大学物理下第15章量子力学基础

合集下载

量子力学基础

量子力学基础

ii.普朗克公式: n nh

nh
nhe kT
hc
n0 nh
h
h


hc
e kT
e kT 1 ekT 1
n0
得普朗克公式: M B (T ) 2hc 25
1
hc
e kT 1
普朗克公式概括了所有黑体辐射的结果,普 朗克假设拉开了量子力学的序幕。
当 hc(即 kT h 时), 普朗克公式近
kT
似为维恩公式:
M
B
(T
)

2hc
25
e
hc kT
大学物理B
量子物理
第十五章A量子力学基础
斯特藩-玻耳兹曼定律: 对普朗克公式求积分得
M B (T )

M
0
B
(T
)
d

T
4
大学物理B
量子物理
第十五章A量子力学基础
大学物理B
量子物理
第十五章A量子力学基础
•量子力学的实验基础 ①黑体辐射
a.热辐射 热辐射也称温度辐射,处于近平衡态的物
体,由于内部带电粒子的热运动,不断地向 外辐射电磁波,辐射能及其按波长的分布与 温度及物体性质有关。温度越高、辐射越强 、波长越短。
大学物理B
量子物理
第十五章A量子力学基础
i.辐射出射度 单位时间从物体单位表面积上辐射出的电磁
1884年玻耳兹曼从理论上推得此式。
大学物理B
量子物理
第十五章A量子力学基础
iii.维恩位移律:
1893年,维恩根据黑体辐射的实验得出:
m

b T
其中 m为单色辐出度最大处所对应的波长,

大学物理教案:量子力学基础

大学物理教案:量子力学基础

大学物理教案:量子力学基础引言量子力学是现代物理学的重要分支,研究微观世界中粒子的行为和相互作用。

本教案将介绍量子力学的基本概念和原理,帮助学生在大学物理课程中建立起对量子力学的初步认知。

1. 量子力学的发展历程1.1 经典物理到量子物理的转变•描述经典物理无法解释的实验现象•黑体辐射、光电效应等实验结果推动了量子力学的发展1.2 著名科学家与量子力学的关系•麦克斯·普朗克与黑体辐射问题•阿尔伯特·爱因斯坦与光电效应、波粒二象性•尤金·维格纳与玻尔原子模型2. 波粒二象性2.1 光的波动性质•杨氏双缝干涉实验及其结果解释2.2 光电效应实验及其结果解释•根据爱因斯坦提出的能量元概念来解释实验现象2.3 德布罗意假设•物质也具有波动性质•波粒二象性的提出和解释3. 波函数与薛定谔方程3.1 波函数的定义•归一化条件和物理意义3.2 薛定谔方程及其解•定态薛定谔方程的求解方法和物理意义3.3 自由粒子、有限深势阱等简单系统的例子讲解4. 测量与不确定性原理4.1 算符与算符代数•物理量对应算符,算符的乘法规则等基本概念4.2 不确定性原理•测量中存在的无法完全确定位置和动量两个物理量的原因•测不准关系的推导与物理意义5. 叠加原理与量子纠缠5.1 叠加原理及其实验验证•双缝干涉实验中叠加态的观察结果5.2 EPR悖论与贝尔不等式实验•揭示了量子力学中非局域性和纠缠现象结论通过本教案对量子力学基础知识的学习,学生将深入了解量子力学的发展历程、波粒二象性、波函数与薛定谔方程、测量与不确定性原理以及叠加原理与量子纠缠等重要概念。

