2010年导数部分高考题汇总(教师版含标准答案)1

合集下载

高考题汇编2010-全国高考数学真题--第21题导数

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数2018年:设函数2()1xf x e x ax =---。

(1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围2019年:已知函数ln ()1a x bf x x x=++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x kf x x x>+-, 求k 的取值范围.2019年: 已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(, 求b a )1(+的最大值.2019: 一卷:已知函数()f x =2x ax b ++, ()g x =()xe cx d +, 若曲线()yf x =和曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+(Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围.2019一卷:设函数1()ln x xbe f x ae x x-=+, 曲线()y f x =在点(1, (1)f 处的切线为(1)2y e x =-+.(Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.2015一卷:已知函数31()4f x x ax =++, ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.2016一卷:已知函数2()(2)(1)xf x x e a x =-+-有两个零点. (I )求a 的取值范围; (II )设1x , 2x 是的两个零点, 证明:122x x +<.2017一卷:已知函数2()(2)xx f x aea e x =+--.(1)讨论()f x 的单调性; (2)若()f x 有两个零点, 求a 的取值范围.2019.二卷:已知函数()()ln xf x e x m =-+(Ι)设0x =是()f x 的极值点, 求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时, 证明()0f x >2019二卷:已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-, 当0x >时, ()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<, 估计ln2的近似值(精确到0.001)2015二卷:设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减, 在(0,)+∞单调递增;(Ⅱ)若对于任意1x , 2x [1,1]∈-, 都有12|()()|f x f x -1e -≤, 求m 的取值范围.2016二卷:(I)讨论函数2(x)e 2xx f x -=+的单调性, 并证明当0x >时, (2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时, 函数()2e =(0)x ax ag x x x--> 有最小值.设()g x 的最小值为()h a , 求函数()h a 的值域.2016三卷:设函数()cos 2(1)(cos 1)f x x x αα=+-+, 其中0α>, 记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ; (Ⅲ)证明|()|2f x A '≤.2017二卷:已知函数2()ln f x ax ax x x =--, 且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x , 且220()2e f x --<<.2017三卷:已知函数()1ln f x x a x =--. (1)若()0f x ≥, 求a 的值;(2)设m 为整数, 且对于任意正整数n , 2111(1)(1)(1)222nm ++⋅⋅⋅+<, 求m 的最小值.精编答案2018年:解:(1)0a =时, ()1xf x e x =--, '()1xf x e =-.当(,0)x ∈-∞时, '()0f x <;当(0,)x ∈+∞时, '()0f x >.故()f x 在(,0)-∞单调减少, 在(0,)+∞单调增加(II )'()12xf x e ax =-- 由(I )知1xe x ≥+, 当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥, 即12a ≤时, '()0 (0)f x x ≥≥, 而(0)0f =, 于是当0x ≥时, ()0f x ≥. 由1(0)x e x x >+≠可得1(0)x e x x ->-≠.从而当12a >时, '()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=--, 故当(0,ln 2)x a ∈时, '()0f x <, 而(0)0f =, 于是当(0,ln 2)x a ∈时, ()0f x <. 综合得a 的取值范围为1(,]2-∞.2019年:解析:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+ 由于直线230x y +-=的斜率为12-, 且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =, 1b =。

导数高考题含答案

导数高考题含答案

导数高考题1.已知函数fx=x3+ax+,gx=﹣lnxi当 a为何值时,x轴为曲线y=fx的切线;ii用min {m,n }表示m,n中的最小值,设函数hx=min { fx,gx}x>0,讨论hx零点的个数.解:if′x=3x2+a,设曲线y=fx与x轴相切于点Px0,0,则fx0=0,f′x0=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=fx的切线;ii当x∈1,+∞时,gx=﹣lnx<0,∴函数hx=min { fx,gx}≤gx<0,故hx在x∈1,+∞时无零点.当x=1时,若a≥﹣,则f1=a+≥0,∴hx=min { f1,g1}=g1=0,故x=1是函数hx的一个零点;若a<﹣,则f1=a+<0,∴hx=min { f1,g1}=f1<0,故x=1不是函数hx的零点;当x∈0,1时,gx=﹣lnx>0,因此只考虑fx在0,1内的零点个数即可.①当a≤﹣3或a≥0时,f′x=3x2+a在0,1内无零点,因此fx在区间0,1内单调,而f0=,f1=a+,∴当a≤﹣3时,函数fx在区间0,1内有一个零点,当a≥0时,函数fx在区间0,1内没有零点.②当﹣3<a<0时,函数fx在内单调递减,在内单调递增,故当x=时,fx取得最小值=.若>0,即,则fx在0,1内无零点.若=0,即a=﹣,则fx在0,1内有唯一零点.若<0,即,由f0=,f1=a+,∴当时,fx在0,1内有两个零点.当﹣3<a时,fx在0,1内有一个零点.综上可得:当或a<时,hx有一个零点;当a=或时,hx有两个零点;当时,函数hx有三个零点.2.设函数fx=e mx+x2﹣mx.1证明:fx在﹣∞,0单调递减,在0,+∞单调递增;2若对于任意x1,x2∈﹣1,1,都有|fx1﹣fx2|≤e﹣1,求m的取值范围.解:1证明:f′x=me mx﹣1+2x.若m≥0,则当x∈﹣∞,0时,e mx﹣1≤0,f′x<0;当x∈0,+∞时,e mx﹣1≥0,f′x>0.若m<0,则当x∈﹣∞,0时,e mx﹣1>0,f′x<0;当x∈0,+∞时,e mx﹣1<0,f′x>0.所以,fx在﹣∞,0时单调递减,在0,+∞单调递增.2由1知,对任意的m,fx在﹣1,0单调递减,在0,1单调递增,故fx在x=0处取得最小值.所以对于任意x1,x2∈﹣1,1,|fx1﹣fx2|≤e﹣1的充要条件是即设函数gt=e t﹣t﹣e+1,则g′t=e t﹣1.当t<0时,g′t<0;当t>0时,g′t>0.故gt在﹣∞,0单调递减,在0,+∞单调递增.又g1=0,g﹣1=e﹣1+2﹣e<0,故当t∈﹣1,1时,gt≤0.当m∈﹣1,1时,gm≤0,g﹣m≤0,即合式成立;当m>1时,由gt的单调性,gm>0,即e m﹣m>e﹣1.当m<﹣1时,g﹣m>0,即e﹣m+m>e﹣1.综上,m的取值范围是﹣1,13.函数fx=lnx+1﹣a>1.Ⅰ讨论fx的单调性;Ⅱ设a1=1,a n+1=lna n+1,证明:<a n≤.解:Ⅰ函数fx的定义域为﹣1,+∞,f′x=,①当1<a<2时,若x∈﹣1,a2﹣2a,则f′x>0,此时函数fx在﹣1,a2﹣2a上是增函数, 若x∈a2﹣2a,0,则f′x<0,此时函数fx在a2﹣2a,0上是减函数,若x∈0,+∞,则f′x>0,此时函数fx在0,+∞上是增函数.②当a=2时,f′x>0,此时函数fx在﹣1,+∞上是增函数,③当a>2时,若x∈﹣1,0,则f′x>0,此时函数fx在﹣1,0上是增函数,若x∈0,a2﹣2a,则f′x<0,此时函数fx在0,a2﹣2a上是减函数,若x∈a2﹣2a,+∞,则f′x>0,此时函数fx在a2﹣2a,+∞上是增函数.Ⅱ由Ⅰ知,当a=2时,此时函数fx在﹣1,+∞上是增函数,当x∈0,+∞时,fx>f0=0,即lnx+1>,x>0,又由Ⅰ知,当a=3时,fx在0,3上是减函数,当x∈0,3时,fx<f0=0,lnx+1<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,a n+1=lna n+1>ln,a n+1=lna n+1<ln,即当n=k+1时,成立,综上由①②可知,对任何n∈N结论都成立.4.已知函数fx=e x﹣e﹣x﹣2x.Ⅰ讨论fx的单调性;Ⅱ设gx=f2x﹣4bfx,当x>0时,gx>0,求b的最大值;Ⅲ已知<<,估计ln2的近似值精确到.解:Ⅰ由fx得f′x=e x+e﹣x﹣2,即f′x≥0,当且仅当e x=e﹣x即x=0时,f′x=0,∴函数fx在R 上为增函数.Ⅱgx=f2x﹣4bfx=e2x﹣e﹣2x﹣4be x﹣e﹣x+8b﹣4x,则g′x=2e2x+e﹣2x﹣2be x+e﹣x+4b﹣2=2e x+e﹣x2﹣2be x+e﹣x+4b﹣4=2e x+e﹣x ﹣2e x+e﹣x+2﹣2b.①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′x≥0,当且仅当x=0时取等号,从而gx在R上为增函数,而g0=0,∴x>0时,gx>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′x <0,又由g0=0知,当时,gx<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.Ⅲ∵<<,根据Ⅱ中gx=e2x﹣e﹣2x﹣4be x﹣e﹣x+8b﹣4x,为了凑配ln2,并利用的近似值,故将ln即代入gx的解析式中,得.当b=2时,由gx>0,得,从而;令,得>2,当时,由gx<0,得,得.所以ln2的近似值为.5.设函数fx=ae x lnx+,曲线y=fx在点1,f1处得切线方程为y=ex﹣1+2.Ⅰ求a、b;Ⅱ证明:fx>1.解:Ⅰ函数fx的定义域为0,+∞,f′x=+,由题意可得f1=2,f′1=e,故a=1,b=2;Ⅱ由Ⅰ知,fx=e x lnx+,∵fx>1,∴e x lnx+>1,∴lnx>﹣,∴fx>1等价于xlnx>xe﹣x﹣,设函数gx=xlnx,则g′x=1+lnx,∴当x∈0,时,g′x<0;当x∈,+∞时,g′x>0.故gx在0,上单调递减,在,+∞上单调递增,从而gx在0,+∞上的最小值为g=﹣.设函数hx=xe﹣x﹣,则h′x=e﹣x1﹣x.∴当x∈0,1时,h′x>0;当x∈1,+∞时,h′x<0,故hx在0,1上单调递增,在1,+∞上单调递减,从而hx在0,+∞上的最大值为h1=﹣.综上,当x>0时,gx>hx,即fx>1.6.已知函数fx=x2+ax+b,gx=e x cx+d若曲线y=fx和曲线y=gx都过点P0,2,且在点P处有相同的切线y=4x+2.Ⅰ求a,b,c,d的值;Ⅱ若x≥﹣2时,fx≤kgx,求k的取值范围.解:Ⅰ由题意知f0=2,g0=2,f′0=4,g′0=4,而f′x=2x+a,g′x=e x cx+d+c,故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;Ⅱ由I知,fx=x2+4x+2,gx=2e x x+1,设Fx=kgx﹣fx=2ke x x+1﹣x2﹣4x﹣2,则F′x=2ke x x+2﹣2x﹣4=2x+2ke x﹣1,由题设得F0≥0,即k≥1,令F′x=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈﹣2,x1时,F′x<0,当x∈x1,+∞时,F′x>0,即Fx在﹣2,x1上减,在x1,+∞上是增,故Fx在﹣2,+∞上的最小值为Fx1,而Fx1=﹣x1x1+2≥0,x≥﹣2时Fx≥0,即fx≤kgx恒成立.②若k=e2,则F′x=2e2x+2e x﹣e﹣2,从而当x∈﹣2,+∞时,F′x>0,即Fx在﹣2,+∞上是增,而F﹣2=0,故当x≥﹣2时,Fx≥0,即fx≤kgx恒成立.③若k>e2时,F′x>2e2x+2e x﹣e﹣2,而F﹣2=﹣2ke﹣2+2<0,所以当x>﹣2时,fx≤kgx不恒成立,综上,k的取值范围是1,e2.7.已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.Ⅰ解:∵,x=0是fx的极值点,∴,解得m=1.所以函数fx=e x﹣lnx+1,其定义域为﹣1,+∞.∵.设gx=e x x+1﹣1,则g′x=e x x+1+e x>0,所以gx在﹣1,+∞上为增函数,又∵g0=0,所以当x>0时,gx>0,即f′x>0;当﹣1<x<0时,gx<0,f′x<0.所以fx在﹣1,0上为减函数;在0,+∞上为增函数;Ⅱ证明:当m≤2,x∈﹣m,+∞时,lnx+m≤lnx+2,故只需证明当m=2时fx>0.当m=2时,函数在﹣2,+∞上为增函数,且f′﹣1<0,f′0>0.故f′x=0在﹣2,+∞上有唯一实数根x0,且x0∈﹣1,0.当x∈﹣2,x0时,f′x<0,当x∈x0,+∞时,f′x>0,从而当x=x0时,fx取得最小值.由f′x0=0,得,lnx0+2=﹣x0.故fx≥=>0.综上,当m≤2时,fx>0.8.已知函数.I若x≥0时,fx≤0,求λ的最小值;II设数列{a n}的通项a n=1+.解:I由已知,f0=0,f′x==,∴f′0=0欲使x≥0时,fx≤0恒成立,则fx在0,+∞上必为减函数,即在0,+∞上f′x<0恒成立,当λ≤0时,f′x >0在0,+∞上恒成立,为增函数,故不合题意,若0<λ<时,由f′x>0解得x<,则当0<x<,f′x>0,所以当0<x<时,fx>0,此时不合题意,若λ≥,则当x>0时,f′x<0恒成立,此时fx在0,+∞上必为减函数,所以当x>0时,fx<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为II令λ=,由I知,当x>0时,fx<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2,所以; 9.设函数fx=ax+cosx,x∈0,π.Ⅰ讨论fx的单调性;Ⅱ设fx≤1+sinx,求a的取值范围.解:Ⅰ求导函数,可得f'x=a﹣sinx,x∈0,π,sinx∈0,1;当a≤0时,f'x≤0恒成立,fx单调递减;当a≥1 时,f'x≥0恒成立,fx单调递增;当0<a<1时,由f'x=0得x1=arcsina,x2=π﹣arcsina当x∈0,x1时,sinx<a,f'x>0,fx单调递增当x∈x1,x2时,sinx>a,f'x<0,fx单调递减当x∈x2,π时,sinx<a,f'x>0,fx单调递增;Ⅱ由fx≤1+sinx得fπ≤1,aπ﹣1≤1,∴a≤.令gx=sinx﹣0≤x,则g′x=cosx﹣当x时,g′x>0,当时,g′x<0∵,∴gx≥0,即0≤x,当a≤时,有①当0≤x时,,cosx≤1,所以fx≤1+sinx;②当时,=1+≤1+sinx综上,a≤.10.已知函数fx=+,曲线y=fx在点1,f1处的切线方程为x+2y﹣3=0.Ⅰ求a、b的值;Ⅱ如果当x>0,且x≠1时,fx>+,求k的取值范围.解:由题意f1=1,即切点坐标是1,1,Ⅰ即解得a=1,b=1.由于直线x+2y﹣3=0的斜率为,且过点1,1,故,Ⅱ由Ⅰ知,所以.考虑函数x>0,则.i设k≤0,由知,当x≠1时,h′x<0.而h1=0,故当x∈0,1时,h′x<0,可得;当x∈1,+∞时,h′x<0,可得hx>0从而当x>0,且x≠1时,fx﹣+>0,即fx>+.ii设0<k<1.由于当x∈1,时,k﹣1x2+1+2x>0,故h′x>0,而h1=0,故当x∈1,时,hx>0,可得hx<0,与题设矛盾.iii设k≥1.此时h′x>0,而h1=0,故当x∈1,+∞时,hx>0,可得hx<0,与题设矛盾.综合得,k的取值范围为﹣∞,0.11.设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.解:1当x>﹣1时,fx≥当且仅当e x≥1+x,令gx=e x﹣x﹣1,则g'x=e x﹣1当x≥0时g'x≥0,gx在0,+∞是增函数当x≤0时g'x≤0,gx在﹣∞,0是减函数于是gx在x=0处达到最小值,因而当x∈R时,gx≥g0时,即e x≥1+x,所以当x>﹣1时,fx≥2由题意x≥0,此时fx≥0当a<0时,若x>﹣,则<0,fx≤不成立;当a≥0时,令hx=axfx+fx﹣x,则fx≤当且仅当hx≤0因为fx=1﹣e﹣x,所以h'x=afx+axf'x+f'x﹣1=afx﹣axfx+ax﹣fxi当0≤a≤时,由1知x≤x+1fxh'x≤afx﹣axfx+ax+1fx﹣fx=2a﹣1fx≤0,hx在0,+∞是减函数,hx≤h0=0,即fx≤ii当a>时,由i知x≥fxh'x=afx﹣axfx+ax﹣fx≥afx﹣axfx+afx﹣fx=2a﹣1﹣axfx当0<x<时,h'x>0,所以h'x>0,所以hx>h0=0,即fx>综上,a的取值范围是0,12.已知函数fx=x+1lnx﹣x+1.Ⅰ若xf′x≤x2+ax+1,求a的取值范围;Ⅱ证明:x﹣1fx≥0.解:Ⅰ,xf′x=xlnx+1,题设xf′x≤x2+ax+1等价于lnx﹣x≤a.当0<x<1,g′x>0;当x≥1时,g′x≤0,x=1是gx的最大值点,gx≤g1=﹣1 综令gx=lnx﹣x,则,上,a的取值范围是﹣1,+∞.Ⅱ由Ⅰ知,gx≤g1=﹣1即lnx﹣x+1≤0.当0<x<1时,fx=x+1lnx﹣x+1=xlnx+lnx﹣x+1<0;当x≥1时,fx=lnx+xlnx﹣x+1==≥0所以x﹣1fx≥0.13.设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.令gx=2x2+2x+a,其对称轴为.解:I,由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设hx=x2﹣2x2+2xln1+x,﹣<x<0则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.14.已知函数fx=x3+3x2+ax+be﹣x.1如a=b=﹣3,求fx的单调区间;2若fx在﹣∞,α,2,β单调增加,在α,2,β,+∞单调减少,证明:β﹣α>6.解:Ⅰ当a=b=﹣3时,fx=x3+3x2﹣3x﹣3e﹣x,故f′x=﹣x3+3x2﹣3x﹣3e﹣x+3x2+6x﹣3e﹣x=﹣e﹣x x3﹣9x=﹣xx﹣3x+3e﹣x当x<﹣3或0<x<3时,f′x>0;当﹣3<x<0或x>3时,f′x<0.从而fx在﹣∞,﹣3,0,3单调增加,在﹣3,0,3,+∞单调减少;Ⅱf′x=﹣x3+3x2+ax+be﹣x+3x2+6x+ae﹣x=﹣e﹣x x3+a﹣6x+b﹣a.由条件得:f′2=0,即23+2a﹣6+b﹣a=0,故b=4﹣a,从而f′x=﹣e﹣x x3+a﹣6x+4﹣2a.因为f′α=f′β=0,所以x3+a﹣6x+4﹣2a=x﹣2x﹣αx﹣β=x﹣2x2﹣α+βx+αβ.将右边展开,与左边比较系数得,α+β=﹣2,αβ=a﹣2.故.,又β﹣2α﹣2<0,即αβ﹣2α+β+4<0.由此可得a<﹣6.于是β﹣α>6.。

