【导与练】(新课标)高三数学一轮复习 大题冲关集训(三)理
【导与练】(新课标)高三数学一轮复习 大题冲关集训(一)理

大题冲关集训(一)1.(2014高考安徽卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解:(1)f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2.令f′(x)=0,得x1=,x2=,x1<x2.所以f′(x)=-3(x-x1)(x-x2).当x<x1或x>x2时,f′(x)<0;当x1<x<x2时,f′(x)>0.故f(x)在(-∞,)和(,+∞)内单调递减,在(,)内单调递增.(2)因为a>0,所以x1<0,x2>0.①当a≥4时,x2≥1.由(1)知,f(x)在[0,1]上单调递增.所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1.由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减.所以f(x)在x=x2=处取得最大值.又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0处和x=1处同时取得最小值;当1<a<4时,f(x)在x=0处取得最小值.2.(2014大连市二模)设函数f(x)=ln x-cx(c∈R).(1)讨论函数f(x)的单调性;(2)若f(x)≤x2恒成立,求c的取值范围.解:(1)∵f(x)=ln x-cx,∴x∈(0,+∞),f′(x)=-c=.当c≤0时,f(x)单调增区间为(0,+∞),无单调减区间;当c>0时,f(x)单调增区间为(0,),f(x)单调减区间为(,+∞).(2)∵f(x)≤x2恒成立,即ln x-cx≤x2恒成立,∴c≥-x,当x∈(0,+∞)时恒成立.设g(x)=-x,∴g′(x)=,∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴[g(x)]max=g(1)=-1,∴c≥-1.即c的取值范围为(-1,+∞).3.(2014凉州一诊)已知函数f(x)=(ax-2)e x在x=1处取得极值.(1)求a的值;(2)求函数f(x)在[m,m+1]上的最小值;(3)求证:对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤e.(1)解:f′(x)=ae x+(ax-2)e x=(ax+a-2)e x.由已知得f′(1)=0,即(2a-2)e=0,解得a=1.当a=1时,在x=1处函数f(x)=(x-2)e x取得极小值,所以a=1.(2)解:由(1)知f(x)=(x-2)e x,f′(x)=e x+(x-2)e x=(x-1)e x.所以函数f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.当m≥1时,f(x)在[m,m+1]上单调递增,[f(x)]min=f(m)=(m-2)e m.当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,[f(x)]min=f(1)=-e.当m≤0时,m+1≤1,f(x)在[m,m+1]上单调递减,[f(x)]min=f(m+1)=(m-1)e m+1.综上,f(x)在[m,m+1]上的最小值[f(x)]min=(3)证明:由(1)知f(x)=(x-2)e x,f′(x)=(x-1)e x.令f′(x)=0得x=1.因为f(0)=-2,f(1)=-e,f(2)=0,所以当x∈[0,2]时,[f(x)]max=0,[f(x)]min=-e,所以,对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤[f(x)]max-[f(x)]min=e.4.(2014临沂市质检)已知函数f(x)=ln x.(1)若直线y=x+m与函数f(x)的图象相切,求实数m的值;(2)证明曲线y=f(x)与曲线y=x-有唯一的公共点;(3)设0<a<b,比较与的大小,并说明理由. (1)解:f′(x)=,设切点为(x0,y0),则k==1,∴x0=1,y0=ln x0=ln 1=0,代入y=x+m,得m=-1.(2)证明:令h(x)=f(x)-(x-)=ln x-x+, 则h′(x)=-1-==<0,∴h(x)在(0,+∞)上单调递减.又h(1)=ln 1-1+1=0,∴x=1是函数h(x)唯一的零点,故点(1,0)是两曲线唯一的公共点. (3)解:-=ln -,∵0<a<b,∴>1.构造函数ϕ (x)=ln x-(x>1),则ϕ′(x)=-=-=>0,∴ϕ (x)在(1,+∞)上单调递增,又当x=1时, ϕ (1)=0,∴x>1时, ϕ (x)>0,即ln x>,则有ln >成立,即>.即>.5.(2015湖北省八市联考)定义在R上的函数g(x)及二次函数h(x)满足g(x)+2g(-x)=e x+-9,h(-2)=h(0)=1且h(-3)=-2.(1)求g(x)和h(x)的解析式;(2)对于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范围;(3)设f(x)=讨论方程f[f(x)]=2的解的个数情况.解:(1)∵g(x)+2g(-x)=e x+-9,①g(-x)+2g(x)=e-x+-9,即g(-x)+2g(x)=2e x+-9, ②由①②联立解得g(x)=e x-3.∵h(x)是二次函数,且h(-2)=h(0)=1,可设h(x)=ax(x+2)+1,由h(-3)=-2,解得a=-1.∴h(x)=-x(x+2)+1=-x2-2x+1.∴g(x)=e x-3,h(x)=-x2-2x+1.(2)设φ(x)=h(x)+ax+5=-x2+(a-2)x+6,F(x)=e x-3-x(e x-3)=(1-x)e x+3x-3,依题意知,当-1≤x≤1时,[φ(x)]min≥[F(x)]max.∵F′(x)=-e x+(1-x)e x+3=-xe x+3在[-1,1]上单调递减,∴[F′(x)]min=F′(1)=3-e>0,∴F(x)在[-1,1]上单调递增,∴[F(x)]max=F(1)=0,∴解得-3≤a≤7,∴实数a的取值范围为[-3,7].(3)f(x)的图象如图所示.令T=f(x),则f(T)=2.∴T1=-1,T2=ln 5,f(x)=-1有两个解,f(x)=ln 5有3个解.∴f[f(x)]=2有5个解.6.已知函数f(x)=ax-1-ln x(a∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)在x=1处取得极值,不等式f(x)≥bx-2对∀x∈(0, +∞)恒成立,求实数b的取值范围;(3)当x>y>e-1时,证明不等式e x ln(1+y)>e y ln(1+x).(1)解:函数的定义域是(0,+∞),且f′(x)=a-=.当a≤0时,ax-1<0,从而f′(x)<0,函数f(x)在(0,+∞)上单调递减; 当a>0时,若0<x<,则ax-1<0,从而f′(x)<0;若x≥,则ax-1≥0,从而f′(x)≥0,所以函数f(x)在(0,)上单调递减,在(,+∞)上单调递增.(2)解:由(1)可知,函数的极值点是x=,所以=1,则a=1.若f(x)≥bx-2在(0,+∞)上恒成立,即x-1-ln x≥bx-2在(0,+∞)上恒成立,只需b≤1+-在(0,+∞)上恒成立.令g(x)=-,则g′(x)=--+=.易知x=e2为函数g(x)在(0,+∞)内唯一的极小值点,也是最小值点,故[g(x)]min=g(e2)=-,即(1+-)min=1-,故只要b≤1-即可.所以b的取值范围是(-∞,1-].(3)证明:由题意可知,要证不等式e x ln(1+y)>e y ln(1+x)成立,只需证>.构造函数h(x)=,则h′(x)==,h′(x)在(e,+∞)上单调递增,h′(x)>h′(e)>0,则h(x)在(e,+∞)上单调递增.由于x>y>e-1,所以x+1>y+1>e,所以>,即e x ln(1+y)>e y ln(1+x).。
2020版高考数学理(通用)一轮练习:阶段滚动检测(三) Word版含解析

姓名,年级:时间:一、选择题1.(2018·甘肃省静宁县第一中学模拟)已知集合A={x∈N|x2-4x≤0},集合B={x|x2+2x+a=0},A∪B={0,1,2,3,4,-3},则A∩B等于( ) A.{1,-3} B.{1}C.{-3} D.∅2.已知向量a=(λ,-2),b=(1+λ,1),则“λ=1”是“a⊥b"的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x∈R,x2≤0为假命题D.命题綈q:∃x∈R,x2≤0为真命题4.已知函数f(x)=ln(x+错误!),则不等式f(x-1)+f(x)>0的解集是( )A.{x|x>2}B.{x|x〈1}C。
错误!D.{x|x〉0}5.已知函数f(x)=错误!则函数f(log23)的值为( )A.3 B。
错误! C.6 D。
错误!6.若函数f(x)=(k-1)a x-a-x(a〉0且a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是下图中的( )7.已知函数f(x)=错误!g(x)=f(x)+x+a,若g(x)存在2个零点,则a 的取值范围是( )A.[-1,0) B.[0,+∞)C.[-1,+∞)D.[1,+∞)8.如图,在等腰直角三角形ABC中,AB=AC=错误!,D,E是线段BC上的点,且DE=错误!BC,则错误!·错误!的取值范围是( )A。
错误! B。
错误! C。
错误! D。
错误!9.已知sin(α+β)=错误!,sin(α-β)=-错误!,则错误!等于() A.错误! B。