这些基础知识将为进一步学习和研究量子力学提供坚实的基础。

(本教案共计342字,如需补充可继续添加相关内容)。

量子力学基础

量子力学基础

量子力学基础
量子力学是描述微观粒子行为的物理学理论。

它基于几个重要的基
本概念:
1. 粒子的波粒二象性:根据量子力学,微观粒子(如电子、光子等)既具有波动特性也具有粒子特性。

这意味着粒子的运动和行为可以通
过波动的方式来描述。

2. 不确定性原理:由于波粒二象性,确定粒子的位置和动量同时存
在的精确值是不可能的。

不确定性原理表明,我们无法同时准确测量
粒子的位置和动量,只能得到它们的概率分布。

3. 波函数:波函数是描述量子系统状态的数学函数。

它包含了粒子
的所有可能位置和动量的信息。

根据波函数,可以得出粒子的概率分布。

4. 算符和观测量:在量子力学中,物理量(如位置、动量、能量等)被表示为算符,而不是直接的数值。

物理系统的状态和性质可以通过
算符的作用来描述和测量。

5. 薛定谔方程:薛定谔方程是量子力学的基本方程,描述了量子系
统的时间演化。

它通过波函数的时间导数和能量算符之间的关系来表示。

量子力学的基础原理提供了一种独特而全面的方式来理解微观世界
的行为。

它已经在许多领域获得了成功应用,如原子物理、核物理、
量子化学和量子计算等。

罗益民大学物理之15量子物理基础gPPT课件

罗益民大学物理之15量子物理基础gPPT课件
1927 年汤姆逊(G·P·Thomson)以600伏慢电子 (=0.5Å)射向铝箔,也得到了像X射线衍射一 样的衍射,再次发现了电子的波动性。
1937年戴维逊与GP汤姆逊共获当年诺贝尔奖 (G·P·Thomson为电子发现人J·J·Thmson的儿子)
1937诺贝尔物理学奖
C.J.戴维孙 通过实验发现晶体 对电子的衍射作用
1929诺贝尔物理学奖
L.V.德布罗意 电子波动性的理论 研究
2. 对物质波的描述
德布罗意提出了物质波的假设: 一切实物粒子(如电子、质子、中子)都与光子
一样, 具有波粒二象性。 运动的实物粒子的能量E、动量p与它相关联的
波的频率 和波长之间满足如下关系:
Em2ch
p m h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
练习:设光子与电子的德布罗意波长均为λ,
试比较其动量和能量大小是否相同。
h
p光
pe
h
p光 pe

E光
h
hc
Ee mc2
mvc v
2
pc 2 v
c v
hc
c v E光
Ee E光
思考: E ehh u u ch c u cE 光
E eE 光 uc?
m0值:
U
或 12 .3 Å
U
当U=100伏
12.3 U
1.23Å
h 2em0U
二、德布罗意波的实验证明 1.戴维孙 —— 革末实验 1923年 : 用电子散射实验研究镍原子结构
1925年 : 偶然事件后实验曲线反常,出现若干 峰值, 当时未和衍射联系起来。 1926年: 了解德布罗意物质波假设

第15章 量子物理 重点与知识点

第15章 量子物理 重点与知识点

2019/9/15
理学院物理系 王 强
第15章 量子物理
大学一物、理 普朗克能量第1子5章假量说子物、理爱*重因点斯与知坦识点光* 量子假说
3、光的波粒二象性
1)光子的能量、质量与动量
光子静止质量: m0 0
光子的能量:

mc2
m

hν c2
光子的动量:
p

mc

hν c2
子相当于频率为 ν 和波长为 的波, 满足:
这种和实物粒子相联系的波称为德布罗意波或物质波。
E mc2 hν
p mV h

(二)德布罗意波长
m m0
1 2
h h h 1 2
p m V m0V
2019/9/15
理学院物理系 王 强
第15章 量子物理
大学物理
电子的康普顿波长:
c

h m0c
2 43 10 12 m 0.00243 nm
2019/9/15
理学院物理系 王 强
第15章 量子物理
大学物理
二、第1氢5章原量子子物的理玻*重尔点理与知论识点*
1913年玻尔在卢瑟福的原子结构模型的基 础上,将量子化概念应用于原子系统,提出三 条假设:
(一)量子化条件和量子数
(量子力学中的氢原子问题的严格解)
2、角动量量子化和角量子数 Angular Quantum Number
电子绕核运动的角动量:
z
L
L l(l 1) h l(l 1)
2
l 0, 1, 2, 3,, n 1
O
l : ( 轨道 )角(副)量子数
2019/9/15