导数高考题(含答案)

导数高考题(含答案)

导数高考题1.已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.解:(i)f′(x)=3x2+a,设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f (x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.2.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]3.函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤.解:(Ⅰ)函数f(x)的概念域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)>0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,a n+1=ln(a n+1)>ln(),a n+1=ln(a n+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.4.已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估量ln2的近似值(精准到0.001).解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x知足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,按照(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.5.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.解:(Ⅰ)函数f(x)的概念域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.6.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1),设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].7.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其概念域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.8.已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为( II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2,所以。

2010年高考数学试题(新课程卷)分类解析(二)——函数与导数

2010年高考数学试题(新课程卷)分类解析(二)——函数与导数

的全过 程 ,是 历年 高考 考查 力度 最 大的主 线之 一 ,笔 者针 对 的 函数) 的导 数” 了解定 积分与 微积分 基本定理 ” 、“ ,体会导
21 0 0年 高考教 学的 “ 函数与导数”的试题进行分析 ,对本 专题 数方 法在 研究 函数 性质 中的一般 性 和有 效性 .因此 ,理 科要 被 考查的知识点的分类统计 分析 ,对常规典 型题 和新颖题给 出 求高 于文 科 .文 、理 科 对 这部 分考 查 涉及 所有 题 型——选择 解法示例与点评 ,希望能给备战 高考的读 者一些有益的启示. 习建议 题 、填 空题 、解答 题都 有题 目涉 及 函数 问题 ,除 了单独 考查 关键词 :高考数 学 ;试题解析 ;函数 导数 ;示例评析 ;复 函数 的 题 目,还有 多 个题 目涉 及 函数 与其 他 内容综 合 考查 . 在解答 题 中 ,函数 题往 往是 作为 压轴 题 出现 的 ,由于新 课程 高考凭 借 “ 数 ”这一 重要 而强 有力 的工 具 ,对 函数 的考查 导
被联合考查的其他 逻辑 数列 不等式 不等式 专题的主要知识点 用语 解法 证 明 曲线的切线方程 图形 的平移与对称 合情推理 三角 函数与 向量 几何 概型与随机模拟试验
考查 频 数


1 0
1 5





收 稿 日期 :2 1— 7 0 000— l
其 中重点是不等式 ,尤 其是不等式恒成 立问题 时的参 数取值范
本题 的解题 方法思路是 :运用导数公 式求导 ,解方程求 导
作者简介 :蔡 芙蓉 (9 2 ) 16 一 ,女 ,海南海口人 ,中学高级教 师,海 口市教 育研 究培训院高 中数学教研 员.主要 从事 中学数 学课 堂教 学研 究和 高

导数高考题(含答案)

导数高考题(含答案)

导数高考题1.已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当 a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.解:(i)f′(x)=3x2+a,设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f (x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.2.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]3.函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤.解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)>0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,a n+1=ln(a n+1)>ln(),a n+1=ln(a n+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N?结论都成立.4.已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.5.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.6.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1),设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].7.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.8.已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为( II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2,所以。