错误! C.错误! D.-错误!10.如果已知△ABC的三个内角A,B,C所对的三条边分别是a,b,c,且满足(a2+b2-c2)·(a cos B+b cos A)=abc, c=2,则△ABC周长的取值范围为()A.(2,6)B.(4,6)C.(4,18) D.(4,6]11.已知函数f(x)=x+e x-a,g(x)=ln(x+2)-4e a-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为( ) A.-1-ln 2 B.ln 2-1C.-ln 2 D.ln 212.如图,半径为1的扇形AOB中,∠AOB=错误!, P是弧AB上的一点,且满足OP⊥OB, M,N分别是线段OA,OB上的动点,则PM,→·错误!的最大值为( )A.错误!B.错误! C.1 D.错误!二、填空题13.已知函数y=f(x)是定义在R上的奇函数,则ʃ错误!错误!d x=________。
【导与练】(新课标)高三数学一轮复习 第1篇 命题及其关系、充分条件与必要条件学案 理精编版

第二课时 命题及其关系、充分条件与必要条件课前预习案1.理解命题的概念;2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;3.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符合或式子表达的,可以 的语句叫做命题.其中 的语句叫真命题, 的语句叫假命题.2.四种命题及其关系(1)四种命题(2)四种命题间的逆否关系(3)四种命题的真假关系:①两个命题互为逆否命题,它们有 的真假性;②两个命题互为逆命题或互为否命题,它们的真假性 .3.充分条件与必要条件(1)如果p q ⇒,则p 是q 的 ,q 是p 的 ;(2)如果p q ⇒,q p ⇒,则p 是q 的 .1.(2011年陕西)设a ,b 是向量,命题“若a=-b ,则||||a b =”的逆命题是( )A .若a b ≠-,则||||a b ≠B .若a b =-,则||||a b ≠C .若||||a b ≠,则a b ≠-D .若||||a b =,则a b =-2.设集合{}|03M x x =<≤,{}|02N x x =<≤,那么“a M ∈”是“a N ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件课堂探究案考点一 命题的关系及命题真假的判断【典例1】(2012年湖南卷)命题“若4πα=,则tan 1α=”的逆否命题是( ) A .若4πα≠,则tan 1α≠B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=【变式1】(1)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.①面积相等的两个三角形是全等三角形.②若1q <,则方程220x x q ++=有实根.③若220x y +=,则实数x 、y 全为零.(2)(2012年江西卷)下列命题中,假命题为( )A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,n n n n n N C C C +∈+++都是偶数考点2 充分条件与必要条件的判断【典例2】(2013宁波模拟)给出下列命题:①“数列{}n a 为等比数列”是“数列{}1n n a a +为等比数列”的充分不必要条件;②“2a =”是“函数()||f x x a =-在区间[)2,+∞上为增函数”的充要条件;③“3m =”是“直线(3)20m x my ++-=与直线650mx y -+=互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若1,a b ==30A =︒是60B =︒的必要不充分条件.其中真命题的序号是 (写出所有真命题的序号)【变式2】(1)(2011年福建理科)若a R ∈,则2a =是(1)(2)0a a --=的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件(2)设集合{}1,2M =,{}2N a =,则“1a =”是 “N M ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件考点3 充分条件与必要条件的应用【典例3】已知p :1|1|23x --≤,q :22210x x m -+-≤(0)m >,且p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.【变式3】已知命题p :方程210x mx ++=有两个不相等的负根,命题q :方程244(2)10x m x +-+=无实根.求“p q ∨为真,p q ∧为假命题”的充要条件.1.下列命题是真命题的为( )A .若11x y=,则x y = B .若21x =,则1x =C .若x y =,=.若x y <,则 22x y <2.命题“若B b A a ∈∉则,”的否命题是( )A .若B b A a ∉∉则, B .若B b A a ∉∈则,C .若A a B b ∉∈则,D .若A a B b ∈∉则,3. 设””是“则“x x x R x ==∈31,的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件课后拓展案组全员必做题1.(2012年山东)设0a >且1a ≠,则“函数()x f x a =在R 上是减函数”是“函数3()(2)g x a x =-在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2012年北京)设,a b R ∈,则“0a =”是“复数a bi +是纯虚数”( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下列命题中正确的是( )①“若220x y +≠,则x ,y 不全为零”的否命题;②“正多边形都相似”的逆命题;③“若0m >,则20x x m +-=有实根”的逆否命题;④“若123x -是有理数,则x 是无理数”的逆否命题.A .①②③④B .①③④C .②③④D .①④4.(2011年天津)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的( )A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.(2011年安徽理)命题“所有能被2整除的数都是偶数”的否定..是( ) A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数C .存在一个不能被2整除的数是偶数D .存在一个能被2整除的数不是偶数组提高选做题1.(2013安徽模拟)下列命题是假命题的是( )A .命题“若2230x x --=,则3x =”的逆否命题为:“若3x ≠,则2230x x --≠”;B .若02x π<<,且sin 1x x <,则2sin 1x x <; C .互相平行的两条直线在同一个平面内的射影必然是两条互相平行的直线;D .“2x >”是“3101x -≤+”的充分不必要条件; 2.(2011年陕西)设*n N ∈,一元二次方程240x x n -+=有整数根的充要条件是n = .3.关于x 的方程2210ax x ++=至少有一个负实数根的充要条件是 .参考答案1.D2.B【典例1】C【变式1】(1)①逆命题:两个三角形全等,则它们的面积相等.(真命题)否命题:面积不相等的两个三角形不是全等三角形.(真命题)逆否命题:两个三角形不全等,则面积不相等.(假命题)②逆命题:若方程220x x q ++=有实根,则1q <.(假命题)否命题:若1q ≥,则方程220x x q ++=无实根.(假命题)逆否命题:若220x x q ++=无实根,则1q ≥.(真命题)③逆命题:若x 、y 全为零,则220x y +=.(真命题)否命题:若220x y +≠,则x 、y 不全为零.(真命题)逆否命题:若x 、y 不全为零,则220x y +≠.(真命题)(2)B【典例2】 ①④【变式2】(1)A (2)A【典例3】解:由1|1|23x --≤,得210x -≤≤, 即:210p x -≤≤.由22210(0)x x m m -+-≤>,得11m x m -≤≤+,即:11q m x m -≤≤+.∵p ⌝是q ⌝的必要不充分条件,∴q 是p 的必要不充分条件.∴12,110.m m -≤-⎧⎨+≥⎩解得9m ≥.经检验知m 的取值范围为9m ≥.【变式3】解:∵210x mx ++=有两个不相等的负根, ∴2121240,0,10.m x x m x x ⎧∆=->⎪+=-<⎨⎪⋅=>⎩解得2m >.∴:2p m >.又216(2)160m ∆=--<,解得13m <<.∴:13q m <<.∵p q ∨为真,p q ∧为假,∴p 、q 一真一假.①p 真q 假时,3m ≥;②p 假q 真时,12m <≤.综上知,“p q ∨为真,p q ∧为假”的充要条件为3m ≥或12m <≤.1.答案:A 解析:由11x y=得x y =,而由21x =得1x =±,由x y =,而x y <得不到22x y < 故选A.2.答案:B 解析:命题“若p ,则q ”的否命题为“若p ⌝,则q ⌝”.3.答案: A 解析:因为1,1,0,3-==x x x 解得,所以,“x=1”是x x =3的充分不必要条件。
【导与练】(新课标)高三数学一轮复习 大题冲关课件(二)理

考向一
三角函数的图象与性质的综合问题
2
【例 1】 (2014 杭州模拟)已知函数 f(x)=2sin ( (1)求 f(x)的最小正周期和单调递增区间; (2)若关于 x 的方程 f(x)-m=2 在 x∈[
解:(1)f(x)=2sin (
2
π +x)- 3 cos 2x. 4
π +x)4 π )+1, 3
π )+ 3 . 6
2π -A)]+ 3
3 = 3 cos A
2π π π 5π ,所以 <A+ < , 3 6 6 6
1 π <sin(A+ )≤1,所以 a+b+c 的取值范围为(2 3 ,3 3 ]. 2 6
考向三
解三角形与数列问题的综合
【例 3】 (2014 高考陕西卷)△ABC 的内角 A,B,C 所对的边分别为 a,b,c. (1)若 a,b,c 成等差数列,证明:sin A+sin C=2sin(A+C); (2)若 a,b,c 成等比数列,求 cos B 的最小值.
