3逻辑函数及其表示方法
合集下载
第2章 逻辑代数基础

0-1率A· 1=1
A B
冗余律: AB A C BC AB A C
证明: AB A C BC
AB A C ( A A) BC
AB A C ABC A BC
互补率A+A=1 分配率 A(B+C)=AB+AC 0-1率A+1=1
AB(1 C) A C(1 B)
1、并项法
利用公式A+A=1,将两项合并为一项,并消去一个变量。 运用分配律 变并 相 和 包 量成 同 反 含 Y1 ABC A BC BC ( A A ) BC BC 的一 时 变 同 若 因项 , 量 一 两 BC BC B(C C ) B 子, 则 , 个 个 。并 这 而 因 乘 运用分配律 消两其子积 去项他的项 Y2 ABC AB AC ABC A( B C ) 互可因原中 ABC ABC A( BC BC) A 为以子变分 反合都量别 运用摩根定律
(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”, “1”换成“0”,原变量换成反变量,反变量换成原变量,那么 所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规 则称为反演规则。例如:
Y AB CD E
Y A B C D E
A A B A 吸收率: A ( A B) A
A ( A B) A B A A B A B
证明: A A B ( A A)(A B)
分配率 A+BC=(A+B)(A+C)
1 ( A B)
互补率A+A=1
A B
冗余律: AB A C BC AB A C
证明: AB A C BC
AB A C ( A A) BC
AB A C ABC A BC
互补率A+A=1 分配率 A(B+C)=AB+AC 0-1率A+1=1
AB(1 C) A C(1 B)
1、并项法
利用公式A+A=1,将两项合并为一项,并消去一个变量。 运用分配律 变并 相 和 包 量成 同 反 含 Y1 ABC A BC BC ( A A ) BC BC 的一 时 变 同 若 因项 , 量 一 两 BC BC B(C C ) B 子, 则 , 个 个 。并 这 而 因 乘 运用分配律 消两其子积 去项他的项 Y2 ABC AB AC ABC A( B C ) 互可因原中 ABC ABC A( BC BC) A 为以子变分 反合都量别 运用摩根定律
(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”, “1”换成“0”,原变量换成反变量,反变量换成原变量,那么 所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规 则称为反演规则。例如:
Y AB CD E
Y A B C D E
A A B A 吸收率: A ( A B) A
A ( A B) A B A A B A B
证明: A A B ( A A)(A B)
分配率 A+BC=(A+B)(A+C)
1 ( A B)
互补率A+A=1
逻辑代数基础

所得到的图形叫n变量的卡诺图。
逻辑相邻的最小项:如果两个最小项只有一个变量互为反变 量,那么,就称这两个最小项在逻辑上相邻。 如最小项 m6=ABC、与
m7 =ABC 在逻辑上相邻 m7
m6
两变量卡诺图 AB 0 1 m0 m1 0 AB AB 1 mB AB A 2 m3 三变量卡诺图 B
四变量卡诺图 CD AB 00 01 11 10 00 m0 m1 m3 m2 01 m4 m5 m7 m6 A 11 m12 m13 m15 m14
b.去括号
ABC ABC AB
ABC ABC AB(C C )
ABC ABC ABC ABC
m3 m5 m7 m6 m(3,5,6,7)
三、 用卡诺图表示逻辑函数
1、卡诺图的引出 卡诺图:将n变量的全部最小项都填入小方格内,并使具有 逻辑相邻的最小项在几何位置上也相邻地排列起来,这样,