2010-2019高考数学理科真题分类汇编专题三 导数及其应用第八讲导数的综合应用含答案

2010-2019高考数学理科真题分类汇编专题三  导数及其应用第八讲导数的综合应用含答案

专题三 导数及其应用 第八讲 导数的综合应用2019年1(2019天津理8)已知a ∈R ,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A.[]0,1B.[]0,2C.[]0,eD.[]1,e 2.(2019全国Ⅲ理20)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性; (2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.3.(2019浙江22)已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.4.(2019全国Ⅰ理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.5.(2019全国Ⅱ理20)已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.6.(2019江苏19)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 7.(2019北京理19)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[]2,4x ∈-时,求证:()6x f x x -≤≤.(III)设()()()F x f x x a a =-+∈R ,记()F x 在区间[]2,4-上的最大值为()M a ,当()M a 最小时,求a 的值.8.(2019天津理20)设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,证明π()()02f x g x x ⎛⎫+- ⎪⎝⎭…; (Ⅲ)设n x 为函数()()1u x f x =-在区间ππ2,2π42m m ⎛⎫++ ⎪⎝⎭内的零点,其中n ∈N ,证明200π22sin c e os n n n x x x ππ-+-<-.2010-2018年一、选择题1.(2017新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则21()(1)x f x x ax e -=+-的极小值为A .1-B .32e -- C .35e - D .12.(2017浙江)函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是xxA .B .xxC .D . 3.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .4.(2015四川)如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,那么mn 的最大值为A .16B .18C .25D .8125.(2015新课标Ⅱ)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()xf x f x -0<,则使得f (x )>0成立的x 的取值范围是A .()(),10,1-∞-B .()()1,01,-+∞C .()(),11,0-∞-- D .()()0,11,+∞6.(2015新课标Ⅰ)设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是 A .3[,1)2e -B .33[,)24e -C .33[,)24eD .3[,1)2e7.(2014新课标Ⅱ)若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞8.(2014陕西)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为(千米)x -6y =-A .321122y x x x =-- B .3211322y x x x =+- C .314y x x =- D .3211242y x x x =+-9.(2014新课标Ⅱ)设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃+∞B .()(),44,-∞-⋃+∞C .()(),22,-∞-⋃+∞D .()(),11,-∞-⋃+∞10.(2014陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为A .3131255y x x =- B .3241255y x x =- C .33125y x x =- D .3311255y x x =-+11.(2014辽宁)当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.(2014湖南)若1201x x <<<,则A .2121ln ln xxe e x x ->- B .2121ln ln xxe e x x -<- C .1221xxx e x e > D .1221xxx e x e < 13.(2014江西)在同一直角坐标系中,函数22a y ax x =-+与2322y a x ax x a =-++ ()a R ∈的图像不可能...的是B14.(2013新课标Ⅱ)已知函数()32f x x ax bx c=+++,下列结论中错误的是A.∃()00,0x R f x∈=B.函数()y f x=的图像是中心对称图形C.若x是()f x的极小值点,则()f x在区间()0,x-∞单调递减D.若x是()f x的极值点,则()0'0f x=15.(2013四川)设函数()f x=a R e∈,为自然对数的底数),若曲线xy sin=上存在点)(yx,使得))((yyff=,则a的取值范围是A.]e,1[B.]11e[1,--C.[1e1+,] D.[1e1e1--+,] 16.(2013福建)设函数()f x的定义域为R,00(0)x x≠是()f x的极大值点,以下结论一定正确的是A.,()()x R f x f x∀∈≤B.x-是()f x-的极小值点C.x-是()f x-的极小值点D.x-是()f x--的极小值点17.(2012辽宁)函数xxy ln212-=的单调递减区间为A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞)18.(2012陕西)设函数()xf x xe=,则A.1x=为()f x的极大值点B.1x=为()f x的极小值点C.1x=-为()f x的极大值点D.1x=-为()f x的极小值点19.(2011福建)若0a>,0b>,且函数32()422f x x ax bx=--+在1x=处有极值,则ab的最大值等于A .2B .3C .6D .920.(2011浙江)设函数()()2,,f x ax bx c a b c R =++∈,若1x =-为函数()xf x e 的一个极值点,则下列图象不可能为()y f x =的图象是A B C D21.(2011湖南)设直线x t = 与函数2()f x x =,()ln g x x = 的图像分别交于点,M N ,则当MN 达到最小时t 的值为A .1B .12CD 二、填空题22.(2015安徽)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==; ⑤1,2a b ==.23.(2015四川)已知函数xx f 2)(=,ax x x g +=2)((其中R a ∈).对于不相等的实数21,x x ,设2121)()(x x x f x f m --=,2121)()(x x x g x g n --=,现有如下命题:①对于任意不相等的实数21,x x ,都有0>m ;②对于任意的a 及任意不相等的实数21,x x ,都有0>n ; ③对于任意的a ,存在不相等的实数21,x x ,使得n m =; ④对于任意的a ,存在不相等的实数21,x x ,使得n m -=. 其中的真命题有 (写出所有真命题的序号).24.(2015江苏)已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程 1|)()(|=+x g x f 实根的个数为 .25.(2011广东)函数32()31f x x x =-+在x =______处取得极小值. 三、解答题26.(2018全国卷Ⅰ)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x .27.(2018全国卷Ⅱ)已知函数2()e =-xf x ax .(1)若1=a ,证明:当0≥x 时,()1≥f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .28.(2018全国卷Ⅲ)已知函数2()(2)ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .29.(2018北京)设函数2()[(41)43]xf x ax a x a e =-+++.(1)若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极小值,求a 的取值范围.30.(2018天津)已知函数()xf x a =,()log a g x x =,其中1a >.(1)求函数()()ln h x f x x a =-的单调区间;(2)若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (3)证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.31.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.32.(2018浙江)已知函数()ln f x x =.(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-; (2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.33.(2017新课标Ⅰ)已知函数2()(2)xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.34.(2017新课标Ⅱ)已知函数2()ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.35.(2017新课标Ⅲ)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++⋅⋅⋅+<,求m 的最小值.36.(2017浙江)已知函数()(x f x x e-=1()2x ≥.(Ⅰ)求()f x 的导函数;(Ⅱ)求()f x 在区间1[,)2+∞上的取值范围.37.(2017江苏)已知函数32()1f x x ax bx =+++(0,)a b >∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围. 38.(2017天津)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间; (Ⅱ)设00[1,)(,2]m x x ∈,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈ 满足041||p x q Aq -≥. 39.(2017山东)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点(,())f ππ处的切线方程;(Ⅱ)令()()()h x g x af x =-()a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.40.(2016年山东)已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 41.(2016年四川) 设函数2()ln f x ax a x =--,其中a R ∈.(I )讨论()f x 的单调性;(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,)+∞内恒成立(e=2.718…为自然对数的底数).42.(2016年天津)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(I)求)(x f 的单调区间;(II)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41. 43.(2016年全国Ⅰ) 已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x +<. 44.(2016年全国Ⅱ)(I)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.45.(2016年全国Ⅲ) 设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.46.(2016年浙江高考)已知3a ≥,函数()F x =2min{2|1|,242}x x ax a --+-,其中min{,}p q =,>p p qq p q ⎧⎨⎩,≤ .(I )求使得等式2()242F x x ax a =-+-成立的x 的取值范围; (II )(i )求()F x 的最小值()m a ;(ii )求()F x 在区间[0,6]上的最大值()M a .47.(2016江苏) 已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠.(1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; (2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 48.(2015新课标Ⅱ)设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围. 49.(2015山东)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围.50.(2015湖南)已知0a >,函数()sin ([0,))ax f x e x x =∈+∞.记n x 为()f x 的从小到大的第n *()n N ∈个极值点.证明:(1)数列{()}n f x 是等比数列;(2)若a ≥,则对一切*n N ∈,|()|n n x f x <恒成立.51.(2014新课标Ⅱ)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.52.(2014山东)设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围. 53.(2014新课标Ⅰ)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()y f x =在点 (1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01af x a <-,求a 的取值范围. 54.(2014山东)设函数1()ln 1x f x a x x -=++ ,其中a 为常数.(Ⅰ)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性. 55.(2014广东) 已知函数321()1()3f x x x ax a R =+++∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =. 56.(2014江苏)已知函数x x x f -+=e e )(,其中e 是自然对数的底数.(Ⅰ)证明:)(x f 是R 上的偶函数;(Ⅱ)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(Ⅲ)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.57.(2013新课标Ⅰ)已知函数2()()4xf x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+. (Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. 58.(2013新课标Ⅱ)已知函数2()xf x x e -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 59.(2013福建)已知函数()1x af x x e=-+(a R ∈,e 为自然对数的底数). (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (Ⅱ)求函数()f x 的极值;(Ⅲ)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.60.(2013天津)已知函数2()ln f x x x =.(Ⅰ)求函数()f x 的单调区间;(Ⅱ) 证明:对任意的0t >,存在唯一的s ,使()t f s =. (Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为()s g t =,证明:当2t e >时,有2ln ()15ln 2g t t <<. 61.(2013江苏)设函数()ln f x x ax =-,()xg x e ax =-,其中a 为实数.(Ⅰ)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围;(Ⅱ)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 62.(2012新课标)设函数()2xf x e ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 63.(2012安徽)设函数1()(0)x x f x ae b a ae=++>.(Ⅰ)求()f x 在[0,)+∞内的最小值;(Ⅱ)设曲线()y f x =在点(2,(2))f 的切线方程为32y x =,求,a b 的值. 64.(2012山东)已知函数ln ()xx kf x e+=(k 为常数, 71828.2=e 是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()()g x x x f x '=+,其中()f x '是()f x 的导数.证明:对任意的0x >,2()1g x e -<+.65.(2011新课标)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 66.(2011浙江)设函数ax x x a x f +-=22ln )(,0>a . (Ⅰ)求)(x f 的单调区间;(Ⅱ)求所有实数a ,使21()e f x e -≤≤对],1[e x ∈恒成立.注:e 为自然对数的底数.67.(2011福建)已知a ,b 为常数,且0a ≠,函数()ln f x ax b ax x =-++,()2f e =(e=2.71828…是自然对数的底数). (Ⅰ)求实数b 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)当1a =时,是否同时存在实数m 和M (m M <),使得对每一个t ∈[,]m M ,直线y t =与曲线()y f x =(x ∈[1e,e ])都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.68.(2010新课标)设函数2()(1)xf x x e ax =--.(Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求a 的取值范围.专题三 导数及其应用 第八讲 导数的综合应用答案部分 2019年1.解析 当1x =时,()112210f a a =-+=>恒成立; 当1x <时,()22202f x x ax a a=-+⇔厖令()()()()22221112111111x x x x x g x x x x x-----+==-=-=-=---- ()112201x x ⎛⎫--+--= ⎪ ⎪-⎝⎭?, 所以()max 20a g x =…,即0a >.当1x >时,()ln 0f x x a x a=-⇔厔令()ln x h x x =,则()()21ln ln x x x h x x -⋅'==当e x >时,()0h x '>,()h x 递增,当1e x <<时,()0h x '<,()h x 递减, 所以当e x =时,()h x 取得最小值()e e h =. 