高考大题冲关(二)
三角函数与解三
角形的热点问题
考情概述:从近几年高考看,高考对本章的考查主要有:三角恒等变 换与三角函数图象和性质结合,解三角形与恒等变换、数列、平面 向量、不等式的综合,难度属于中低档题,但考生得分不高,其主要 原因是公式不熟导致运算错误.考生在复习时,要熟练掌握三角公 式,特别是二倍角的余弦公式,在此基础上掌握一些三角恒等变换, 如变换角的技巧、变换函数名称的技巧等.
冲关策略
解决三角函数的图象和性质的综合问题,一般先由图象
或三角公式确定三角函数 y=Asin(ωx+ )+b(或 y=Acos(ωx+ )+b 等) 的解析式.研究三角函数性质时,需把ωx+ 看成一个整体.
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
2022届高三数学(理)一轮总复习课时规范训练:第三章 三角函数、解三角形 3-5 Word版含答案

课时规范训练[A 级 基础演练]1.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析:选B.由y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin 4⎝ ⎛⎭⎪⎫x -π12得,只需将y =sin 4x 的图象向右平移π12个单位即可,故选B.2.函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6等于( )A .2或0B .-2或2C .0D .-2或0解析:选B.由于函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,所以该函数图象关于直线x =π6对称,由于在对称轴处对应的函数值为最大值或最小值,所以选B.3.函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π3(ω>0)的周期是π,将函数f (x )的图象沿x 轴向左平移π6个单位得到函数g (x )的图象,则函数g (x )的解析式是( )A .g (x )=sin ⎝ ⎛⎭⎪⎫12x -π4B .g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .g (x )=sin 2xD .g (x )=sin ⎝⎛⎭⎪⎫2x -2π3 解析:选C.由题知2πω=π,ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,g (x )=f ⎝⎛⎭⎪⎫x +π6=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6-π3=sin 2x .4.已知函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π6,下面说法正确的是( )A .函数的周期为π4B .函数图象的一条对称轴方程为x =π3C .函数在区间⎣⎢⎡⎦⎥⎤2π3,5π6上为减函数D .函数是偶函数解析:选B.当x =π3时,f (x )=1,∴x =π3是函数图象的一条对称轴,故选B.5.如图为函数f (x )=3sin(ωx +φ)(ω>0)的部分图象,B 、C 分别为图象的最高点和最低点,若AB →·BC →=|AB →|2,则ω=( )A.π3 B.π4 C.π6 D.π12解析:选C.由题意可知|BC →|=2|AB →|,由AB →·BC →=|AB →|2知-|AB →|·|BC →|cos ∠ABC =|AB →|2,∠ABC =120°,过B 作BD 垂直于x 轴于D ,则|AD →|=3,T =12,ω=2πT =π6,故选C.6.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ= .解析:f (x )=sin x -2cos x =5⎝ ⎛⎭⎪⎫15sin x -25cos x ,设15=cos α,25=sin α, 则f (x )=5(sin x cos α-cos x sin α)=5sin(x -α). ∵x ∈R ,∴x -α∈R ,∴y max = 5. 又∵x =θ时,f (x )取得最大值, ∴f (θ)=sin θ-2cos θ= 5. 又sin 2θ+cos 2θ=1,∴⎩⎪⎨⎪⎧sin θ=15,cos θ=-25,即cos θ=-255.答案:-2557.若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是 .解析:由函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位得到g (x )=sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π4=sin ⎝ ⎛⎭⎪⎫2x +π4-2φ,又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ).∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8. 答案:3π88.已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是 .解析:由题意,得sin ⎝ ⎛⎭⎪⎫2×π3+φ=cos π3,即sin ⎝⎛⎭⎪⎫2π3+φ=sin π6,解得2π3+φ=2k π+π6(无解)或2π3+φ=2k π+5π6,由于0≤φ<π,所以φ=π6.答案:π69.已知函数f (x )=3sin x cos x -cos 2x . (1)求f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的最大值和最小值及相应的x 的值.解:(1)由于f (x )=32sin 2x -12cos 2x -12=sin ⎝⎛⎭⎪⎫2x -π6-12,所以T =2πω=π,故f (x )的最小正周期为π.由2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,所以k π-π6≤x ≤k π+π3,k ∈Z .函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)由于0≤x ≤π2,所以-π6≤2x -π6≤5π6,令2x -π6=π2,即x =π3时,f (x )有最大值12;令2x -π6=-π6,即x =0时,f (x )有最小值-1.10.已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解:(1)由题意知f (x )=a·b =m sin 2x +n cos 2x . 由于y =f (x )的图象过点⎝⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2), 由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2) 将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1,解得2φ+π6=k π+π2(k ∈Z ).由于0<φ<π,所以φ=π6,因此g (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ). [B 级 力量突破]1.将函数h (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π4个单位,再向上平移2个单位,得到函数f (x )的图象,则函数f (x )的图象与函数h (x )的图象( )A .关于直线x =0对称B .关于直线x =1对称C .关于点(1,0)对称D .关于点(0,1)对称解析:选D.依题意,将h (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π4个单位,再向上平移2个单位后得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π4+2,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2的图象,又∵h (-x )+f (x )=2,∴函数f (x )的图象与函数h (x )的图象关于点(0,1)对称.2.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,假如x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12 B .32C.22D .1解析:选B.由题图可知,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,ω=2,又∵-π6+π32=π12,∴f (x )的图象过点⎝⎛⎭⎪⎫π12,1,即sin ⎝ ⎛⎭⎪⎫2×π12+φ=1,得π6+φ=2k π+π2,k ∈Z ,∵|φ|<π2,∴φ=π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.由题意得x 1+x 2=-π6+π3=π6,∴f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π6=sin ⎝⎛⎭⎪⎫2×π6+π3=sin 2π3=32.3.