L CD 00 01 AB 00 1 1 01 11 10 1 0 1 0 0 0 11 10 1 0 1 1 1 0 1 1
例2 画出下式的卡诺图
L ( A, B, C , D) ( A B C D)( A B C D)( A B C D)
解
( A B C D)( A B C D) 1. 将逻辑函数化为最小项表达式
结合律:A + B + C = (A + B) + C
A · · = (A · · B C B) C
A 分配律: ( B + C ) = AB + AC
A + BC = ( A + B )( A + C )
第2章 逻辑代数与逻辑化简

L ABC ABC ABC ABC
反之,由函数表达式也可以转换成真值表。 例2 写出函数 L A B
A B
真值表。
解:该函数有两个变量,有4种取值的可能 组合,将他们按顺序排列起来即得真值表。
逻辑函数及其表示方法(4)
3.逻辑图——逻辑图是由逻辑符号及它们之间的连线而构成的图形。 由函数表达式可以画出其相应的逻辑图。 例3 画出下列函数的逻辑图: 解:可用两个非门、两个与门 和一个或门组成。
∴等式成立 同理可得
AB A C BCD AB A C
逻辑代数的运算规则(4)
基本逻辑定理 (1)对偶定理 若已知等式
F G
1 0
F
1 0
0 1
" " " " " " " "
F
D
G
0 1
F的对偶式
" " " G的对偶式 " " " " "
L A B A B
由逻辑图也可以写出其相应 的函数表达式。 例4 写出如图所示逻辑图的函数表达式。 解:可由输入至输出逐步 写出逻辑表达式:
L AB BC AC
逻辑函数及其表示方法(5)
逻辑函数的标准形式 考查逻辑函数: F f ( A, B) AB AB AB 化简,有: 最小项 A AB 0 AB 0 AB 1 AB 1 B 0 1 0 1 标准“与或” 式
0 1 0 1
A 0 1
Y 1 0
0 1 0 1
&
≥1
A A
1
Y Y
逻辑 符号
第四次课逻函数的表示方法和最大项最小项

F ( A, B, C ) = M 0 ⋅ M 2 ⋅ M 4 ⋅ M 5 ⋅ M 7 = ( A + B + C )( A + B′ + C )( A′ + B + C )( A′ + B + C ′)( A′ + B′ + C ′)
标准或与型特点:1.式子为和项之积的形式; 2.逻辑函数不一定包含所有的最大 项, 但每一项必须为最大项
在输入变量任一取值下,有且仅有一个最大项的 值为0; 全体最大项之积为 0; 任何两个最大项之和为 1; 只有一个变量不同的两个最大项的乘积等于各相 同变量之和。
( A + B + C) • ( A ′ + B + C) = B + C
26
四、 逻辑函数的标准或与式型-最大项 之积标准型
如
Y ( A, B ) = M 1 ⋅ M 3 = ( A + B′)( A′ + B′)
Y = AC + B′C = ( AC + B′ )( AC + C ) = ( A + B′ )( B ′ + C )C = ( A + B′ + CC ′ )( B′ + C + AA′ )(C + AA′ ) = ( A + B′ + C )( A + B′ + C ′ )( B′ + C + A) • ( B′ + C + A′ )(C + A)(C + A′ ) = M 2 M 3 M 6 ( A + C + BB′ )( A′ + C + BB′ ) = M 2 M 3 M 6 ( A + C + B )( A + C + B′ )( A′ + C + B )( A′ + C + B ′ )
逻辑函数及其简化

消去法
运用吸收律 A AB A B 消去多余因子。
L A AB BE A B BE ABE
L AB AC BC
AB A B C
AB ABC
AB C
AB AB C C ABC ABC
AB AC AB AC BC
将某一乘积项展开为两项,或添加某乘积项,再与其它乘积项 进行合并化简。
AB
A
C 00 01 11 10
00 0 1 0