所以()min e a h x =….综上,a 的取值范围是[]0,e .2.解析(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为–1,最大值为1.3.解析:(Ⅰ)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(Ⅱ)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>,故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭…. 由(i)得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>…. 由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a …. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦4.解析:(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><, 可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α. 则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而()f x 在0,2⎛⎤⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π ⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.5.解析:(1)f (x )的定义域为(0,1)(1,)+∞.因为211()0(1)f x x x '=+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--, 所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0. 又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-, 故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上. 由题设知0()0f x =,即0001ln 1x x x +=-, 故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.6.解析(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 7.解析:(I )由321()4f x x x x =-+,得23'()214f x x x =-+.令'()1f x =,即232114x x -+=,解得0x =或83x =.又88(0)0,(),327f f ==所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(II )令()()g x f x x =-,[]2,4x ∈-.由321()4g x x x =-得23'()24g x x x =-. 令'()0g x =得0x =或83x =.'(),()g x g x 随x 的变化情况如表所示所以()g x 的最小值为-6,最大值为0,所以6()0g x -≤≤,即6()x f x x -≤≤. (III )由(II )知,当3a ≤-时,()()()003M a F g a a ≥=-=->; 当3a >-时,()()()2263M a F g a a ≥-=--=+>;当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.8.解析 (Ⅰ)由已知,有'()e (cos sin )x f x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()'0f x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()'0f x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而'()2e sin x g x x =-.当ππ,42x ⎛⎫∈⎪⎝⎭时,()'0g x <, 故'()'()'()()(1)'()022h x f x g x x g x g x x ππ⎛⎫⎛⎫=+-+-=-<⎪ ⎪⎝⎭⎝⎭. 因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭…. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭….(Ⅲ)依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭, 且()()()22e cos ecos 2e n n yx n n n n n n f y y x n -π-π==-π=∈N .由()()20e 1n n f y f y -π==…及(Ⅰ),得0n y y …. 由(Ⅱ)知,当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭….又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-⎪⎝⎭…, 故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-=<--剟. 所以,20022sin c s e o n n n x x x -πππ+-<-.2010-2018年1.A 【解析】∵21()[(2)1]x f x x a x a e-'=+++-,∵(2)0f '-=,∴1a =-,所以21()(1)x f x x x e-=--,21()(2)x f x x x e-'=+-,令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为11(1)(111)1f e-=--=-,选A .2.D 【解析】由导函数的图象可知,()y f x =的单调性是减→增→减→增,排除 A 、C ;由导函数的图象可知,()y f x =的极值点一负两正,所以D 符合,选D .3.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .4.B 【解析】(解法一)2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.2262m nm n +⋅≤≤18mn ∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.2292m n m n +⋅≤≤812mn ∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B .(解法二)由已知得()(2)8f x m x n '=-+-,对任意的1[,2]2x ∈,()0f x '≤,所以1()02()0f f x ⎧'⎪⎨⎪'⎩≤≤,即0,021822m n m n m n ⎧⎪+⎨⎪+⎩≥≥≤≤.画出该不等式组表示的平面区域如图中阴影部分所示,令mn t =,则当0n =时,0t =,当0n ≠时,tm n=,由线性规划的相关知识,只有当直线212m n +=与曲线t m n =相切时,t 取得最大值,由212192tn t n n ⎧-=-⎪⎪⎨⎪-=⎪⎩,解得6n =,18t =,所以max ()18mn =,选B .5.A 【解析】令()()f x h x x=,因为()f x 为奇函数,所以()h x 为偶函数,由于 2()()()xf x f x h x x '-'=,当0x >时,'()()xf x f x - 0<,所以()h x 在(0,)+∞上单调递减,根据对称性()h x 在(,0)-∞上单调递增,又(1)0f -=,(1)0f =,数形结合可知,使得()0f x >成立的x 的取值范围是()(),10,1-∞-.6.D 【解析】由题意可知存在唯一的整数0x ,使得000(21)-<-xe x ax a ,设()(21)=-x g x e x ,()=-h x ax a ,由()(21)x g x e x '=+,可知()g x 在1(,)2-∞-上单调递减,在1(,)2-+∞上单调递增,作出()g x 与()h x 的大致图象如图所示,-a故(0)(0)(1)(1)>⎧⎨--⎩h g h g ≤,即132<⎧⎪⎨--⎪⎩a a e ≤,所以312a e <≤.7.D 【解析】∵()ln f x kx x =-,∴1()f x k x'=-,∵()f x 在(1,)+∞单调递增, 所以当1x > 时,1()0f x k x '=-≥恒成立,即1k x≥在(1,)+∞上恒成立,∵1x >,∴101x<<,所以k ≥1,故选D .8.A 【解析】法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y x =-,在(2,0)处的切线方程为36y x =-,以此对选项进行检验.A 选项,321122y x x x =--,显然过两个定点,又2312y x x '=--, 则02|1,|3x x y y ==''=-=,故条件都满足,由选择题的特点知应选A . 法二 设该三次函数为32()f x ax bx cx d =+++,则2()32f x ax bx c '=++由题设有(0)0(2)0(0)1(2)3f f f f =⎧⎪=⎪⎨'=-⎪⎪'=⎩,解得11,,1,022a b c d ==-=-=.故该函数的解析式为321122y x x x =--,选A .9.C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则22x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>,其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立,故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >.10.A 【解析】设所求函数解析式为()y f x =,由题意知(5)2,52f f =--=(),且(5)0f '±=,代入验证易得3131255y x x =-符合题意,故选A . 11.C 【解析】当(0,1]x ∈时,得321113()4()a x x x --+≥,令1t x=,则[1,)t ∈+∞,3234a t t t --+≥,令()g t =3234t t t --+,[1,)t ∈+∞,则()2981(1)(91)g x t t t t '=--+=-+-,显然在[1,)+∞上,()0g t '<,()g t 单调递减,所以max ()(1)6g t g ==-,因此6a -≥;同理,当[2,0)x ∈-时,得2a -≤.由以上两种情况得62a --≤≤. 显然当0x =时也成立,故实数a 的取值范围为[6,2]--.12.C 【解析】设()ln xf x e x =-,则1()xf x e x'=-,故()f x 在(0,1)上有一个极值点,即()f x 在(0,1)上不是单调函数,无法判断1()f x 与2()f x 的大小,故A 、B 错;构造函数()x e g x x =,2(1)()x e x g x x-'=,故()g x 在(0,1)上单调递减,所以()()12g x g x >,选C .13.【解析】B 当0a =,可得图象D ;记2()2a f x ax x =-+,232()2g x a x ax =-+ ()x a a R +∈,取12a =,211()(1)24f x x =--,令()0g x '=,得2,23x =,易知()g x 的极小值为1(2)2g =,又1(2)4f =,所以(2)(2)g f >,所以图象A 有可能;同理取2a =,可得图象C 有可能;利用排除法可知选B .14.C 【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为(0,0),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0(,)x -∞单调递减是错误的,D 正确.选C .15.A 【解析】法一:由题意可得,00sin y x =[1,1]∈-,而由()f x =0[0,1]y ∈,当0a =时,()f x∴0[0,1]y ∈时,0()[1f x ∈.∴0(())1f f y >.∴ 不存在0[0,1]y ∈使00))((y y f f =成立,故B ,D 错;当1a e =+时,()f x当0[0,1]y ∈时,只有01y =时()f x 才有意义,而(1)0f =, ∴ ((1))(0)f f f =,显然无意义,故C 错.故选A .法二:显然,函数()f x 是增函数,()0f x ≥,从而以题意知0[0,1]y ∈.于是,只能有00()f y y =.不然的话,若00()f y y >,得000(())()f f y f y y >>, 与条件矛盾;若00()f y y <,得000(())()f f y f y y <<,与条件矛盾. 于是,问题转化为()f t t =在[0,1]上有解.由t =2tt e t a =+-,分离变量,得2()ta g t e t t ==-+,[0,1]t ∈因为()210tg t e t '=-+>,[0,1]t ∈,所以,函数()g t 在[0,1]上是增函数,于是有1(0)()(1)g g t g e ==≤≤, 即[1,]a e ∈,应选A .16.D 【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点;B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点;C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系;D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对称,再关于x 轴的对称图像.故D 正确. 17.B 【解析】∵21ln 2y x x =-,∴1y x x'=-,由0y '…,解得11x -剟,又0x >,∴01x <…故选B .18.D 【解析】()xf x xe =,()(1)xf x e x '=+,0>x e 恒成立,令()0f x '=,则1-=x当1-<x 时,()0f x '<,函数单调减,当1->x 时,()0f x '>,函数单调增, 则1x =-为()f x 的极小值点,故选D .19.D 【解析】2()1222f x x ax b '=--,由(1)0f '=,即12220a b --=,得6a b +=.由0a >,0b >,所以2()92a b ab +=≤,当且仅当3a b ==时取等号.选D .20.D 【解析】若1x =-为函数()xf x e 的一个极值点,则易知a c =,∵选项A ,B 的函数为2()(1)f x a x =+,∴[()][()()](1)(3)xxxf x e f x f x e a x x e '=+=++,∴1x =-为函数()xf x e 的一个极值点满足条件;选项C 中,对称轴02bx a=->, 且开口向下,∵0,0a b <>,∴(1)20f a b -=-<,也满足条件; 选项D 中,对称轴02bx a=-<,且开口向上,∴0,2a b a >>, ∴(1)20f a b -=-<,与题图矛盾,故选D .21.D 【解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1'()2h x x x=-,令'()0h x =解得x =,因x ∈时,'()0h x <,当,)2x ∈+∞时,'()0h x >,所以当2x =时,||MN 达到最小.即t =22.①③④⑤ 【解析】 令32(),()3f x x ax b f x x a '=++=+,当0a ≥时,()0f x '≥,则()f x 在R 上单调递增函数,此时30x ax b ++=仅有一个实根,所以(4)(5)对;当3a =-时,由2()330f x x '=-<得11x -<<,所以1x = 是()f x 的极小值点.由(1)0f >,得31310b -⋅+>,即2b >,(3)对.1x =- 是()f x 的极大值点, 由(1)0f -<,得3(1)3(1)0b --⋅-+<,即2b <-,(1)对.23.①④【解析】(1)设12x >x ,函数2x单调递增,所有122>2xx,120x x ->,则m =1212()()f x f x x x --=121222x x x x -->0,所以正确;(2)设1x >2x ,则120x x ->,则1212()()g x g x n x x -=-22121212()x x a x x x x -+-=- 12121212()()x x x x a x x a x x -++==++-,可令1x =1,2x =2,4a =-,则10n =-<,所以错误;(3)因为m n =,由(2)得:2121)()(x x x f x f --12x x a =++,分母乘到右边,右边即为12()()g x g x -,所以原等式即为12()()f x f x -=12()()g x g x -, 即为12()()f x g x -=12()()f x g x -,令()()()h x f x g x =-,则原题意转化为对于任意的a ,函数()()()h x f x g x =-存在不相等的实数1x ,2x 使得函数值相等,2()2x h x x ax =--,则()2ln 22x h x x a '=--,则()2(ln 2)2xh x ''=-,令0()0h x ''=,且012x <<,可得0()h x '为极小值. 若10000a =-,则0()0h x '>,即0()0h x '>,()h x 单调递增,不满足题意, 所以错误.(4)由(3) 得12()()f x f x -=12()()g x g x -,则1122()()()()f x g x g x f x +=+,设()()()h x f x g x =+,有1x ,2x 使其函数值相等,则()h x 不恒为单调.2()2x h x x ax =++,()2ln 22x h x x a '=++,()2()2ln 220x h x ''=+>恒成立,()h x '单调递增且()0h '-∞<,()0h '+∞>.所以()h x 先减后增,满足题意,所以正确.24.4【解析】当01x <≤时,()ln f x x =-,()0g x =,此时方程|()()|1f x g x +=即为ln 1x =或ln 1x =-,故x e =或1x e =,此时1x e=符合题意,方程有一个实根. 当12x <<时,()ln f x x =,22()422g x x x =--=-,方程|()()|1f x g x += 即为2ln 21x x +-=或2ln 21x x +-=-,即2ln 10x x +-=或2ln 30x x +-=, 令2ln 1y x x =+-,则120y x x¢=-<,函数2ln 1y x x =+-在(1,2)x Î上单调递减,且1x =时0y =,所以当12x <<时,方程2ln 10x x +-=无解;令2ln 3y x x =+-,则120y x x¢=-<,函数2ln 3y x x =+-在(1,2)x Î上单调递减,且1x =时20y =>,2x =时ln 210y =-<,所以当12x <<时,方程2ln 30x x +-=有一个实根.当2x ≥时,()ln f x x =,2()6g x x =-,方程|()()|1f x g x +=即为2ln 61x x +-=或2ln 61x x +-=-,即2ln 70x x +-=或2ln 50x x +-=,令2y ln 7x x =+-,则120y x x¢=+>,函数2y ln 7x x =+-在[2,)x ??上单调递增,且2x =时 ln 230y =-<,3x =时ln320y =+>,所以当2x ≥时方程2ln 70x x +-=有1个实根;同理2ln 50x x +-=在[2,)x ??有1个实根. 故方程1|)()(|=+x g x f 实根的个数为4个.25.2【解析】由题意2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =.因0x <或2x >时,()0f x '>,02x <<时,()0f x '<. ∴2x =时()f x 取得极小值.26.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分