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12 B .π3C.π4D .π6解析:选D.由于g (x )=sin 2(x -φ)=sin(2x -2φ),所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2.由于-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以sin 2x 1和sin(2x 2-2φ)的值中,一个为1,另一个为-1,不妨取sin 2x 1=1,sin(2x 2-2φ)=-1,则2x 1=2k 1π+π2,k 1∈Z ,2x 2-2φ=2k 2π-π2,k 2∈Z ,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1-k 2)∈Z ,得|x 1-x 2|=|(k 1-k 2)π+π2-φ|.由于0<φ<π2,所以0<π2-φ<π2,故当k 1-k 2=0时,|x 1-x 2|min =π2-φ=π3,则φ=π6,故选D.4.将函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6= .解析:将y =sin x 的图象向左平移π6个单位长度可得y =sin ⎝⎛⎭⎪⎫x +π6的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x +π6的图象,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6.所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫12×π6+π6=sin π4=22.答案:225.设y =sin (ωx +φ)⎝⎛⎭⎪⎫ω>0,φ∈⎝ ⎛⎭⎪⎫-π2,π2的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点⎝ ⎛⎭⎪⎫π4,0对称;②图象关于点⎝ ⎛⎭⎪⎫π3,0对称;③在⎣⎢⎡⎦⎥⎤0,π6上是增函数;④在⎣⎢⎡⎦⎥⎤-π6,0上是增函数.正确结论的编号为 . 解析:∵T =π,∴ω=2, ∴y =sin(2x +φ).∵图象关于直线x =π12对称,∴2×π12+φ=π2+k π(k ∈Z ),∴φ=π3+k π(k ∈Z ).又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=π3.∴y =sin ⎝⎛⎭⎪⎫2x +π3. 当x =π4时,y =sin ⎝ ⎛⎭⎪⎫π2+π3=12,故①不正确;当x =π3时,y =0,故②正确;当x ∈⎣⎢⎡⎦⎥⎤0,π6时,2x +π3∈⎣⎢⎡⎦⎥⎤π3,2π3,y =sin ⎝ ⎛⎭⎪⎫2x +π3不是增函数,即③不正确;当x ∈⎣⎢⎡⎦⎥⎤-π6,0时,2x +π3∈⎣⎢⎡⎦⎥⎤0,π3⊆⎣⎢⎡⎦⎥⎤0,π2,故④正确.答案:②④6.青岛第一海水浴场位于汇泉湾畔,拥有长580米,宽40余米的沙滩,是亚洲较大的海水浴场.这里三面环山,绿树葱郁,现代的高层建筑与传统的别墅建筑奇妙地结合在一起,景色格外秀丽.海湾内水清浪小,滩平坡缓,沙质细软,自然条件极为优越.已知海湾内海浪的高度y (米)是时间t (0≤t ≤24,单位:时)的函数,记作y =f (t ).下表是某日各时刻记录的浪高数据:(1)依据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,推断一天内8∶00至20∶00之间,有多少时间可供冲浪者进行运动?解析:(1)由表中数据,知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5;由t =3,y =1.0,得b =1,∴A =0.5,∴振幅为12,y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放, 令12cos π6t +1>1,即cos π6t >0, ∴2k π-π2<π6t <2k π+π2,k ∈Z ,即12k -3<t <12k +3,k ∈Z . ①∵0≤t ≤24,故可令①中的k 分别为0,1,2, 得0≤t <3,或9<t <15,或21<t ≤24.∴在规定时间8∶00到20∶00之间,有6小时的时间可供冲浪者运动,即9∶00到15∶00.。
2021届高三数学(文理通用)一轮复习题型专题训练:函数的值域(三)(含解析)
《函数的值域》(三)主要考查内容:主要涉及根据函数值域求参数(或取值范围)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数2()32(3)3f x x m x m =-+++的值域为[0,)+∞,则实数m 的取值范围为( ) A .{0,3}-B .[3,0]-C .(,3][0,)-∞-⋃+∞D .{0,3}2.若函数242y x x =--的定义域为[]0,m ,值域为[]6,2--,则m 的取值范围是( ) A .(0,4]B .[]2,4C .(0,2]D .()2,43.若()y f x =的定义域为R ,值域为[1,2],则(1)1y f x =-+的值域为( ) A .[2,3] B .[0,1] C .[1,2]D .[1,1]-4.若函数()()()2225311f x a a x a x =++++-的定义域、值域都为R ,则实数a 满足( )A .1a =-或32a =-B .1319a -<<- C .1a ≠-且32a ≠-D .32a =-5.已知函数()f x =的值域为[0,)+∞,则m 的取值范围是( ) A .[]0,4B .(]0,4C .(0,4)D .[4,)+∞6.函数()()23log 21f x mx x =-+的值域为R ,则m 的取值范围是( )A .(0,1)B .[0,1]C .[1,)+∞D .(,1)-∞7.函数()()()22ln 111a x x f x a x x ⎧+>⎪=⎨+-≤⎪⎩的值域为R ,则实数a 的取值范围是( ) A .[)0,+∞B .[)1,+∞C .(],0-∞D .(],1-∞ 8.已知函数()22,0511,04x x x x f x a x ⎧-+≤≤⎪=⎨⎛⎫-≤<⎪ ⎪⎝⎭⎩的值域为[]15,1-,则实数a 的取值范围是( ) A .(],2-∞- B .[)2,0-C .[]2,1--D .{}2-9.若函数()f x =(0,)+∞,则实数m 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞+∞C .(0,1][4,)+∞D .[0,1][4,)⋃+∞10.若函数234,40()26,0x x x f x x x x m⎧+-≤≤=⎨-+<≤⎩的值域为[4,4]-,则实数m 的取值范围为( ) A. B.2]C .[1,2]D .[1,)+∞11.函数()()123,1,1a x a x f x lnx x ⎧-+<=⎨≥⎩的值域为R ,则实数 a 的范围( )A .(),1-∞-B .1,12⎡⎤⎢⎥⎣⎦C .11,2⎡⎫-⎪⎢⎣⎭D .10,2⎛⎫ ⎪⎝⎭12.若函数6,2()(03log ,2xa x x f x a x -+≤⎧=>⎨+>⎩且1a ≠)的值域是[4,+∞),则实数a 的取值范围是( ) A .(1,2] B .(0,2]C .[2,)+∞D.二.填空题13.已知函数()f x =[)0,+∞,则实数t 的取值范围是____ 14.已知函数()(12)3,1ln ,1a x a x f x x x -+<⎧⎨⎩=的值域为R ,则实数a 的取值范围是___15.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a的取值范围是__________.16.函数()421ln 1f x m x x ⎛⎫+=+ ⎪+⎝⎭的值域为R ,则m 的取值范围为______.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求下列函数的值域. (1) 21()1f x x x =++;(2)()4f x =(3)y x =+18.求函数2sin 1sin 3-=+x y x 的值域.19.已知函数f (x )=2328log 1mx x nx +++的定义域为R ,值域为[0,2],求m ,n 的值.20.已知函数()22,02(1),0x x f x x m x ⎧<=⎨-+≥⎩ (1)若1m =-,求()0f 和()1f 的值,并判断函数()f x 在区间()0,1内是否有零点; (2)若函数()f x 的值域为[)2,-+∞,求实数m 的值.21.已知函数()()12log 10f x ax =-区间[)3,4上的最小值为2-.(1)求使()0f x ≥成立的x 的取值范围;(2)若对于任意[)3,4x ∈,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.设函数()()()22213f x x a x a a a R =++++∈.(1)若()231f x a a ≥++对任意的[]1,2x ∈上恒成立,求a 的取值范围;(2)若()f x 在区间[],m n 上单调递增,且函数()f x 在区间[],m n 上的值域为[],m n ,求a 的取值范围.