P
判断:
∵ 如图,AD平分∠BAC(已知)
2.在左边△ABC中,找一 点P,使点P到△ABC三 边的距离相等
3.如右图:已知△ABC中,∠C =90°,AB的垂直平分线交BC 于点D,如果∠CAD=20°,则 ∠B= 。
三、本课小结
本课主要学习的是角平分线的性质,还学习了 如何应用这个性质去解决简单的几何问题.
作业
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
试验:按以下方法试验,使同学认识角是轴 对称图形。
结在半论透明:的纸角上是画∠轴AO对B,称对折图,使形角的两
条边完全重合,然后用直尺画出折痕OM. 从上面试验可以看出,角是轴对称图形,对
称轴是它的角平分线所在的直线.
A
P O
B

北师版七年级数学下册练习课件:5.3 简单的轴对称图形

北师版七年级数学下册练习课件:5.3 简单的轴对称图形

◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶

【核心素养】北师大版七年级数学下册5.3 第2课时 线段垂直平分线的性质 教案(表格式)

【核心素养】北师大版七年级数学下册5.3 第2课时 线段垂直平分线的性质 教案(表格式)

5.3 简单的轴对称图形第2课时线段垂直平分线的性质教学内容第2课时线段垂直平分线的性质课时1核心素养目标1、在经历探索线段的轴对称的性质的过程,进一步体验轴对称的特征,发展空间观念2、探索垂直平分线的基本性质,掌握线段垂直平分线的尺规作图方法,进一步在实际应用中体会等腰三角形的有关性质.知识目标1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.教学重点理解线段垂直平分线的性质和判定.教学难点能运用线段垂直平分线的性质和判定解决实际问题.教学准备课件教学过程主要师生活动设计意图一、复习导入二、探究新知三、当堂练习,巩固所学一、温习旧知,导入新知什么样的图形叫做轴对称图形?师生活动:教师提问,学生积极回答:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.教师追问:线段是轴对称图形吗?二、小组合作,探究概念和性质知识点一:线段垂直平分线的性质在纸片上画一条线段AB,然后对折AB,使A,B两点重合,设折痕与AB的交点为O. 你发现了什么?师生活动:学生通过观察与测量得出AO = BO. 学生积极讨论,教师引导学生总结:归纳总结线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线(简称中垂线).议一议如图,点C是线段AB垂直平分线上的一点,AC和BC相等吗?师生活动:学生独立画图并思考,通过测量可得AC=BC.教师追问:改变点C的位置,结论还成立吗?小组交换数据并交流.设计意图:回顾轴对称图形的知识,使这几节课内容更加具有连贯性,再讨论线段是否为轴对称图形,引出了本节课的研究内容,起到铺垫作用.设计意图:在学生讨论线段的对称轴特点的基础之上,教科书给出了线段垂直平分线的概念对于此概念的理解,应建立在学生充分实践及思考的基础之上. 教学和评价时,教师可以让学生回顾这一操作过程,并说明自己在操作过程中获得的结论以及所得结论的理由.事实上,线段还有另外一条对称轴,即线段所在的直线,但不要求学生掌握.设计意图:鼓励学生进行讨论与交流,也可以利用多媒体演示,以加强对线段的中垂线性质的理解.学生可以利用折叠重合或全等三角形加以说明.设计意图:锻炼学生作图能力,尺规作图不要求学生写作法,但学生应能说学生发现结论不变,因此教师引导学生总结:线段垂直平分线上的点到这条线段两个端点的距离相等.典例精析例1 利用尺规,作线段AB的垂直平分线.已知:线段AB.求作:AB的垂直平分线.师生活动:学生独立思考,学生代表发言说明作图过程,教师通过PPT或者教具操作展示如下:作法:1.分别以点A和B为圆心,以大于12AB的长为半径作弧,两弧相交于点C和D;2. 作直线CD.直线CD就是线段AB的垂直平分线.对于学生不同但合理的方法,教师都应予以肯定.做一做利用尺规作如图所示的△ABC的重心.师生活动:教师提示:三角形的三条中线交于一点,这点称为三角形的重心.学生独立思考,学生代表上台展示,教师引导学生说明作图过程及依据,然后予以适当的评价,预测结果如图.典例精析例2 如图,DE是AC的垂直平分线,AB=12厘米,BC=10厘米,则△BCD的周长为() A.22 厘米B.16 厘米C.26 厘米D.25 厘米师生活动:学生独立思考,学生代表发言,教师引导学生阐述解题思路,如:解析:根据线段垂直平分线的性质得CD=AD,故△BCD的周长为DC+BD+BC=AD+BD+BC=AB+BC=12+10=22 (厘米).明其中的道理,即以操作和理解为主,提高学生语言表达能力.设计意图:回顾三角形的重心,使知识相互串联,然后利用作线段的垂直平分线的方法作图,提高学生作图能力.设计意图:通过练习加强学生对线段垂直平分线的性质的理解与应用.设计意图:让学生在问题的引导下,理解作图过程的合理性,提高作图能力.设计意图:考查学生对线段垂直平分线的性质的运用.设计意图:强化与线段垂直平分线的性质有关的证明和计算的技巧.设计意图:通过练习加强学生对线段垂直平分线的性质的理解与应用,强化说理、表达能力.设计意图:考查与线段垂直平分线的性质有关的证明和计算.设计意图:考查线段垂直平分线性质的实际运用,以及垂直平分线的作图能力.例3如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?师生活动:学生独立思考,学生代表发言,教师引导学生简单说明画图过程与理由,并给予适当的评价与完善.解析:连接AB,作AB的垂直平分线交直线l于O,交AB于E.因为EO是线段AB的垂直平分线,所以点O到A,B的距离相等.所以这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长.针对训练1. 如图,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且P A = 5,则线段PB的长为( )A. 6B. 5C. 4D. 3师生活动:学生独立思考,学生代表发言,教师给予适当的评价.2. 如图,AB是△ABC的一条边,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB = 8 cm,BD = 6 cm,那么EA=_____cm,DA =_____cm.师生活动:学生独立思考,学生代表发言,教师引导学生简单说明解答过程,并给予适当的评价.3. 如图,DE是△ABC的边AB的垂直平分线,交AB、BC于D、E,若AC = 4,BC = 5,求△AEC的周长.师生活动:学生独立思考,学生代表板书,教师与其余同学给予适当的评价与完善板书.解:因为DE是△ABC边AB的垂直平分线,所以EB = EA.所以△AEC的周长为AC + CE + EA = AC + CE + EB= AC + BC = 4 + 5 = 9.三、当堂练习,巩固所学1. 如图,在△ABC中,BC = 8 cm,边AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18 cm,则AC的长是cm.2. 如图,AD△BC,BD = DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB + BD与DE有什么关系?3.如图,A,B,C三点表示三个工厂,现要建一供水站,使它到这三个工厂的距离相等,请在图中标出供水站的位置P,并说明理由.板书设计线段垂直平分线的性质线段垂直平分线上的点到这条线段的两个端点的距离相等.课后小结教师与学生一起回顾本节课所学的主要内容,梳理知识框架.教学反思本课时探索线段的轴对称性. 教科书以操作性活动以及“你发现了什么”的问题引人线段的轴对称性,学生在回答“线段是轴对称图形”后,建议要求其说明线段的对称轴的特点,为下面给出垂直平分线的定义做铺垫.。