(1)f(x)存在唯一的极值点;
(2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.
49.(2019·江苏,19,16 分,难度)设函数 f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为 f(x)的导函数.
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f'(x)的零点均在集合{-3,1,3}中,求 f(x)的极小值;
3
38.(2015·全国 1·文 T14)已知函数 f(x)=ax +x+1 的图象在点(1,f(1))处的切线过点(2,7),则 a= .
2
39.(2015·全国 2·文 T16)已知曲线 y=x+ln x 在点(1,1)处的切线与曲线 y=ax +(a+2)x+1 相切,则 a= .
x
1
40.(2015·陕西·理 T15)设曲线 y=e 在点(0,1)处的切线与曲线 y=x (x>0)上点 P 处的切线垂直,则 P 的坐
T13) 已 知 函 数
y=f(x) 的 图 象 是 折 线 段
ABC, 其 中
A(0,0),B
1 2
,5
,C(1,0). 函 数
y=xf(x)(0≤x≤1)的图象与 x 轴围成的图形的面积为________________.
44.(2012·全国·文 T13)曲线 y=x(3ln x+1)在点(1,1)处的切线方程为 .
34.(2017·天津,文 10)已知 a∈R,设函数 f(x)=ax-ln x 的图象在点(1,f(1))处的切线为 l,则 l 在 y 轴上的
截距为 .

2010年高考数学必做100题(必修1)(含详细答案解析)