C1 0 1 1 1
B
从逻辑表达式到卡诺图
(1)如果表达式为最小项表达式,则可直接填入卡诺图,方法如下:
逻辑函数包含的最小项,其对应的方格填1。 逻辑函数不包含的最小项,其对应的方格填0。
用卡诺图表示3变量逻辑函数: F ABC ABC ABC ABC
所以:F F * * AC B D B F
不受变量数目的限制。
没有固定的步骤可循; 需要熟练运用各种公式和定理; 复杂的逻辑函数化简时需要技巧和经验; 有时很难判定化简结果是否最简。
1. 逻辑函数化简的意义和目标; 2. 逻辑函数的化简方法; 3. 公式法化简的方法和步骤。
逻辑函数的 卡诺图法化简
从真值表到卡诺图
已知某逻辑函数的真值表,用卡诺图表示该逻辑函数。
解 该函数有3个变量,先 画出3变量卡诺图,然 后根据真值表将8个最 小项的取值0或者1填入 卡诺图中对应的8个方 格中即可。
真值表
ABC L
000 0 001 0 010 0 011 1 100 0 101 1 110 1 111 1
A AC BD BEF (利用 A AB A ) A C BD BEF (利用 A AB A B )
化简函数
F A A B A C B D A C E F B F D E F
第2章 逻辑代数基础(完整版)

2
A BC ( A B)( A C )
方法二:真值表法
[解]
方法一:公式法
右式 ( A B)( A C ) A A A C A B B C
A AC AB BC A(1 C B) BC
A BC 左式
A (B C) A B A C 分配律: C ( A B) ( A C ) A B 缓一缓 ( A B)' A'B' ( A B)' A' B' 反演律(摩根定理):
( A B C )' A' B'C ' ( A B C )' A'B'C ' ( A B C )' A' B'C ' ( A B C )' A'B'C '
互补律: A A' 1
A 1 1 A 0 0
A A' 0
等幂律: A A A
A A A
双重否定律: ( A' )' A
20
CopyRight @安阳师范学院物电学院_2013
2
3)基本运算规则
A B B A 交换律: A B B A ( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
A E 电路图 B Y
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合 功能表
灯Y 灭 灭 灭 亮
5
L=ABCopyRight @安阳师范学院物电学院_2013
逻辑函数的表示方法的相互转换2007版
逻辑函数表示方法之间的相互转换
(2)真值表
波形图
例6 已知逻辑函数的真值表如 表5所示,试画出输入输出 波形图。 表5
输入 输出
解:输入输出波形图如图6所示。
A
0 0 0 0 1 1 1 1
B
0 0 1 1 0 0 1 1
C
0 1 0 1 0 1 0 1
Y
1 1 0 0 1 0 0 0
图6
逻辑函数表示方法之间的相互转换
内容
1
真值表和逻辑函数式的相互转换
2
逻辑函数式和逻辑图的相互转换
3
真值表和波形图的相互转换
逻辑函数表示方法之间的相互转换
1 真值表 转换 逻辑函数式
(1)真值表 逻辑函数式
转换方法:
① 找出真值表中使逻辑函数值为“1”的输入变量组合; ② 对应每个输出为“1”的输入变量组合关系为与(即乘积项),输入 变量取值为“1 ”的写成原变量,取值为“0”的写成反变量; ③ 将乘积项相加,即得到输出的逻辑函数式。
(2)逻辑函数式 转换方法:
真值表
① 将输入和输出变量以表的形式表示出来; ② 写出输入变量所有可能的取值组合; ③ 将输入变量所有取值组合代入逻辑函数式,得出输出值。
例2 写出逻辑函数式
Y=AB +C 的真值表。 解:由转换方法可得该逻辑 函数的真值表如表2 所示。
A 0 0 0 0 1 1 1 1
转换
在逻辑函数的真值表和波形图中,任意改变各组输入和输出取值 的排列顺序对函数有无影响 ?