大学物理量子力学的基础

大学物理量子力学的基础

大学物理量子力学的基础量子力学是一门研究微观世界的物理学科,它是对自然界最基本的物质粒子行为进行描述的理论。

在大学物理学课程中,量子力学作为重要的一部分,对于学生来说是一门具有挑战性的学科。

本文将介绍大学物理中量子力学的基础知识,包括量子力学的起源、基本理论、波粒二象性等内容。

一、量子力学的起源量子力学最早起源于20世纪初的实验观察,其中包括普朗克黑体辐射定律和爱因斯坦光电效应等重要实验结果。

这些实验现象无法被经典物理学所解释,迫使科学家们提出一种新的理论来描述微观尺度的物理现象。

1918年,德国物理学家玻恩提出了量子假设,为后来的量子力学奠定了基础。

二、量子力学的基本理论量子力学的基本理论由薛定谔方程和量子力学算符理论构成。

薛定谔方程是描述量子系统演化的基本方程,它描述了系统波函数随时间的演化规律。

而量子力学算符则用来描述物理量的测量和运算,它们对应于物理量的观测值和运动方程。

三、波粒二象性波粒二象性是量子力学的核心概念之一。

根据量子力学的理论,微观粒子在不同的实验条件下既可以呈现出波动性质,又可以表现出粒子性质。

具体而言,光的行为表现为波动性,在双缝实验中呈现出干涉和衍射现象;而电子、中子等微观粒子也可以表现出波动性质,例如在杨氏实验中呈现出干涉条纹。

四、量子力学中的基本概念为了更好地理解量子力学,我们需要掌握其基本概念。

首先是波函数,它描述了量子系统的状态,并且可以用来计算物理量的平均值。

其次是量子态,量子系统所处的状态可以用量子态来描述,量子力学中的态叠加原理也是量子力学与经典物理学的一个重要差异。

最后是测量,量子力学中的测量与经典物理学有很大的不同,测量结果会塌缩波函数,并且存在不确定性原理。

五、量子力学在实际应用中的意义量子力学不仅是基础物理学的重要学科,还被广泛应用于许多领域。

在材料科学中,量子力学的理论模型可以用来解释材料的电子结构和性质。

在计算机科学中,量子计算的概念正在成为未来计算机技术的重要方向。

大学物理说课稿量子力学基础实验

大学物理说课稿量子力学基础实验大学物理说课稿:量子力学基础实验引言:大学物理课程是培养学生科学素养和掌握基本物理知识的重要门课之一。

在量子力学领域,基础实验是学生探索和理解量子力学的关键。

本篇说课稿将介绍一套适用于大学物理教学的量子力学基础实验方案,旨在帮助学生理解和应用量子力学的基本原理和实验技术。

一、实验一:双缝干涉实验双缝干涉实验是量子力学实验中最经典的实验之一。

通过该实验,学生可以直观地观察到波粒二象性现象,并理解波的干涉与粒子的统计性质之间的关系。

实验原理:实验通过在平行的两个狭缝上照射单一频率的光源,使光通过狭缝后形成两束相干的光波。

当光波通过双缝后重叠,形成明暗相间的干涉条纹。

通过测量干涉条纹的位置和间距,可以计算出波长和间距之间的关系。

实验步骤:1. 准备实验装置,包括光源、双缝装置、光屏等。

2. 调整实验装置,使得光源照射到双缝上,并将光屏放置在合适的位置。

3. 观察干涉条纹的形成,记录条纹的位置和间距。

4. 根据记录的数据,计算波长和双缝间距之间的关系。

实验要点:1. 保持实验装置的稳定,避免光源的晃动和环境干扰。

2. 观察干涉条纹时要注意调整光屏的位置和角度,确保观察到清晰的条纹图案。

3. 记录数据时要准确测量条纹的位置和间距,确保实验结果的准确性。

二、实验二:量子隧穿效应实验量子隧穿效应是量子力学中的基本现象之一。

通过该实验,学生可以观察到粒子在经典物理中无法解释的隧穿现象,进一步理解量子力学的特殊性质。

实验原理:实验使用一块非导电材料的薄膜,将两个金属板分别放置在薄膜的两侧。

当给金属板加上一定电压时,电子将从一个金属板通过薄膜隧穿到另一个金属板上。

实验步骤:1. 准备实验装置,包括薄膜、金属板、电压源等。

2. 调整实验装置,使得金属板与薄膜之间形成适当的距离。

3. 施加电压,记录电流的变化。

4. 根据记录的数据,分析电流与电压之间的关系。

实验要点:1. 实验装置要保持良好的绝缘状态,避免电流泄露和其他非隧穿效应的干扰。

大学物理15 量子物理基础2


2p
3p
4p
r
对r 积分,得到的电子角向几率分布:
lm (q , j ) sinqdqdj Yl ,m (q , j ) sinqdqdj
1 2 l ,m (q ) m (j ) sinqdqdj lm (q ) d 2
2 2 2
出现的概率。
lm为角向几率分布函数,即单位立体角内电子
其中
(l=0,1,2,…,(n-1),称轨道量子数,确定角动量平方)
其波函数满足正交归一条件,即:

结论:三个量子数 n、l、m不仅决定了氢原子 中核外电子的能量、角动量的大小及空间取向, 而且还决定了电子的波函数。因此,氢原子的 状态可以用主量子数n,角量子数l,磁量子数m 完全描述。 如:对于基态氢原子描述其运动状态的三个量子数 分别为: n=1、l=0、m=0,该波函数为
例题1:氢原子处于状态:(作业四十,先要补充态叠加原理和平均值的计算)
(1)能量;(2)角动量的平方; 求氢原子的: (3)角动量z分量的可能值及平均值。
由波函数 解: 可知, 氢原子处于两个状态迭加态,即其量子数分别为:
n=2、l=1、ml=±1
(1)求能量:能量只由主量子数(n=2)决定,所以此两态有相 同的能量值,因此,此迭加态是Hmailtonian的本征态,即能 量为:
利用泡利不相容原理可计算各壳层所可能有的 最多电子数:
n 给定,l 的可取值为 0,1,2,…,(n-1) 共n个; l 给定,m 的可取值为 0,±1,±2,…,±l共2l+1个; 当(n,l,m )给定,ms的可取值为±1/2共2个.
所以,在同一主量子数为n的壳层上,可能有 的最多电子数为:
由此可推得多电子的原子中各壳层所可能有的 最多电子数(见下表)。

大学物理-15-1黑体辐射普朗克能量子假设 21页


E1m 2A 21m (2π)2A 20.22 J 7
2
2
第十五章 量子物理
17
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
Enh n E 7.131029
h
基元能量 h3 .1 8 1 0 3J 1
(2) Enh
A22π2E m2 2πn2m h
6 000 K
3 000 K

1
m
000
/nm
2 000
第十五章 量子物理
8
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
2 维恩位移定律
mT b
峰值波长
M (T)/1 (10W 4 m 3)

1.0



0.5 6 000 K
常量 b2.89 18 3 0m K 3 000 K
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
一 黑体 黑体辐射
1 热辐射的基本概念
(1)单色辐射出射度 单位时间内从物
体单位表面积发出的频率在 附近单位频率
区间内的电磁波的能量.
M (T) 单位: Wm-2H-z1
M(T) 单位: Wm-3
第十五章 量子物理
2
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
0

1
m
000
/nm
2 000
第十五章 量子物理
9
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
例1(1)温度为 20 C 的黑体,其单色辐 出度的峰值所对应的波长是多少?(2)太阳的