《函数的值域》(三)解析1.【解析】∵函数2()32(3)3f x x m x m =-+++的值域为[0,)+∞, ∴2[2(3)]43(3)0m m ∆=-+-⨯⨯+=,∴30m =-或 ∴实数m 的取值范围为{0,3}- 2.【解析】函数2242(2)6y x x x =--=--的定义域为[0,]m ,值域为[]6,2--∴对称轴为2x =,当2x =时,6y =-,当0x =时,2y =- ,二次函数的对称性,可知2y =-对应的另一个x 的值为4∴值域为[]6,2--时,对应x 的范围为[0,4],故m 的取值范围是[2,4].故选:B.3.【解析】因为(1)1y f x =-+是将原函数()f x ,向右平移1个单位, 再向上平移1个单位得到,但是左右平移不改变值域, 故(1)1y f x =-+的值域为[]2,3.故选:A.4.【解析】若22530a a ++≠,()f x 表示二次函数,值域不为R ,不合题意.所以()f x 为一次函数,2253010a a a ⎧++=⎨+≠⎩解得32a =-.故选:D.5.【解析】m =0时,f (x )=1,不合题意;m ≠0时,令g (x )=mx 2+mx +1,只需240m m m ⎧⎨=-≥⎩>,解得:m ≥4,故选D . 6.【解析】函数()()23log 21f x mx x =-+的值域为R ,即221mx x -+可取遍所有(0,)+∞的值;(1)当0m =时:21y x =-+满足条件;(2)当0m >时:440110m m m ∆=-≥∴≤∴≥>; (3)当0m <时:不成立. 综上:10m ≥≥.故选:B7.【解析】当1x >时,()2ln 2ln12f x a x a a =+>+=; 当1x ≤时,()21f x a x =+-,20x ≥,此时()211f x a x a =+-≤+.由于函数()y f x =的值域为R ,则(](),12,a a R -∞++∞=,可得12a a +≥,解得1a ≤.因此,实数a 的取值范围是(],1-∞.故选:D.8.【解析】当05x ≤≤时,()()22211f x x x x =-+=--+, 所以()151f x -≤≤;当0a x ≤<时,()114x f x ⎛⎫=- ⎪⎝⎭为递增函数,所以()1104af x ⎛⎫-≤< ⎪⎝⎭, 因为()f x 的值域为[]15,1-,所以111540aa ⎧⎛⎫-≥-⎪ ⎪⎨⎝⎭⎪<⎩,故20a -≤<,故选B. 9.【解析】函数()f x =的值域为()0,+∞,则g (x )=mx 2+2(m ﹣2)x+1的值域能取到(0,+∞), ①当m=0时,g (x )=﹣4x+1,值域为R ,包括了(0,+∞), ②要使f (x )能取(0,+∞),则g (x )的最小值小于等于0,则()2204424044m m m ac b am >⎧⎪⎨---=≤⎪⎩,解得:0<m≤1或m≥4.综上可得实数m 的取值范围是][)0,14,⎡⋃+∞⎣,故选:D . 10.【解析】当40x -≤≤时,()24f x x x =+又24y x x =+对称轴为2x =-()()min 24f x f ∴=-=-,()()()max 040f x f f ==-= ()[]4,0f x ⇒∈-当0x m <≤时,()326f x x x =-+ ()266f x x ⇒=-+'()f x 值域为[]4,4-且40x -≤≤时,()[]4,0f x ∈-∴当0x m <≤时,()max 4f x =,()min 4f x ≥-,令()0f x '=,解得1x =,()f x ∴在()0,1上单调递增,在()1,+∞上单调递减又()1264f =-+= 1m ⇒≥当3264x x -+=-时,2x = 2m ⇒≤,[]1,2m ∴∈,本题正确选项:C11.【解析】当1x ≥时,0lnx ≥为满足题意函数()()123,1,1a x a x f x lnx x ⎧-+<=⎨≥⎩的值域为R , 则()()123f x a x a =-+,1x <为单调增函数120a ∴->且当1x <时,()1230a x a -+≤,即120a ->时,12a <,当1x =时,1230a a -+≥,1a ≥-,112a ∴-≤<,故选C 12.【解析】当2x ≤时,64x -+≥, 要使得函数()f x 的值域为[)4,+∞,只需()()13log 2a f x x x =+>的值域包含于[)4,+∞,故1a >,所以3log 24a +≥, 解得12a <≤,所以实数a 的取值范围是(]1,2.故选A 13.【解析】令221ty x x=+-, 当0t <时,22211,(0)t t y x m m x x m =+-=+-=>,因为1t y m m=+-在(0,)+∞上单调递增,因此221t y x x =+-值域为[),0,R +∞为R 的子集,所以0t <;当0t =时,222111t y x x x=+-=-≥-, [)0,+∞为[1,)-+∞的子集,所以0t =;当0t >时,22111,t y x x =+-≥=,当且仅当||x =因为[)0,+∞为1,)+∞的子集,所以11004t ≤∴<≤; 综上,14t ≤,故答案为:1(,]4-∞14.【解析】由题意知() 1y ln x x ≥=的值域为[0,+∞),故要使()f x 的值域为R , 则必有23(1)y a x a =-+为增函数,且1230a a ≥-+,所以120a ->且1a ≥-,解得112a ≤-<,实数a 的取值范围是11,2⎡⎫-⎪⎢⎣⎭.15.【解析】由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤.16.【解析】设()4211u x x m x +=++,则()f x 的值域为R 等价于()min 0u x ≤.令()211xt t +=≥,则()211222t y m t m m tt-+=+=+-+≥+,当2t t=,即t =时等号成立,所以()min 20u x m =+≤,解得2m ≤-(,2-∞-.17.【解析】(1)因为221331244y x x x ⎛⎫=++=++≥ ⎪⎝⎭,故214(0,]13x x ∈++,即函数()f x 的值域为40,?3⎛⎤⎥⎝⎦.(2)要使得函数有意义,则2230x x -++≥,解得[]1,3x ∈-,又函数223y x x =-++在区间[]1,3-上的值域为[]0,4[]0,2,则()[]2,4f x ∈.即()f x 的值域为[]2,4.(3t =,解得21,0x t t =-≥故原函数等价于214,0y t t t =-+≥又()221425y t t t =-+=--+,容易得()f x 的值域为(],5-∞.18.【解析】由题得函数的定义域为R , 由于()2sin 372sin 172sin 3sin 3sin 3x x y x x x +--===-+++, 而1sin 1x -≤≤,可设sin ,[1,1]t x t =∈-, 所以()2,[1,1]37f t t t =-∈-+, 由复合函数单调性得函数()f t 在[1,1]-上单调递增, 所以min 3()(1)21327f t f =-=-=--+, max1()(1)21347f t f ==-=+,即()3124f t -≤≤,所以3124-≤≤y , 所以函数2sin 1sin 3-=+x y x 的值域为31,24⎡⎤-⎢⎥⎣⎦.故答案为:31,24⎡⎤-⎢⎥⎣⎦.19.【解析】由2328()log 1mx x n f x x ++=+,得22831ymx x n x ++=+, 即()23830yym x x n -+--=∵,644(3)(3)0yyx R m n ∈∴∆=---≥,即23()3160yy m n mn -+⋅+-≤由02y ≤≤,得139y ≤≤,由根与系数的关系得19{169m n mn +=+-=,解得5m n ==20.【解析】(1)()22,02(1),0x x f x x m x ⎧<=⎨-+≥⎩ 当1m =-时, ()22,02(1)1,0x x f x x x ⎧<=⎨--≥⎩,∴(0)211f =-=,()11f =- ()f x 在区间()0,1是连续不断的且(0)(1)0f f ⋅<∴函数()f x 在区间()0,1内必有零点(2)当时0x <,()2x f x =,此时0()1<<f x ;当0x ≥时,2()2(1)f x x m m =-+≥ 而()f x 的值域为[2,)-+∞,∴2m =-21.【解析】(1)由题易知函数()f x 是单调函数,因为区间[)3,4左闭右开, 所以函数()f x 的最小值为()()123log 1032f a =-=-,解得2a =.所以()()12log 102x f x =-,()f x 单调递增,符合条件.由()0f x ≥得01021x <-≤,解得952x ≤<,即x 的取值范围为92,5⎡⎫⎪⎢⎣⎭; (2)设()()121log 1022xx g x ⎛=-⎫⎪⎝⎭-,则()12xf x m ⎛⎫>+ ⎪⎝⎭在[)3,4x ∈上恒成立可转化为()g x m >在[)3,4x ∈上恒成立.因为()12log 102y x =-在[)3,4上单调递增,12xy ⎛⎫= ⎪⎝⎭在[)3,4上单调递减,所以()g x 在[)3,4上单调递增. 所以()()31min21173log 428m g x g ⎛⎫<==-= -⎪⎝⎭,所以m 的取值范围为178,⎛⎫ ⎪⎝--⎭∞. 22.【解析】(1)由题意()231f x a a ≥++在[]1,2x ∈上恒成立, 可得21121-+≥=-x a x x x在[]1,2x ∈上恒成立, 令()1g x x x =-,易得函数()1g x x x=-在[]1,2递减, 可得()()2110maxa g x g +≥==,即210a +≥即得12a ≥-.(2)因为()()()22213f x x a x a a a R =++++∈在[],m n 上递增且值域为[],m n ,则满足:()()212a m f m m f n n+⎧-≤⎪⎪=⎨⎪=⎪⎩,则可得方程()f x x =在21,2a +⎡⎫-+∞⎪⎢⎣⎭上有两个不相等的实数根,m n ,设()()2223F x f x x x ax a a =-=+++,则22441202122102a a a a a a f ⎧⎪∆=-->⎪+⎪->-⎨⎪⎪+⎛⎫-≥ ⎪⎪⎝⎭⎩联立解得:1012a -≤<.。