作 业
题2.3 题2.6 题2.9
逻辑函数表示方法之间的相互转换
例1 某逻辑函数的真值表如右表1 所示,试写出逻辑函数式。
第三章 逻辑代数与 逻辑函数
4
0100 0
5
0101 1
+∑d(11,12,13,14,15)
6
0110 0
7
0111 1
CD AB 00 01 11 10
00 0 1 1 0 01 0 1 1 0
11 ×0 ×0 ×0 ×0 10 0 1 ×0 ×
F=D
F = AD+BCD
8
1000 0
9
1001 1
1010 ×
无
1011 ×
•与或表达式易于从真值表直接写出,而且只需运用一次摩根 定律就可以从最简与或表达式变换为与非-与非表达式,从而 可以用与非门电路来实现。
二. 逻辑函数代数法化简
•最简与或表达式有两个特点: 1.与项(即乘积项)的个数最 少; 2.每个与项中变量的个数最少。
1.消去多余项: 例 F=AB+ABC(E+F)=AB
2.消去合并项: 例 F=ABC+ABC =A(BC+BC)=A
3.消去因子:
例 F=AB+AC+BC
=AB+(A+B)C=AB+ABC=AB+C
4.添加项配项: 例 F=AB+BC+BC+AB
=AB+BC+BC+AB+AC =AB+BC+AC
•对较简单逻辑函数用代数化简很方便。对较复杂的逻辑 函数化简不但要求熟练掌握逻辑代数的基本公式,而且 需要一些技巧,特别是较难掌握获得代数化简后的最简 逻辑表达式的方法。
二. 基本运算定律
1.交换律:A B=B A A+B=B+A A + B=B + A 2.结合律:A(B C)=(A B)C (A+B)+C=A+(B+C)
逻辑代数基础(课件)
图形符号
A
L
B
23
2. 或逻辑
逻辑表达式 L= A + B
只有决定某一事件的原因有一个或 一个以上具备,这一事件才能发生
AB L 00 0 01 1 10 1 11 1 或逻辑真值表
图形符号
A 1
L
B
24
3. 非逻辑
当决定某一事件的条件满足时,事 件不发生;反之事件发生
非逻辑真值表
AL
图形符号
0
1
1
0
逻辑表达式 F= A
A
1
L
25
1.3.2 常用复合逻辑运算
与非逻辑运算
或非逻辑运算
L=AB
L=A+B
L
L
与或非逻辑运算 L=AB+CD
L
26
异或运算
AB 00 01 10 11
L 0 1
1 0
逻辑表达式
L=AB=AB+ AB
图A 形符号=1
B
L
同或运算
AB 00 01 10
L 1 0
0
逻辑表达式 L=A B= AB
利用真值表
用真值表证明反演律
A B AB A+ B A• B A+B
00 1
1
1
1
01 1
1
0
0
10 1
1
0
0
11 0
0
0
0
A• B= A+B A+ B=AB
31
1.4.2 逻辑代数中的基本规则
1. 代入规则
任何一个含有某变量的等式,如果等式中 所有出现此变量的位置均代之以一个逻辑函数 式,则此等式依然成立。
逻辑函数
逻 辑 A 符 B 号
≥1
Y2
见1为0 全0为1
(3) 与或(非)逻辑 与或非逻辑
Y 3 AB CD
A B C D
& ≥1
Y3
(真值表略)
与或逻辑
Y 3 AB CD
(4) 异或逻辑
A B
=1
Y4
Y4 A B A B A B
A 0 0 1 1
B 0 1 0 1
Y4 0 1 1 0
或非-或非式
(A B) (A C )
A B AC
二.逻辑函数的标准形式
标准与或表达式
Y F ( A ,B ,C ) AB A C
AB ( C C ) AC ( B B )
ABC AB C A BC A B C
标准与 或式
最小项
标准与或式就是最小项之和的形式
将 Y 中“. ”换成“+”,“+”换成 “.”“0” 换成“1”,“1”换成“0” 例如 Y 1 A ( B C ) CD
Y2 AB C D C
Y
( 对偶式 )
Y 1 ( A BC ) ( C D )
Y 2 ( A B ) C D C
对偶规则的应用:证明等式成立
非: 0 1
1 0
0· =0 1 1· =1 1
1+0=1 0+0=0
二、变量和常量的关系(变量:A、B、C…)
1 与: A · = A 或: A + 0 = A 非: A A 0 A· = 0 0
A+1=1
A A 1
三、与普通代数相似的定理
交换律 结合律 分配律