2010年高考数学必做100题(必修1)一、解答题(共16小题,满分192分)1.(12分)试选择适当的方法表示下列集合:(1)函数y=x2﹣x+2的函数值的集合;(2)y=x﹣3与y=﹣3x+5的图象的交点集合.2.(12分)已知集合A={x|3≤x<7},B={x|5<x<10},求C R(A∪B)、C R(A ∩B)、(C R A)∩B、A∪(C R B).3.(12分)设全集U={x∈N*|x<9},A={1,2,3},B={3,4,5,6}.(1)求A∪B,A∩B,C U(A∪B),C U(A∩B);(2)求C U A,C U B,(C U A)∪(C U B),(C U A)∩(C U B);4.(12分)设集合A={x|(x﹣4)(x﹣a)=0,a∈R},B={x|(x﹣1)(x﹣4)=0}.(1)求A∪B,A∩B;(2)若A⊆B,求实数a的值;(3)若a=5,则A∪B的真子集共有个,集合P满足条件(A∩B)⊈P⊈(A∪B),写出所有可能的集合P.5.(12分)已知函数.(1)求f(x)的定义域与值域(用区间表示)(2)求证f(x)在上递减.6.(12分)已知函数,求f(1)、f(﹣3)、f(a+1)的值.7.(12分)已知函数f(x)=﹣x2+2x.(1)证明f(x)在[1,+∞)上是减函数;(2)当x∈[2,5]时,求f(x)的最大值和最小值.8.(12分)已知函数f(x)=log a(x+1),g(x)=log a(1﹣x)其中(a>0且a ≠1).(1)求函数f(x)+g(x)的定义域;(2)判断f(x)+g(x)的奇偶性,并说明理由;(3)求使f(x)﹣g(x)>0成立的x的集合.9.(12分)已知函数(b≠0,a>0).(1)判断f(x)的奇偶性;(2)若f(1)=4,求a,b的值.10.(12分)对于函数.(1)探索函数f(x)的单调性;(2)是否存在实数a使得f(x)为奇函数.11.(12分)(1)已知函数f(x)图象是连续的,有如下表格,判断函数在哪几个区间上有零点.(2)已知二次方程(m﹣2)x2+3mx+1=0的两个根分别属于(﹣1,0)和(0,2),求m的取值范围.12.(12分)某商场经销一批进货单价为40元的商品,销售单价与日均销售量的关系如下表:为了获取最大利润,售价定为多少时较为合理?13.(12分)家用冰箱使用的氟化物的释放破坏了大气上层臭氧层.臭氧含量Q 呈指数函数型变化,满足关系式,其中Q0是臭氧的初始量.(1)随时间的增加,臭氧的含量是增加还是减少?(2)多少年以后将会有一半的臭氧消失?14.(12分)某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,y与月份x的关系,模拟函数可以选用二次函数或函数y=a•b x+c(a、b、c为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.15.(12分)如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t).试求函数f(t)的解析式,并画出函数y=f(t)的图象.16.(12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?2010年高考数学必做100题(必修1)参考答案与试题解析一、解答题(共16小题,满分192分)1.(12分)试选择适当的方法表示下列集合:(1)函数y=x2﹣x+2的函数值的集合;(2)y=x﹣3与y=﹣3x+5的图象的交点集合.【分析】本题考查的是集合的表示问题.在解答时:(1)利用配方的方法对函数进行处理,然后放缩法即可获得函数值的范围,进而用描述法即可写出集合;(2)首先通过将两个方程联立,即可解得两直线的交点坐标,然后用列举法即可写出所要的集合,注意元素是点.【解答】解:(1)由题意可知:∴,故所求集合为.(2)由题意:联立,解得,故所求集合为{(2,﹣1)}.【点评】本题考查的是集合的表示问题.在解答的过程当中充分体现了函数配方的思想以及联立方程解方程组的知识,同时描述法、列举法表示集合在本题中也得到了充分的体现.值得同学们体会和反思.2.(12分)已知集合A={x|3≤x<7},B={x|5<x<10},求C R(A∪B)、C R(A ∩B)、(C R A)∩B、A∪(C R B).【分析】由题意知C R(A∪B)={x|x<3或x≥10},C R(A∩B)={x|x≤5或x≥7},(C R A)∩B={x|7≤x<10},A∪(C R B)={x|x<7或x≥10}.【解答】解:C R(A∪B)={x|x<3或x≥10},C R(A∩B)={x|x≤5或x≥7},(C R A)∩B={x|7≤x<10},A∪(C R B)={x|x<7或x≥10}.【点评】本题考查集合的基本运算,难度不大,解题时要多一份细心.3.(12分)设全集U={x∈N*|x<9},A={1,2,3},B={3,4,5,6}.(1)求A∪B,A∩B,C U(A∪B),C U(A∩B);(2)求C U A,C U B,(C U A)∪(C U B),(C U A)∩(C U B);【分析】由全集U={x∈N*|x<9}可知U={1,2,3,4,5,6,7,8,9},利用交集、并集、补集的定义分别进行求解.【解答】解:(1)由全集U={x∈N*|x<9,}可知U={1,2,3,4,5,6,7,8,9},根据并集的定义可得A∪B={1,2,3,4,5,6},根据交集的定义可得A∩B={3},根据补集的定义可得C U(A∪B)={7,8},C U(A∩B)={1,2,4,5,6,7,8}.(2)根据补集的定义可得C U A={4,5,6,7,8},C U B={1,2,7,8},根据并集的定义可得(C U A)∪(C U B)={1,2,4,5,6,7,8},根据交集的定义可得(C U A)∩(C U B)={7,8}.【点评】本题考查了集合的交、并、补集的混合运算,属于计算型基础题.4.(12分)设集合A={x|(x﹣4)(x﹣a)=0,a∈R},B={x|(x﹣1)(x﹣4)=0}.(1)求A∪B,A∩B;(2)若A⊆B,求实数a的值;(3)若a=5,则A∪B的真子集共有7个,集合P满足条件(A∩B)⊈P⊈(A ∪B),写出所有可能的集合P.【分析】(1)已知集合A={x|(x﹣4)(x﹣a)=0,a∈R},B={x|(x﹣1)(x﹣4)=0},根据一元二次不等式的解法,分别求出集合A,B,然后再根据交集合并集的定义求出A∪B,A∩B;(2)因为A⊆B,说明A是B的子集,根据子集的定义进行求解.(3)把a=5,代入集合A,然后求出集合A∪B,从而算出其子集,并写出所有可能的集合P.【解答】解:(1)①当a=4时,A={4},B={1,4},故A∪B={1,4},A∩B={4};(2分)②当a=1时,A={1,4},B={1,4},故A∪B={1,4},A∩B={1,4};(4分)③当a≠4且a≠1时,A={a,4},B={1,4},故A∪B={1,a,4},A∩B={4}.(6分)(2)由(1)知,若A⊆B,则a=1或4.(8分)(3)若a=5,则A={4,5},B={1,4},故A∪B={1,4,5},此时A∪B的真子集有7个.(10分)又∵A∩B={4},∴满足条件(A∩B)⊈P⊈(A∪B)的所有集合P有{1,4}、{4,5}.(12分)【点评】此题主要考查集合的定义及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算是高考中的常考内容,要认真掌握,并确保得分.5.(12分)已知函数.(1)求f(x)的定义域与值域(用区间表示)(2)求证f(x)在上递减.【分析】求定义域时要满足分母不能是0,即4x+1≠0求函数f(x)的值域用分离常数法,想办法把分子上的x消掉,即,=证明一个函数递减时可用定义法来证.【解答】解:(1)要使函数有意义,则4x+1≠0,解得.(2分)所以原函数的定义域是(﹣∞,﹣)∪(﹣,+∞)(3分),(5分)所以值域为(﹣∞,﹣)∪(﹣,+∞).(6分)(2)在区间上任取x1,x2,且x1<x2,则(8分)∵x1<x2,∴x2﹣x1>0(9分)又,∴4x1+1>0,4x2+1>0,(10分)∴f(x1)﹣f(x2)>0∴f(x1)>f(x2),(11分)∴函数f(x)在上递减.(12分)【点评】函数的定义域、值域和单调性是考查的重点内容,尤其是证明函数单调性的定义法要掌握.6.(12分)已知函数,求f(1)、f(﹣3)、f(a+1)的值.【分析】根据分段函数的表达式,判断x的范围,代入相应的解析式即可求解f (1),f(﹣3)要求f(a+1),需要讨论a+1≥0,a+1<0 两种情况讨论,分别代入可求【解答】解:f(1)=5,(3分)f(﹣3)=21,(6分).(12分)【点评】本题考查分段函数的求值,含有参数的函数值的求解,需要分类讨论.7.(12分)已知函数f(x)=﹣x2+2x.(1)证明f(x)在[1,+∞)上是减函数;(2)当x∈[2,5]时,求f(x)的最大值和最小值.【分析】(1)由定义法证明即可,作差,变形,判断符号,得出结论.(2)由(1)的结论知函数在[2,5]上是增函数,最值在两端点处取到.【解答】解:(1)证明:在区间[1,+∞)上任取x1,x2,且x1<x2,则有(1分)f(x1)﹣f(x2)=(﹣x12+2x1)﹣(﹣x22+2x2)=(x2﹣x1)•(x1+x2﹣2),(3分)∵x1,x2∈[1,+∞),x1<x2,(4分)∴x2﹣x1>0,x1+x2﹣2>0,即f(x1)﹣f(x2)>0(5分)∴f(x1)>f(x2),所以f(x)在[1,+∞)上是减函数.(6分)(2)由(1)知f(x)在区间[2,5]上单调递减,所以f(x)max=f(2)=0,f(x)min=f(5)=﹣15(12分)【点评】考查定义法证明函数的单调性及利用函数的单调性求函数的最大值与最小值.8.(12分)已知函数f(x)=log a(x+1),g(x)=log a(1﹣x)其中(a>0且a ≠1).(1)求函数f(x)+g(x)的定义域;(2)判断f(x)+g(x)的奇偶性,并说明理由;(3)求使f(x)﹣g(x)>0成立的x的集合.【分析】(1)要求函数f(x)+g(x)的定义域,我们可根据让函数解析式有意义的原则,构造不等式组,解不等式组即可得到函数f(x)+g(x)的定义域;(2)要判断f(x)+g(x)的奇偶性,我们根据奇偶性的定义,先判断其定义域是否关于原点对称,然后再判断f(﹣x)+g(﹣x)与f(x)+g(x)的关系,结合奇偶性的定义进行判断;(3)若f(x)﹣g(x)>0,则我们可以得到一个对数不等式,然后分类讨论底数取值,即可得到不等式的解.【解答】解:(1)f(x)+g(x)=log a(x+1)+log a(1﹣x).若要上式有意义,则,即﹣1<x<1.所以所求定义域为{x|﹣1<x<1}(2)设F(x)=f(x)+g(x),则F(﹣x)=f(﹣x)+g(﹣x)=log a(﹣x+1)+log a(1+x)=F(x).所以f(x)+g(x)是偶函数.(3)f(x)﹣g(x)>0,即log a(x+1)﹣log a(1﹣x)>0,log a(x+1)>log a(1﹣x).当0<a<1时,上述不等式等价于解得﹣1<x<0.当a>1时,原不等式等价于,解得0<x<1.综上所述,当0<a<1时,原不等式的解集为{x|﹣1<x<0};当a>1时,原不等式的解集为{x|0<x<1}.【点评】求函数的定义域时要注意:(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f 下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.9.(12分)已知函数(b≠0,a>0).(1)判断f(x)的奇偶性;(2)若f(1)=4,求a,b的值.【分析】(1)直接根据函数的解析式求得f(﹣x)与f(x)的关系,进而根据函数奇偶性的定义判断函数的奇偶性.(2)先根据f(1)求得a和b的关系式,进而根据log3(4a﹣b)=1求得a和b 的另一个关系式,联立方程,求得a和b.【解答】解:(1)f(x)定义域为R,,故f(x)是奇函数.(2)由,则a﹣2b+1=0.又log3(4a﹣b)=1,即4a﹣b=3.由,解得a=1,b=1.【点评】本题主要考查了函数奇偶性的判断.解题的关键是看f(﹣x)与f(x)的关系.10.(12分)对于函数.(1)探索函数f(x)的单调性;(2)是否存在实数a使得f(x)为奇函数.【分析】(1)设x1<x2,化简计算f(x1)﹣f(x2)的解析式到因式乘积的形式,判断符号,得出结论.(2))假设存在实数a使f(x)为奇函数,∴f(﹣x)=﹣f(x),由此等式解出a的值,若a无解,说明不存在实数a使f(x)为奇函数,若a有解,说明存在实数a使f(x)为奇函数.【解答】解:(1)∵f(x)的定义域为R,设x1<x2,则f(x1)﹣f(x2)=a﹣﹣(a﹣)=2×,(3分)∵x1<x2,∴,(5分)∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.(6分)(2)假设存在实数a使f(x)为奇函数,∴f(﹣x)=﹣f(x)(7分)即,(9分)解得:a=1,故存在实数a使f(x)为奇函数.(12分)【点评】本题考查函数的奇偶性、单调性的判断和证明,属于基础题.11.(12分)(1)已知函数f(x)图象是连续的,有如下表格,判断函数在哪几个区间上有零点.(2)已知二次方程(m﹣2)x2+3mx+1=0的两个根分别属于(﹣1,0)和(0,2),求m的取值范围.【分析】(1)要判断函数零点的个数,我们可以根据图象中的数据,分析f(a)•f(b)<0的区间有多少个,然后根据零点存在判定定理即可给出答案.(2)如果二次方程(m﹣2)x2+3mx+1=0的两个根分别属于(﹣1,0)和(0,2),则对应的二次函数在区间(﹣1,0)和(0,2)各有一个零点,根据零点存在定理,f(﹣1)•f(0)<0且f(0)•f(2)<0,解不等式组,即可求出满足条件m的取值范围.【解答】解:(1)由f(﹣2)•f(﹣1.5)<0,f(﹣0.5)•f(0)<0,f(0)•f (0.5)<0,得到函数在(﹣2,﹣1.5)、(﹣0.5,0)、(0,0.5)内有零点.(2)设f(x)=(m﹣2)x2+3mx+1,则f(x)=0的两个根分别属于(﹣1,0)和(1,2).所以,即,∴.【点评】连续函数f(x)在区间(a,b)上,如果f(a)•f(b)<0,则函数f (x)在区间(a,b)必然存在零点.如果方程在某区间上有且只有一个根,可根据函数的零点存在定理进行解答,但要注意该定理只适用于开区间的情况,如果已知条件是闭区间或是半开半闭区间,我们要分类讨论.12.(12分)某商场经销一批进货单价为40元的商品,销售单价与日均销售量的关系如下表:为了获取最大利润,售价定为多少时较为合理?【分析】根据题意设出销售单价定为x元,根据所给的表格看出销售单价和日均销售量之间的关系,列出日均销售利润,注意题目中自变量的取值范围,根据二次函数在定区间中的最值问题,得到结果.【解答】解:由题可知,销售单价增加1元,日均销售量就减少2个.设销售单价定为x元,则每个利润为(x﹣40)元,日均销量为[48﹣2(x﹣50)]个.由于x﹣40>0,且48﹣2(x﹣50)>0,得40<x<74.则日均销售利润为y=(x﹣40)[48﹣2(x﹣50)]=﹣2x2+228x﹣5920,40<x<74.∴当,y有最大值.∴为了获取最大利润,售价定为57元时较为合理.【点评】本题与课本上函数的应用一章的例题相似,它体现的是解函数应用题时应该注意点问题,特别是自变量的取值问题.13.(12分)家用冰箱使用的氟化物的释放破坏了大气上层臭氧层.臭氧含量Q 呈指数函数型变化,满足关系式,其中Q0是臭氧的初始量.(1)随时间的增加,臭氧的含量是增加还是减少?(2)多少年以后将会有一半的臭氧消失?【分析】(1)本题中的函数关系是一个指数型函数模型,由于其指数为负数,初值为正数,由指数型函数的特征知其是一个减函数.(2)知函数值变成了原来的一半求自变量,将函数值代入得到关于自变量的方程,解指数方程求年数,本方程在求解时因为未知数在指数上,故应采取两边取对数的方法将指数方程转化为一次方程求x的值.【解答】解:(1)∵Q0>0,,e>1,∴为减函数.(3分)∴随时间的增加,臭氧的含量是减少.(6分)(2)设x年以后将会有一半的臭氧消失,则,即,(8分)两边取自然对数得,,(10分)解得x=400ln2≈278.(11分)∴278年以后将会有一半的臭氧消失.(12分)【点评】本题考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程,解此类方程时一般是用两边取对数的方法把指数方程转化为一元一次方程或者是一元二次方程求值.14.(12分)某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,y与月份x的关系,模拟函数可以选用二次函数或函数y=a•b x+c(a、b、c为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.【分析】先设二次函数为y=px2+qx+r由已知得出关于a,b,c的方程组,从而求得其解析式,得出x=4时的函数值;又对函数y=a•b x+c由已知得出a,b,c的方程,得出其函数式,最后求得x=4时的函数值,最后根据四月份的实际产量决定选择哪一个函数式较好.【解答】解:设二次函数为y=px2+qx+r由已知得解之得所以y=﹣0.05x2+0.35x+0.7,当x=4时,y1=﹣0.05×42+0.35×4+0.7=1.3(4分)又对函数y=a•b x+c由已知得解之得,∴当x=4时,(8分)根据四月份的实际产量为1.37万元,而|y2﹣1.37|=0.02<0.07=|y1﹣1.37|所以函数作模拟函数较好(12分)【点评】考查学生会根据实际问题选择函数类型,会用不同的自变量取值求函数的解析式及比较出优劣.考查了待定系数法等数学方法.15.(12分)如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t).试求函数f(t)的解析式,并画出函数y=f(t)的图象.【分析】在求f(t)的解析式时,关键是要根据图象,对t的取值进行恰当的分类,然后分类讨论,给出分段函数的解析式后,再根据解析式画出函数的图象.【解答】解:(1)当0<t≤1时,如图,设直线x=t与△OAB分别交于C、D两点,则|OC|=t,又,∴,∴(2)当1<t≤2时,如图,设直线x=t与△OAB分别交于M、N两点,则|AN|=2﹣t,又,∴∴(3)当t>2时,综上所述【点评】分段函数的对应关系是借助于几个不同的表达式来表示的,处理分段函数的问题时,首先要确定自变量的数值属于哪一个区间段,从而选相应的关系式.对于分段函数,注意处理好各段的端点.16.(12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?【分析】(1)由函数图象我们不难得到这是一个分段函数,第一段是正比例函数的一段,第二段是指数型函数的一段,由于两段函数均过M(1,4),故我们可将M点代入函数的解析式,求出参数值后,即可得到函数的解析式.(2)由(1)的结论我们将函数值0.25代入函数解析式,构造不等式,可以求出每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间.【解答】解:(1)由题意,当0≤t≤1时,函数图象是一个线段,由于过原点与点(1,4),故其解析式为y=4t,0≤t≤1;当t≥1时,函数的解析式为,此时M(1,4)在曲线上,将此点的坐标代入函数解析式得,解得a=3故函数的解析式为,t≥1.所以.(2)由题意,令f(t)≥0.25,即,解得,∴.∴服药一次治疗疾病有效的时间为个小时.【点评】已知函数图象求函数的解析式,是一种常见的题型,关键是要知道函数的类型,利用待定系数法设出函数的解析式,然后将函数图象上的点的坐标代入求出参数的值,即可得到要求函数的解析式.。