七年级下册数学 5.3.3 角平分线及其性质经典课件

七年级下册数学 5.3.3 角平分线及其性质经典课件

MA=MB NA与NB是否也相
A
O
NA=NB 等?
B
N
D
性质:线段的垂直平分线上的点到这条线段两个端
点的距离相等
性质:线段的垂直平分线上的点到这条线段两个端 点的距离相等
C M
几何表达: ∵CD垂直平分AB,
M在CD上
A
B
∴MA=MB
D
三、巩固练习
1、如图(1)在三角形ABC中,AD垂直平分边
B C , A B = 5 , 那 么 A C = _5_ _ _
于点E、D且EB=6△EBC的周长为22则BC长
为_1__0__
A
E
B
D
C
5、在上图中△ABC中BC的中垂线交AB于点E 交BC于点D,△AEC的周长是18cm则AB+AC=_1_8_
6、在图(2)中MN是DE与BC的中垂线,BD与 CE相等吗?为什么?
M D
B
N
解:∵MN是DE的垂直平分线(已知)
∴MD=ME(线段垂直平分线的性 质)
E
又∵MN是BC的垂直平分线(已知)
∴MB=MC (线段垂直平分线的性 质)
C
∴MB-MD=MC-ME(等式的性质)
即:BD=CE
四、课堂小结
1、线段是轴对称图形,它的对称轴是它的垂直平分线.
2、线段的垂直平分线的定义. 3、线段的垂直平分线的性质. 4、三角形三条边垂直平分线的交点到三个顶点的 距离相等.
1、什么样的图形叫做轴对称图形?
答:把一个图形沿着某条直线对折,如果 对折的两部分是完全重合的,我们就称这 样的图形为轴对称图形,这条直线叫做这 个图形的对称轴.
2、下列图形哪些是轴对称图形?