2024-2025学年高三一轮复习联考(三)_全国卷文数(含答案)
2024届高三一轮复习联考(三)全国卷文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回,考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}212,1A xx B x x =<<=∣∣,则A B ⋃=()A.[)1,2-B.(),2∞-C.[)1,3- D.[]1,2-2.命题2:,220p x R x x ∀∈+-<的否定p ⌝为()A.2000,220x R x x ∃∈+->B.2,220x R x x ∀∈+-C.2,220x R x x ∀∈+->D.2000,220x R x x ∃∈+-3.3.已知复数2(1i)z =+(i 为虚数单位),则复数z 的虚部为()A.2B.2- C.2iD.2i-4.若函数()222,0,log ,0,x x x f x x x ⎧-=⎨>⎩则()2f f ⎡⎤-=⎣⎦()A.2- B.2 C.3- D.35.已知1sin 62πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭()A.14-B.14C.12-D.126.函数()21x xe ef x x --=+在[]3,3-上的大致图象为()A.B.C. D.7.函数2sin cos21y x x=-+的最小值是()A.3-B.1-C.32- D.12-8.已知数列{}n a的前n项和22nS n n m=-++,且对任意*1,0n nn N a a+∈-<,则实数m 的取值范为是()A.()2,∞-+ B.(),2∞--C.()2,∞+ D.(),2∞-9.已知等比数列()*a满足4221,m nq a a a≠=,(其中,*m n N∈),则91m n+的最小值为()A.6 B.16 C.32 D.210.已知函数()cos3f x xπ⎛⎫=+⎪⎝⎭,若()f x在[]0,a上的值域为11,2⎡⎤-⎢⎥⎣⎦,则实数a的取值范为()A.40,3π⎛⎤⎥⎝⎦B.24,33ππ⎡⎤⎢⎥⎣⎦C.2,3π∞⎡⎫+⎪⎢⎣⎭ D.25,33ππ⎡⎤⎢⎥⎣⎦11.设4sin1,3sin2,2sin3a b c===,则()A.a b c<< B.c b a<<C.c a b<< D.a c b<<12.已矨,,A B C均在球O的球面上运动,且满足3AOBπ∠=,若三棱锥O ABC-体积的最大值为6,则球O的体积为()A.12πB.48πC.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知()(1,,a k b==,若a b⊥,则k=__________.14.已知{}n a是各项不全为零的等差数列,前n项和是n S,且2024S S=,若()2626nS S m=≠,则正整数m=__________.15.设,m n为不重合的直线,,,αβγ为不重合的平面,下列是αβ∥成立的充分条件的有()(只填序号).①,m a m β⊂∥②,,m n n m αβ⊂⊥⊥③,αγβγ⊥⊥④,m m αβ⊥⊥16.已知函数()14sin ,01,2,1,x x x f x x x π-<⎧=⎨+>⎩若关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)已知数列{}n a 满足12122,log log 1n n a a a +==+,(1)求数列{}n a 的通项公式;(2)求(){}32nn a -的前n 项和nS.18.(12分)已知ABC 中,三个内角,,A B C 的对边分别为,,,,cos cos 2cos 4a b c C a A c C b B π=+=.(1)求tan A ;(2)若c =,求ABC 的面积.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,O 是BC 的中点,PB PC ==,22PD BC AB ===.(1)求证:平而PBC ⊥平面ABCD ;(2)求点A 到平面PCD 的距离.20.(12分)已知数列()n a 满足()21112122222326n n n n n a a a a n -+-++++=-⋅+ .(1)求{}n a 的通项公式;(2)若2n an n b a =+,求数列n b 的前n 项和T .21.(12分)已知函数()ln x af x ex x -=-+.(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程,(2)当0a 时,证明,()2f x x >+.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系,xOy 中,直线l的参数方程为2,21,2x a y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22413sin ρθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若曲线C 经过伸缩变换,2,x x y y ⎧=⎪⎨⎪='⎩'得到曲线C ',若直线l 与曲线C '有公共点,试求a 的取值范围.23.[选修4-5:不等式选讲](10分)已知函数()22(0)f x x x t t =++->,若函数()f x 的最小值为5.(1)求t 的值;(2)若,,a b c 均为正实数,且2a b c t ++=,求1412a b c++的最小值.2024届高三一轮复习联考(三)全国卷文科数学参考答案及评分意见1.A【解析】由21x ,即()()110x x -+,解得11x -,所以{}11B xx =-∣,所以{12}A B xx ⋃=-<∣.故选A .2.D 【解析】2,220x x x ∀∈+-<R 的否定为:2000,220x x x ∃∈+-R ,故选D.3.A 【解析】2(1i)2i z =+=,即复数z 的虚部为2,故选A .4.D【解析】()()()222(2)228,8log 83f f -=--⨯-===,故选D.5.C 【解析】因为1sin 62πα⎛⎫-= ⎪⎝⎭,所以2211cos 2cos 2cos 22sin 11366622ππππααπαα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故选C.6.A 【解析】()()2e e 1x xf x f x x ---==-+,所以函数()y f x =是奇函数,排除B 选项,又()22e e 215f --=>,排除C ,D 选项,故选A.7.D 【解析】由题意,函数22sin cos212sin 2sin y x x x x =-+=+,令[]sin 1,1t x =∈-,可得221122222y t t t ⎛⎫=+=+- ⎪⎝⎭,当12t =-,即1sin 2x =-时,函数取得最小值,最小值为12-.故选D.8.A【解析】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n 时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n 时,{}n a 单调递减,故{}n a 为递减数列,只需满足21a a <,即112m m-+⇒-.故选A .9.D【解析】由等比数列的性质,可得()911911918,10102888m n m n m n m n m n n m ⎛⎛⎫⎛⎫+=+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当6,2m n ==时,等号成立,因此,91m n +的最小值为2.故选D.10.B 【解析】()cos 3f x x π⎛⎫=+⎪⎝⎭,结合图象,()f x 的值域是11,,0,2333x a x a πππ⎡⎤-++⎢⎣⎦,于是533a πππ+,解得2433aππ,所以实数a 的取值范围为24,33ππ⎡⎤⎢⎥⎣⎦.故选B.11.B 【解析】设()()2sin cos sin ,x x x xf x f x x x -==',令()()cos sin ,sing x x x x g x x x =-'=-,当()0,x π∈时,()0g x '<,故()g x 在()0,π上递减,()()()00,0g x g f x <=∴<',故()sin xf x x=在()0,π上递减,023π<<< .