2010届高三数学高考二轮复习导数及其应用苏教版

导数及其应用一、【考点分析】2010年某某省高考说明中,《导数及其应用》属于必做题部分,其中导数的概念是A 级要求,导数的几何意义,导数的运算,利用导数研究函数的单调性与极值,以及导数在实际问题中的应用是B 级要求.导数与函数、数列、三角、不等式、解析几何等知识有着密切的联系,导数作为工具在研究函数的性质及在实际生活中有着广泛的应用, 导数是高中数学中与高等数学联系最密切的知识之一,所以备受高考命题老师的重视. 二、【典例解析】 【例题1】设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是. 【解析】本小题考查导数的几何意义、切线的求法.'1y x =,令112x = 得2x =, 故切点(2,ln 2),代入直线方程b x y +=21,得 ln 21b =-.【答案】ln21-【例题2】函数x x y 142+=单调递增区间是 .【解析】令3'222181180,(21)(421)0,2x y x x x x x x x -=-=>-++>>.【答案】1(,)2+∞【例题3】设'()f x 是函数()f x 的导函数,'(y f =右图所示,则()f x 的图象最有可能的是 . (填图象序号)①②③④【解析】 利用导函数的图像的零点,可以函数()f x 在(,0)-∞及(2,)+∞上单调递增, 而在(0,2)上单调递减.从而只有图像③符合要求. 【答案】③【例题4】函数322(),f x x ax bx a =+++在1=x 时有极值10,则b a ,的 值分别为________ .【解析】'2()32,f x x ax b =++由已知,得'(1)0(1)10f f ⎧=⎨=⎩即223,9a b a a b +=-⎧⎨++=⎩解得34311a a b b =-=⎧⎧⎨⎨==-⎩⎩或, 经检验:当3,3a b =-=时,1x =不是极值点; 当4,11a b ==-时,符合题意. 【答案】4,11-【例题5】函数x a x x f -=)(在[1,4]上单调递增,则实数a 的最大值为. 【解析】(方法1)'()1f x =,由已知,得10-≥即a ≤[1,4]上恒成立.min 2a ∴≤=, max2.a∴=(方法2)令t =,则把函数x a x x f -=)(看成是函数2,[1,2]y t at t =-∈,与函数[1,4]t x =∈的复合函数,t x =在区间[1,4]上单调递增,∴要使函数x a x x f -=)(在[1,4]上单调递增,只要2y t at =-在区间[1,2]上单调递增即可.当且仅当12a≤, 即2a ≤,max2.a ∴=【答案】2【例题6】已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值, (1)求,a b 的值与函数()f x 的单调区间;(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,某某数c 的取值X 围. 【解析】(1)'2()32f x x ax b =++由已知,得''2()03(1)0f f ⎧-=⎪⎨⎪=⎩,即0304324a b a b -++==-⎧⎨⎩,解得122a b ⎧=-⎪⎨⎪=-⎩∴'2()32(32)(1)f x x x x x =--=+-∴函数()f x 的单调递增区间是(,)3-∞-与(1,)+∞,单调递减区间是2(,1)3-.(2)由(1)得321()2,[1,2]2f x x x x c x =--+∈-,在区间[1,2]-上,max 2[()]max{(),(2)}3f x f f =-22,2}22a 7m x{c c c +=+=+由已知,得22c c +<, 解得 12c c <->或. 故所某某数c 的取值X 围为(,1)(2,)-∞-+∞.【例题7】已知函数3()3f x x x =-(1)求函数()f x 在3[3,]2-上的最大值和最小值;(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程. 【解析】(1)2'()3(1)f x x =-,令 '()0f x =,解得 1x =±.在3[3,]2-上,max 3[()]max{(3),(1),(1),()}2f x f f f f =--min 3[()]min{(3),(1),(1),()}2f x f f f f =--39(3)18,(1)2,(1)2,()28f f f f -=--==-=-.∴max [()]2f x =,min [()]18f x =-.(2)设切点为3000(,3)Q x x x -,则所求切线方程为320000(3)3(1)()y x x x x x --=-- 切线过点(2,6)P -,3200006(3)3(1)(2)x x x x ∴---=--,解得00x =或03x =∴切线方程为3624(2)y x y x =-+=-或即30x y +=或24540x y --=.【例题8】设函数32()96f x x bx x a =-+-,且函数()f x 在1x =处取得一个极值. (1)某某数b 的值;(2)对于任意实数x ,()f x m '≥恒成立,某某数m 的最大值; (3)若方程()0f x =有且仅有一个实根,某某数a 的取值X 围. 【解析】(1)2'()3186f x x bx =-+,由已知,得'(1)0f =,即31860b -+=,解得 12b =. 经检验:12b =符合题意. 故所某某数b 的值为12. (2) 2'()396f x x x =-+, (方法1)由已知,得min ']([)f x m ≤,而2334)3(2()'x f x =--,min 3[])4'(.f x ∴=-∴34m ≤-.∴实数m 的最大值为3.4-(方法2)(,)x ∈-∞+∞,'()f x m ≥,即 239(6)0x x m -+-≥恒成立,∴8112(6)0m ∆=--≤,解得34m ≤-,∴实数m 的最大值为3.4-(3) 当1x <时, '()0f x >; 当12x <<时, '()0f x <; 当2x >时, '()0f x >;∴当1x =时,()f x 取得极大值 5(1)2f a =-; 当2x =时,()f x 取得极小值 (2)2f a =-;∴当(2)0f > 或(1)0f <时, 方程()0f x =有且仅有一个实根.解得 2a <或52a >.∴实数a 的取值X 围为5(,2)(,)2-∞+∞.【例题9】从边长为2a 的正方形铁片的四个角各截去一小块边为x 的正方形(如右图所示),再将四边向上折起,做成一个无盖的正四棱柱铁盒,要求正四棱柱的容积V 有最大高度x 与底面正方形边长的比值不超过常数t . 问:x 取何值时,值.【解析】依题意:2322(22)484V a x x x ax a x =-⋅=-+(0)x a <<.22x t a x ≤-, 解得2012tax t <≤+. ∴函数V 的定义域为2(0,]12tat+. 22'12164V x ax a =-+4(3)().x a x a =--① 若2312a ta t <+,即14t >,则由'0V =,解得3a x =. 当03a x <<时,'0V >;当2312t ta ax ≤+<时,'0V <. ∴当3a x =时, 容积V 取得极大值,即为最大值,且3max 1627V a =. ② 若2312a ta t ≥+,即104t <≤,则有'≥V 0,知V 在定义域2(0,]12tat+上为单调递增函数.∴当212atx t=+时,32max 3248(2).1212(12)at at a t V a t t t =-=+++ 答: 若14t >,则当3a x =时, 容积V 有最大值31627a ;若104t <≤,则当212atx t=+时, 容积V 有最大值338(12)a t t +.【例题10】已知函数xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈ (1)讨论1=a 时, 函数()f x 的单调性、极值; (2)求证:在(1)的条件下,1()()2f xg x >+; (3)是否存在实数a ,使函数()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由. 【解析】(1) 1=a 时,x x x f ln )(-=,xx x x f 111)(-=-='∴当10<<x 时,'()0f x <; 当e x <<1时,'()0f x >∴()f x 在区间(0,1)上是单调递减函数;()f x 在区间(1,)e 上是单调递增函数.∴()f x 取得极小值为(1) 1.f =(2)由(1)得 ()f x 在],0(e 上的最小值为1, 令21ln 21)()(+=+=x x x g x h , xx x h ln 1)(-=', 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增. ∴max min 1111[()]()1[()]222h x h e f x e ==+<+==. ∴在(1)的条件下,1()()2f xg x >+(3) 假设存在实数a ,使函数x ax x f ln )(-=(],0(e x ∈)有最小值3,1()1'()a x a f x a x x-=-= ① 若0≤a ,则'()0f x <, ()f x 在],0(e 上单调递减,∴min [()]()1f x f e ae ==-,由13ae -=,得ea 4=(不合题意,舍去) ② 若e a<<10,即1a e >,则当10x a <<时,'()0f x <;当1x e a<≤时,'()0f x >. ∴()f x 在)1,0(a 上单调递减,在],1(e a上单调递增.∴min 1[()]()1ln f x f a a==+,由1ln 3a +=,得2e a =符合题意.③若1e a ≥,即10a e<≤,则'()0f x < ()f x 在],0(e 上单调递减,min [()]()1f x f e ae ==-,由13ae -=,得ea 4=(不合题意,舍去)综上所述: 存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3. 三、【巩固练习】【练习1】在平面直角坐标系xOy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为. 【答案】(2,15)-【解析】设点P 的横坐标为0x ,由2310y x '=-知203102x -=,又点P 在第二象限,02x =-,所以(2,15)P -.【练习2】函数32()15336f x x x x =--+的单调减区间为. 【答案】(1,11)-【解析】2()330333(11)(1)f x x x x x =--=-+', 由(11)(1)0x x -+<得单调减区间为(1,11)-.【练习3】函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点个.【答案】 1【解析】由图可知:函数)(x f 在开区间),(b a 内只有1个极小值点.【练习4】 已知函数23bx ax y +=,当1x =时,有极大值3, 则,a b 的值分别为 . 【答案】6,9-【解析】'232,y ax bx =+当1x =时,'11|320,|3x x y a b y a b ===+==+=,即320,3a b a b +=⎧⎨+=⎩解得69a b =-⎧⎨=⎩.经验证: 6,9a b =-=即为所求. 【练习5】对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴 交点的纵坐标为n a ,则数列}1{+n a n的前n 项和的公式是.【答案】 122n +- 【解析】1(1)n n y nxn x -'=-+,曲线)1(x x y n -=在2x =处的切线的斜率为12(1)2n n k n n -=-+.切点为(2,2)n -,∴切线方程为2(2)ny k x +=-.令0x =得 (1)2nn a n =+,21n na n ∴=+. 数列⎭⎬⎫⎩⎨⎧+1n a n 的前n 项和为212(21)2222 2.21n nn +-++⋅⋅⋅+==-- 【练习6】已知23()log x ax bf x x++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.【解析】设2()x ax b g x x++=∵()f x 在(0,1)上是减函数,在[1,)+∞上是增函数 ∴()g x 在(0,1)上是减函数,在[1,)+∞上是增函数.∴⎩⎨⎧==3)1(0)1('g g ∴⎩⎨⎧=++=-3101b a b 解得⎩⎨⎧==11b a经检验,存在1,1a b ==时,()f x 满足题设的两个条件. 【练习7】设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(1)当1a =时,求曲线()y f x =在点(2,(2))f 处的切线方程; (2)当0a ≠时,求函数()f x 的极大值和极小值;【解析】(1)当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.∴曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--, 即580x y +-=.(2)2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.① 若0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3x =处取得极小值3f ⎛⎫ ⎪⎝⎭,且3327f a ⎛⎫=-⎪⎝⎭; 函数()f x 在x a =处取得极大值()f a ,且()0f a =.② 若0a <,当x 变化时,()f x '的正负如下表:函数()f x 在3ax =处取得极大值3a f ⎛⎫ ⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.【练习8】设,4)(23x bx ax x f ++=其导函数)(x f y '=的图象经过点2(,0)3,(2,0),(1)求函数)(x f 的解析式和极值;(2)对]3,0[∈x 都有2)(mx x f ≥恒成立,某某数m 的取值X 围. 【解析】(1)423)(2++='bx ax x f ,且)(x f y '=的图像经过点)0,2(),0,32(2,32∴是方程04232=++bx ax 的根. 30,310a b a b ++=⎧∴⎨++=⎩ 解得14a b =⎧⎨=-⎩,44)(23x x x x f +-=∴22()3843()(2)3f x x x x x '=-+=--.由()f x '的图象,可知函数)(x f y =在)32,(-∞上单调递增,在)2,32(上单调递减,在),2(+∞上单调递增.函数)(x f 有极小值32(2)(2)4(2)80;f =-⨯+= 函数)(x f 有极大值22222176()()4()8.33327f =-⨯+=(2)由(1)可知,对]3,0[∈x 都有2)(mx x f ≥恒成立,即对]3,0[∈x ,22344mx x x x ≥+-恒成立 当0=x 时,显然成立;当]3,0(∈x 时,等价于m x x x x ≥+-22344,即44-+≤xx m而当0>x ,有044244=-⋅≥-+xx x x , 当且仅当xx 4=,即2x =时,上式取等号, ∴≤m 0. ∴所某某数m 的取值X 围为(],0-∞.【练习9】甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km 的B 处,乙厂到河岸的垂足D 与A 相距50 km ,两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂的水管费用分别为每千米3a 元和5a 元,问供水站C 建在岸边何处才能使水管费用最省? 【解析】 根据题意知,只有点C 在线段AD 上 某一适当位置,才能使总运费最省,设C 点距D 点x km,则∵40BD =,50AC x =-,∴222240BC BD CD x =+=+又设总的水管费用为y 元,依题意有:223(50)540x y a x a -++=(050)x <<225'340ax y a x =-++,令'0y =,解得30x =在(0,50)上,y 只有一个极值点,根据实际问题的意义, 函数在30()x km =处取得最小值,此时AC =50-x =20(km). 答: 供水站建在A 、D 之间距甲厂20 km 处,可使水管费用最省. 【练习10】设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(1)令()()F x xf x '=,讨论()F x 在(0,)+∞上的单调性,并求极值; (2)求证:当1x >时,恒有2ln 2ln 1x x a x >-+. 【解析】(1)2ln 2()10x af x x x x'=-+>,, ()()2ln 20F x xf x x x a x '==-+>,,word11 / 11 22()10x F x x x x-'=-=>,, 列表如下:∴()F x 在(02),内是减函数,在(2)+,∞内是增函数,∴()F x 在2x =处取得极小值为(2)22ln 22F a =-+.(2)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>. 于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. ∴当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>. ∴当1x >时,恒有2ln 2ln 1x x a x >-+.。