七年级数学下册 第五章 生活中的轴对称 5.3 简单的轴对称图形(2)教案 (新版)新人教版

七年级数学下册 第五章 生活中的轴对称 5.3 简单的轴对称图形(2)教案 (新版)新人教版
点C是OM上的一点
∴=.



如何用尺规作线段的垂直平分线?
图(5)
例1:利用尺规,作线段AB的 垂直平分线(图5)已知:线段AB.
求作:AB的垂直平分线.
作法:1.分别以和为圆心,以的长为半径作弧,
两弧相交于和;
2.作.
就是线段AB的垂直平分线.
课中作业
做一做利用尺规作如图(6)所示的△ABC的重心.
2、如图(1)所示, ,BD=5cm,则BC=.
3、已知等腰三角形一个角75度,
那么其余两个角的度数为.
教学过程
教学环节
课堂合作交流
二次备课
(修改人:)

节一
新知学习一:线段的对称轴是什么?
1、线段是轴对称图形吗?如果是,请在图(2)中画出它的对称轴.
你是如何找到线段的对称轴的?.
2、归纳结论:线段是图形, 是线段的一条对称轴.
课后作业 设计:
(修改人:)
板书设计:
教学反思:
5.3.2简单的轴对称图形
课 题
5.3.2简单的轴对称图形
课时安排
共(3)课时
课程标准
36页
学习目标
1、经历探索线段轴对称性过程,进一步理解轴对称的性质。
2、探索并掌握线段垂直平分线的有关性质。
3、掌握用尺规作线段的垂直平分线的方法。
教学重点
目标1,2
教学难点
目标2
教学方法
教学准备
课前作业
1、等腰三角形、和互相重合.
图(2)
课中作业



1、课本P123“议一议”(如图(3),沿OC对折后,AC与BC重合吗?)
(1由是:

北师大版七年级数学下册《生活中的轴对称——简单的轴对称图形》教学PPT课件(2篇)

北师大版七年级数学下册《生活中的轴对称——简单的轴对称图形》教学PPT课件(2篇)

B
C
D
归纳
A
现象(2)能用一句话归纳出来吗?
等腰三角形的两个底角相等
现象(3)、(4)、(5)能用一句话归纳出来吗?
B
等腰三角形的顶角平分线、底边上的高和底边上的中线互
相重合(简称“三线合一”)
C
D
证明
三线合一吗?
A
在ΔABC中∵ AD是角平分线,
∴∠BAD=∠CAD.
在ΔABD和ΔACD中,
∵AB=AC,∠BAD=∠CAD,AD=AD
1、每个内角都等于60o
2、三组“三线合一”
(每个角的平分线都与它对边上的中线及高互
相重合)
当堂检测
72°
1、等腰三角形的顶角是36度,则底角是_____________.
15
2、若等腰三角形的两边长分别是3m和6cm ,则其周长是____________.
3.下列命题中:(1)等腰三角形的两角相等;(2)等腰三角形的顶角平分
第五章 生活中的轴对称
简单的轴对称图形
学习目标
1 经历剪纸、折纸等 活动,进一步认识等腰三角形,了解等腰
三角形是 轴对称图形. (重点)
2 能够探索、归纳、验证等腰三角形的性质,并学会应用等腰
三角形的性质. (重、难点)
情景导入
观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?
合作探究
(
探究点一: 等腰三角形的性质
顶角
腰腰Biblioteka ) 底角底角(
底边
有两条边相等的三角形叫等腰三角形
生活中的等腰三角形
思考
1.等腰三角形是轴对称图形吗?找出对称轴.
2.顶角的平分线所在的直线是等腰三角形的对称轴吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档