()()sin3sin232,,2sin33sin232f f ∴<<<,故c b <,()()()sin 2012,sin1,sin22sin1,3sin232sin14sin12ππππππ-<<-<<<-<-<-,故b a <,故c b a <<,故选B.12.C 【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时231133632212O ABC C AOB V V R R --==⨯⨯⨯==,故3R =O 的体积为343R V π==,故选C.13.3-【解析】0a b a b ⊥⇔⋅=,所以()(1,10,3k k ⋅=+==-.14.18【解析】设等差数列{}n a 的首项和公差分别为1,a d ,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,所以n S 可看成关于n 的二次函数,由二次函数的对称性及202426,m S S S S ==,可得20242622m++=,解得18m =.15.④【解析】根据线面的位置关系易知,①②③中面α和面β可能相交也可能平行,④:若m α⊥且m β⊥,根据面面平行的判定可知垂直于同一直线的两平面互相平行,故④正确.16.()3,1--【解析】作出函数()f x 的大致图象,如图所示,令()t f x =,则()()()2[]210f x m f x m --+-=可化为()()()221110t m t m t m t --+-=-+-=,则11t =或21t m =-,则关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解等价于()t f x =的图象与直线12,t t t t ==的交点个数之和为5个,由图可得函数()t f x =的图象与直线1t t =的交点个数为2,所以()t f x =的图象与直线2t t =的交点个数为3个,即此时214m <-<,解得31m -<<-.17.【解析】(1)在数列{}n a 中,已知12122log log log 1n n n na a a a ++-==,所以12n na a +=,.即{}n a 是首项为12a =,公比为2的等比数列,所以()1*222n n n a n -=⨯=∈N .(2)由()()32322nn n a n -=-⨯,故()()231124272352322n n n S n n -=⨯+⨯+⨯++-⨯+-⨯ ,所以()()23412124272352322nn n S n n +=⨯+⨯+⨯++-⨯+-⨯ ,则()23123222322n n n S n +⎡⎤-=+⨯+++--⨯⎣⎦,()()()11212433221053212n n n n n ++-=-+⨯--⨯=-+-⋅-,故()110352n n S n +=+-⋅.18.【解析】(1)解法一:由题,cos cos 2cos a A c C b B +=,由正弦定理得,sin2sin cos sin cos B A A C C =+,.3,,sin2sin 2sin 2cos2422C A B C B A A A ππππ⎛⎫⎛⎫=++==-=-=- ⎪ ⎪⎝⎭⎝⎭,所以1cos2sin cos 2A A A -=+,221sin cos sin cos 2A A A A --=22tan 1tan 1tan 12A A A --=+,化简得2tan 2tan 30A A --=,解得tan 3A =或tan 1A =-(舍去).解法二:由题,cos cos 2cos a A c C b B +=,由正弦定理得,2sin2sin2sin2B A C =+,即()()()()2sin2sin sin B A C A C A C A C ⎡⎤⎡⎤=++-++--⎣⎦⎣⎦,即()()sin2sin cos B A C A C =+-,又A B C π++=,故()sin sin A C B +=,所以()2sin cos sin cos B B B A C =-,又0B π<<,故sin 0B ≠,所以()2cos cos B A C =-,又A B C π++=,故()cos cos B A C =-+,化简得sin sin 3cos cos A C A C =,因此tan tan 3A C =且tan 1C =,所以tan 3A =.(2)由(1)知tan 3A =,因此()tan tan tan tan 21tan tan A CB AC A C+=-+=-=-,.所以sin 10A =,sin 5B =2sin 2C =,因为,6sin sin a c a A C==,.所以1125sin 612225ABC S ac B ==⨯⨯= .19.【解析】(1)因为,PB PC O =是BC 的中点,所以PO BC ⊥,在直角POC 中,1PC OC ==,所以PO =,在矩形ABCD 中,1,2AB BC ==,所以DO =,又因为2PD =,所以在POD 中,222PD PO OD =+,即PO OD ⊥.而,,BC OD O BC OD ⋂=⊂平面ABCD ,所以PO ⊥平面ABCD ,而PO ⊂平面PBC ,所以平面PBC ⊥平面ABCD .'(2)由(1)平面PBC ⊥平面ABCD ,且DC BC ⊥,所以DC ⊥平面PBC ,所以DC PC ⊥,即PCD 是直角三角形,因为1PC CD ==,所以13122PDC S =⨯=,又知11212ACD S =⨯⨯= ,PO ⊥平面ABCD ,设点A 到平面PCD 的距离为d ,则A PCD P ACD V V --=,即1133PCD ACD S d S PO ⨯⨯=⨯⨯ ,即1311323d ⨯⨯=⨯⨯所以263d =,所以点A 到平面PCD 的距离为3..20.【解析】(1)由题当1n =时,()111223262a +=-⋅+=,即11a =.()21112122222326n n n n n a a a a n -+-++++=-⋅+ ①当2n 时,()211212222526n n n a a a n --+++=-⋅+ ②.①-②得()()()1223262526212nn n n n a n n n +=-⋅+--⋅-=-⋅,所以21n a n =-..(2)由(1)知,212221n an n n b a n -=+=+-,则()()()()3521212325221n n T n -=++++++++- ()()3521222213521n n -=+++++++++-⋅()()212214121232..1423nn n n n +⨯-+-+-=+=-21.【解析】(1)当1a =时,()()111e ln ,e 1x xf x x x f x x--=-+=-+',所以()()12,11f f '==,.则切线方程为()211y x -=⨯-,.即10x y -+=曲线()f x 在点()()1,1f 处的切线方程为10x y -+=.(2)证明:要证()2f x x >+,即证e ln 2x a x -->,设()eln ,0x aF x x x -=->,即证()2F x >,当0a 时,()()1e 1e ln ,ex a x ax ax F x x F x x x----=-=-='在()0,∞+上为增函数,且()e1x ah x x -=-中,()()0100e 110,1e 1e 10a a h h --=⨯-=-=-->.故()0F x '=在()0,∞+上有唯一实数根0x ,且()00,1x ∈..当()00,x x ∈时,()0F x '<,当()0,x x ∞∈+时,()0F x '>,从而当0x x =时,()F x 取得最小值.由()00F x '=,得001ex ax -=,故()()000001eln 2x aF x F x x x a a x -=-=+->.综上,当0a 时,()2F x >即()2f x x >+.22.【解析】(1)由题2,21,2x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t得直线:20l x a -=,.22413sin ρθ=+,即2224cos 4sin ρθθ=+,即曲线C 的直角坐标方程为2214x y +=.(2)由,2,x x y y ⎧=⎪⎨⎪='⎩'得2,,x x y y =⎧⎨=''⎩又2214x y +=,所以()()22214x y +'=',即'2'21x y +=,所以曲线C '的方程是221x y +=,.由1d =得11a -.所以a 的取值范围是[]1,1-.23.【解析】(1)()222f x x x t x x t x t =++-=++-+-,()2222y x x tx x t t t =++-+--=+=+,当2x t -时等号成立,.⋅又知当x t =时,x t -取得最小值,所以当x t =时,()f x 有最小值,此时()min ()25f x f t t ==+=,所以3t =..(2)由(1)知,23a b c ++=,()22141114111162(121)232333a b c a b c a b c ⎛⎫++=++++=++= ⎪⎝⎭,当且仅当333,,824a b c ===时取等号,所以1412a b c ++的最小值为163.。
2025高考数学一轮复习导数与三角函数问题
(2)若 x∈0,π2,求证:当 a≤3 时.f(x)+12x3+3≥0.