高考新课标数学试题分类汇编2010-2019:导数大题(文)

高考新课标数学试题分类汇编:导数大题(文)【2019新课标1文20】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫ ⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤ ⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π ⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【2019新课标2文21】已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数. 【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-.因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=. 又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增.因此,()f x 存在唯一的极值点. (2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=. 由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---== ⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根.综上,()0f x =有且仅有两个实根,且两个实根互为倒数. 【2019新课标3文20】已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3a x =.若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫ ⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩ 所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫ ⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27.【2018•新课标Ⅰ文】已知函数f(x)=ae x-lnx-1(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间 ;(2)证明:当a≥ 时,f(x)≥0 【解析】(1)解:∵x=2是极值点,∴∴解得a=2e 21又在∴在,又在∴在,又所以时,,当 时, ,综上所述 a=2e 21 ,,(2)解:∵ ; 当时,∴令同理 在又∴时, ,,,∴即时,【2018•新课标Ⅱ文】已知函数(1)若a=3,求 的单调区间; (2)证明:只有一个零点【解析】(1)当a=3时,当f’(x )﹥0时 或f’(x )﹤0时,∴的单调递增区间为 ,的单调递减区间为(2)解法1:由于 ﹥0,所以 =0等价于设,则仅当x=0时,=0,所以在单调递增,故g (x )至多有一个零点,从而f (x )至多有一个零点又,故f (x )有一个零点;综上所述,f (x )只有一个零点 解法2:f (x )有一个零点等价于0)1(x 3123=++-x x a ,即)1(x 3123++=x x a ,即3a=)1(23++x x x ,令g(x)=)1(23++x x x ;则=)(g /x 2222)1()3x 2x ++++x x x (∵0)(g /≥x∴g(x)在R 上单增,则3a=)1(23++x x x 不论a 为何值,最多有唯一解,∴f (x )有一个零点【2018•新课标Ⅲ文】已知函数(1)求函数 在点 处的切线方程(2)证明:当时,【解析】(1)解:因为f (x )=所以即切线方程为;y+1=2x2x-y-1=0为所求(2)解:欲证:只需证: ≥-即证又a≥1,则证:令ln (x )=所以又所以在即所以0恒成立;即原命题成立【2017•新课标Ⅰ文】已知函数 f(x)=e x(e x﹣a)﹣a2x.(1)讨论 f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解析】解:(1)f(x)=e x(e x﹣a)﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]【2017•新课标Ⅱ文】设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解析】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,取x所以f(x0)>ax0+1,矛盾;③当a≤0时,取x 0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).【2017新课标3文】已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.【解析】(1)解:因为f(x)=lnx+ax2+(2a+1)x,求导f′(x)=+2ax+(2a+1)==,(x>0),①当a=0时,f′(x)=+1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;③当a<0时,令f′(x)=0,解得:x=﹣.因为当x∈(0,﹣)f′(x)>0、当x∈(﹣,+∞)f′(x)<0,所以y=f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减.综上可知:当a≥0时f(x)在(0,+∞)上单调递增,当a<0时,f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减;(2)证明:由(1)可知:当a<0时f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减,所以当x=﹣时函数y=f(x)取最大值f(x)max=f(﹣)=﹣1﹣ln2﹣+ln(﹣).从而要证f(x)≤﹣﹣2,即证f(﹣)≤﹣﹣2,即证﹣1﹣ln2﹣+ln (﹣)≤﹣﹣2,即证﹣(﹣)+ln (﹣)≤﹣1+ln2.令t=﹣,则t >0,问题转化为证明:﹣t +lnt ≤﹣1+ln2.…(*)令g (t )=﹣t +lnt ,则g′(t )=﹣+,令g′(t )=0可知t=2,则当0<t <2时g′(t )>0,当t >2时g′(t )<0, 所以y=g (t )在(0,2)上单调递增、在(2,+∞)上单调递减,即g (t )≤g (2)=﹣×2+ln2=﹣1+ln2,即(*)式成立,所以当a <0时,f (x )≤﹣﹣2成立.【2016 新课标Ⅰ文21】 已知函数f (x )=(x -2)e x +a (x -1)2.(Ⅰ)讨论f (x )的单调性; (Ⅱ)若有两个零点,求a 的取值范围.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x+2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f'(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ). ①若a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②若a >2e-,ln(-2a )<1,在(ln(-2a ),1)上,f'(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f'(x )>0,f (x )单调递增.③若a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f'(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f'(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分 (2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b <ln 2a ,e b<2a .从而f (b )>223(2)(1)()022ab a b a b b -+-=->,所以f (x )有两个零点. …10分(3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点. 综上a 的取值范围是(0,1). …12分【2016新课标Ⅱ文】已知函数f (x )=(x+1)lnx ﹣a (x ﹣1). (I )当a=4时,求曲线y=f (x )在(1,f (1))处的切线方程; (II )若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 【解析】解:(I )当a=4时,f (x )=(x+1)lnx ﹣4(x ﹣1). f (1)=0,即点为(1,0), 函数的导数f ′(x )=lnx+(x+1)•﹣4,则f ′(1)=ln1+2﹣4=2﹣4=﹣2, 即函数的切线斜率k=f ′(1)=﹣2,则曲线y=f (x )在(1,0)处的切线方程为y=﹣2(x ﹣1)=﹣2x+2; (II )∵f (x )=(x+1)lnx ﹣a (x ﹣1), ∴f ′(x )=1++lnx ﹣a ,∴f ″(x )=,∵x >1,∴f ″(x )>0,∴f ′(x )在(1,+∞)上单调递增, ∴f ′(x )>f ′(1)=2﹣a . ①a ≤2,f ′(x )>f ′(1)≥0,∴f (x )在(1,+∞)上单调递增, ∴f (x )>f (1)=0,满足题意; ②a >2,存在x 0∈(1,+∞),f ′(x 0)=0,函数f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,由f (1)=0,可得存在x 0∈(1,+∞),f (x 0)<0,不合题意. 综上所述,a ≤2.【2016新课标Ⅲ文】设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.【解析】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.即有f(x)的增区间为(0,1);减区间为(1,+∞);(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;(3)证明:设G(x)=1+(c﹣1)x﹣c x,G′(x)=c﹣1﹣c x lnc,可令G′(x)=0,可得c x=,由c>1,x∈(0,1),可得1<c x<c,即1<<c,由(1)可得c x=恰有一解,设为x=x0是G(x)的最大值点,且0<x0<1,由G(0)=G(1)=0,且G(x)在(0,x0)递增,在(x0,1)递减,可得G(x0)=1+(c﹣1)x0﹣c x0>0成立,则c>1,当x∈(0,1)时,1+(c﹣1)x>c x.【2015新课标I文】——零点值无法计算时采用设而不求设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.【解析】(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,当b满足0<b<时,且b<,f(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.【2015新课标2文】——易设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【解析】(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【2014•新课标1文】——只用讨论x0≥1的单调性及最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2010·北京高考理科·T18)已知函数2ln102kfxxxxk
(Ⅰ)当2k时,求曲线yfx在点1,1f处的切线方程;
(Ⅱ)求fx的单调区间

【规范解答】(I)当2k时,2()ln(1)fxxxx,1'()121fxxx
由于(1)ln2f,3'(1)2f,
所以曲线()yfx在点(1,(1))f处的切线方程为
3
ln2(1)2yx

即 322ln230xy

(II)1(1)'()111xkxkfxkxxx,(1,)x.
当0k时,'()1xfxx.
所以,在区间(1,0)上,'()0fx;在区间(0,)上,'()0fx.
故()fx的单调递增区间是(1,0),单调递减区间是(0,).

当01k时,由1()'()01kkxxkfxx,得10x,210kxk
所以,在区间(1,0)和1(,)kk上,'()0fx;在区间1(0,)kk上,'()0fx
故()fx的单调递增区间是(1,0)和1(,)kk,单调递减区间是1(0,)kk.
当1k时,2'()1xfxx
故()fx的单调递增区间是(1,).
当1k时,1()'()01kkxxkfxx,得11(1,0)kxk,20x.
所以在区间1(1,)kk和(0,)上,'()0fx;在区间1(,0)kk上,'()0fx
故()fx得单调递增区间是1(1,)kk和(0,),单调递减区间是1(,0)kk
2.(2010·安徽高考文科·T20)设函数sincos1fxxxx,02x,求函数

fx

的单调区间与极值
【规范解答】

()12()4xx解:由f(x)=sinx-cosx+x+1,0

23
()0()422()xxxxxx令f,从面sin,得,或,

当变化时,f,f(x)变化情况如下表:

x

0,

3,2 32 3

,2

2








()fx

+ 0 - 0 +

()fx
极大值 极小值

33
222因此,由上表知f(x)的单调递增区间是(0,)与(,),单调递区间是(,减)

33
222极小值为f()=,极大值为f()=

3.(2010·北京高考文科·T18) 设定函数32()(0)3afxxbxcxda,(0)a,且
方程90fxx的两个根分别为1,4

(Ⅰ)当a=3且曲线()yfx过原点时,求()fx的解析式;
(Ⅱ)若()fx在(,)无极值点,求a的取值范围。

【规范解答】由32()3afxxbxcxd 得 2()2fxaxbxc

相关文档
最新文档