令 h(x)=f(x)+12x3+3, 则 h′(x)=f′(x)+32x2=3sin x-ax+23x2, ∵a≤3,∴h′(x)≥3sin x-3x+32x2, 令 p(x)=3sin x-3x+32x2,则 p′(x)=3cos x-3+3x, 令 m(x)=3cos x-3+3x,则 m′(x)=-3sin x+3≥0, ∴m(x)在0,π2上单调递增,即 m(x)≥m(0)=0,∴p′(x)≥0,
∴∃x0∈(0,π) ,使h′(x0)=0,且x∈(0,x0)时,h′(x)>0,h(x)>h(0)=0, g′(x)>0,∴g(x)在(0,x0)上单调递增,∴g(x)>g(0)=0,不符合题意; 综上,a 的取值范围是13,+∞.
规律方法
导数与三角函数问题的解法 (1)利用三角函数的有界性:在含参数的问题中,往往需要分类讨论, 若能有效地利用三角函数的有界性,则能快速找到分类讨论的依据, 从而实现问题的求解. (2)利用三角函数的周期性:涉及零点问题时,可根据三角函数的周期 性分段来研究. (3)利用分隔直线法:常见的一些不等式如:当 x∈0,π2时,sin x<x<tan x, ln(x+1)≤x 等,可利用这些不等式放缩再解决问题.
②当 3a≥1,即 a≥31时,h′(x)≤0,h(x)在[0,+∞)上单调递减, ∴h(x)≤h(0)=0,∴g′(x)≤0,∴g(x)在[0,+∞)上单调递减,
∴g(x)≤g(0)=0,符合题意; ③当-1<3a<1,即-31<a<13时, 由h′(0)=1-3a>0,h′(π)=-1-3a<0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大题冲关集训(三)
1.(2014哈尔滨一模)数列{an}满足an+1-an=2,a1=2,等比数列{bn}满足b1=a1,b4=a8.
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
解:(1)an+1-an=2,a1=2,
所以数列{an}为等差数列,
则an=2+(n-1)×2=2n,
b1=a1=2,b4=a8=16,
所以q3==8,q=2,
则bn=2n.
(2)cn=anbn=n·2n+1,
则Tn=1×22+2×23+3×24+…+n·2n+1,
2Tn=1×23+2×24+3×25+…+n·2n+2,
两式相减得-Tn=1×22+23+24+…+2n+1-n·2n+2,
整理得Tn=(n-1)2n+2+4.
2.(2013高考福建卷)已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1,a3成等比数列,求a1;
(2)若S5>a1a9,求a1的取值范围.
解:(1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,
所以=1×(a1+2),
即-a1-2=0,
解得a1=-1或a1=2.
(2)因为数列{an}的公差d=1,且S5>a1a9,
所以5a1+10>+8a1,
即+3a1-10<0,
解得-5
线y=-x+1上,其中Tn是数列{bn}的前n项和.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列.
(1)解:由题an+1-an=1,
即{an}是以2为首项,公差为1的等差数列.
an=2+n-1=n+1.
(2)证明:由(bn,Tn)在y=-x+1上,
则Tn=-bn+1,
Tn-1=-bn-1+1,n≥2,
bn=-bn+bn-1,n≥2,
bn=bn-1,n≥2.
又b1=-b1+1,
得b1=,
则{bn}是以为首项,公比为的等比数列.
4.(2014高考新课标全国卷Ⅰ)已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中
λ为常数.
(1)证明:an+2-an=λ;
(2)是否存在λ,使得{an}为等差数列?并说明理由.
(1)证明:由题设,anan+1=λSn-1,an+1an+2=λSn+1-1.
两式相减得an+1(an+2-an)=λan+1.
由于an+1≠0,所以an+2-an=λ.
(2)解:存在满足题意的λ,
由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.
由(1)知,a3=λ+1,
令2a2=a1+a3,解得λ=4.
故an+2-an=4,由此可得
{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;
{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得数列{an}为等差数列.
5.(2014洛阳模拟)已知函数f(x)=(x≠-1,x∈R),数列{an}满足a1=a(a≠-1,a∈
R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=4时,记bn=(n∈N*),证明数列{bn}是等比数列,并求出通项公式an.
解:(1)因为f(x)=,
a1=a,an+1=f(an)(n∈N*),
数列{an}是常数列,
所以an+1=an=a,
即a=,
解得a=2或a=1.
所以所求实数a的值是1或2.
(2)因为a1=4,bn=(n∈N*),
所以b1=,
bn+1===,
即bn+1=bn(n∈N*).
所以数列{bn}是以b1=为首项,q=为公比的等比数列,
于是bn=()n-1=()n(n∈N*),
由bn=,
即=()n,
解得an=(n∈N*),
所以所求的通项公式an=(n∈N*).
6.已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列
{bn}的b2,b3,b4.
(1)求数列{an}与{bn}的通项公式;
(2)证明:≤++…+<.
(1)解:设等比数列{bn}的公比为q,
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4,
∴(a1+3d)2=a1(a1+12d).
又a1=3,
∴d2-2d=0,
∴d=2或d=0(舍去).
∴an=3+2(n-1)=2n+1.
等比数列{bn}的公比为q===3,b1==1.
∴bn=3n-1.
(2)证明:由(1)知Sn=n2+2n,
∴==(-),
∴++…+
=
=(1+--)
=-(+)<.
∵+≤+=,
∴-(+)≥,
∴≤++…+<.
7.(2015上饶六校月考)已知等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}满足
b1=,bn+1=bn.
(1)求数列{an},{bn}的通项公式;
(2)记Tn为数列{bn}的前n项和,f(n)=,试问f(n)是否存在最大值,若存在,求出最大
值;若不存在,请说明理由.
解:(1)设等差数列{an}的首项为a1,公差为d,
则
解得a1=1,d=1,
∴an=n,
由题意知=,
∴=()n-1,
∴bn=.
(2)由(1),得Tn=+++…+,
Tn=+++…+,
所以Tn=2-,
又Sn=,
所以f(n)==,
f(n+1)-f(n)=-=,
当n≥3,n∈N*时,f(n+1)-f(n)<0,
当n<3,n∈N*时,f(n+1)-f(n)≥0,
又f(1)=1,f(2)=,f(3)=,
∴f(n)存在最大值,为.
8.某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红
500万元.该企业2010年年底分红后的资金为1000万元.
(1)求该企业2014年年底分红后的资金;
(2)求该企业从哪一年开始年底分红后的资金超过32500万元.
解:设an(单位:万元)为(2010+n)年年底分红后的资金,其中n∈N*,
则a1=2×1000-500=1500,
a2=2×1500-500=2500,…,an=2an-1-500(n≥2).
∴an-500=2(an-1-500)(n≥2),
即数列{an-500}是以a1-500=1000为首项,
公比为2的等比数列,
∴an-500=1000×2n-1,
∴an=1000×2n-1+500.
(1)a4=1000×24-1+500=8500,
∴该企业2014年年底分红后的资金为8500万元.
(2)由an>32500,即2n-1>32,得n>6,
∴该企业从2017年开始年底分红后的资金超过32500万元.