大学物理讲义(第15章量子力学基础)第三节

§15.3 氢原子光谱与玻尔的量子论经典物理学不仅在说明电磁辐射与物质相互作用方面遇到了如前所述的困难,而且在说明原子光谱的线状结构及原子本身的稳定性方面也遇到了不可克服的困难.丹麦物理学家玻尔发展了普朗克的量子假设和爱因斯坦的光子假设等,创立了关于氢原子结构的半经典量子理论,相当成功的说明了氢原子光谱的实验规律.一、氢原子光谱的实验规律实验发现,各种元素的原子光谱都由分立的谱线所组成,并且谱线的分布具有确定的规律.氢原子是最简单的原子,其光谱也是最简单的.对氢原子光谱的研究是进一步学习原子、分子光谱的基础,而后者在研究原子、分子结构及物质分析等方面有重要的意义.在可见光范围内容易观察到氢原子光谱的四条谱线,这四条谱线分别用H α、H β、H γ和H δ表示,如图15.5所示.1885年巴耳末(J.JBalmer,1825—1898)发现可以用简单的整数关系表示这四条谱线的波长6543,,,=-=n ,2n n B λ222(15.14) 式中B 是常数,其值等于364.57nm.后来实验上还观察到相当于n 为其他正整数的谱线,这些谱线连同上面的四条谱线,统称为氢原子的巴耳末系.光谱学上经常用波数 表示光谱线,它被定义为波长的倒数,即λ=ν1~(15.15) 引入波数后,式(15.14)可改写为Λ,,,),(~54312122=-=n n R ν (15.16) 式中172m 100967761B 2R -⨯==./,称为里德伯(J.R.Rydberg,1854—1919)常数. 在氢原子光谱中,除了可见光范围的巴耳末线系以外,在紫外区、红外区和远红外区分别有赖曼(T.Lyman)系、帕邢(F.Paschen)系、布拉开(F.S.Brackett)系和普丰德(A.H.Pfund)系.这些线系中谱线的波数也都可以用与式(15.16)相似的形式表示.将其综合起来可表为)(~2211n k R T(n)T(k)νkn -=-= (15.17)式中k 和n 取一系列有顺序的正整数,k 取1、2、3、4、5分别对应于赖曼线系、巴耳末线系、帕邢线系、布拉开线系和普丰德线系;一旦k 值取定后,n 将从k+1 开始取k+1, k+2, k+3等分别代表同一线系中的不同谱线. T(n)=R/n 2称为氢的光谱项.式(15.17)称为里德伯—里兹并合原理.实验表明,并合原理不仅适用于氢原子光谱,也适用于其他元素的原子光谱,只是光谱项的表示式要复杂一些.并合原理所表示的原子光谱的规律性,是原子结构性质的反映,但经典物理学理论无法予以解释.按照原子的有核模型,根据经典电磁理论,绕核运动的电子将辐射与其运动频率相同的电磁波,因而原子系统的能量将逐渐减少.随着能量的减少,电子运动轨道半径将不断减小;与此同时,电子运动的频率(因而辐射频率)将连续增大.因此原子光谱应是连续的带状光谱,并且最终电子将落到原子核上,因此不可能存在稳定的原子.这些结论显然与实验事实相矛盾,从而表明依据经典理论无法说明原子光谱规律等.二、玻尔的量子论玻尔(N.H.D.Bohr,1885—1962)把卢瑟福关于原子的有核模型、普朗克量子假设、里德伯—里兹并合原理等结合起来,于1913年创立了氢原子结构的半经典量子理论,使人们对于原子结构的认识向前推进了一大步.玻尔理论的基本假设是1)原子只能处在一系列具有不连续能量的稳定状态,简称定态,相应于定态,核外电子在一系列不连续的稳定圆轨道上运动,但并不辐射电磁波;2)作定态轨道运动的电子的角动量L 的数值只能是)/(π2h η的整数倍,即(15.18)这称为角动量量子化条件,n 称为主量子数,m 是电子的质量;3)当原子从一个能量为E k 的定态跃迁到另一个能量为E n 的定态时,会发射或吸收一个频率为v kn 的光子(15.19) 上式称为辐射频率公式, v kn >0表示向外辐射光子, v kn <0表示吸收光子.玻尔还认为,电子在半径为r 的定态圆轨道上以速率υ绕核作圆周运动时,向心力就是库仑力,因而有2202r e πεr υm ⋅=41 (15.20) 由式(15.18)和式(15.20)消去υ,即可得原子处于第n 个定态时电子轨道半径为),,,()Λ321(1===n r n πme h εn r 22202n (15.21) 对应于n=1的轨道半径r 1是氢原子的最小轨道半径,称为玻尔半径,常用a 0表示,其值为m 10291772495111-⨯===.2200πmeh εr a (15.22) 这个数值与用其他方法得到的数值相符合.氢原子的能量应等于电子的动能与势能之和,即re πεr e πεm υE 20202⋅-=⋅-=814121 处在量子数为n 的定态时,能量为),,,()(Λ321n 81812n n =-=⋅-=220420h εme n r e πεE (15.23)由此可见,由于电子轨道角动量不能连续变化,氢原子的能量也只能取一系列不连续的值,这称为能量量子化,这种量子化的能量值称为原子的能级.式(15.23)是氢原子能级公式.通常氢原子处于能量最低的状态,这个状态称为基态,对应于主量子数n=1, E 1=-13.6 eV. n>1的各个稳定状态的能量均大于基态的能量,称为激发态,或受激态.处于激发态的原子会自动地跃迁到能量较低的激发态或基态,同时释放出一个能量等于两个状态能量差的光子,这就是原子发光的原理.随着量子数n 的增大,能量E n 也增大,能量间隔减小. 当n →∞时,rn →∞, E n →0 ,能级趋于连续,原子趋于电离. E > 0时,原子处于电离状态,能量可连续变化.图15.6和图15.7分别是氢原子处于各定态的电子轨道图和氢原子的能级图.1末系系 图15.6 氢原子定态的轨道图使原子或分子电离所需要的能量称为电离能.根据玻尔理论算出的氢原子基态能量值与实验测得的氢原子基态电离能值13.6eV 相符.下面用玻尔理论来研究氢原子光谱的规律.按照玻尔假设,当原子从较高能态E n 向较低能态E k (n>k)跃迁时,发射一个光子,其频率和波数为hE E νk n nk -= (15.24) )~k n nk nk nk E E hcc νλν-===(11 (15.25) 将能量表示式(15.23)代入即可得氢原子光谱的波数公式)()(~k n nk c h εme ν0nk >-=22324118 (15.26) 显然式(15.26)与氢原子光谱的经验公式(15.17)是一致的,同时可得里德伯常数的理论值为173204m 10097373118-⨯=ε=.ch me R H 理论 (15.27) 这也与实验值符合得很好.这表示玻尔理论在解释氢原子光谱的规律性方面是十分成功的,同时也说明这个理论在一定程度上反映了原子内部的运动规律.三、玻尔理论的缺陷和意义玻尔的半经典量子理论在说明光谱线规律方面取得了前所未有的成功.但是它也有很大的局限性,如只能计算氢原子和类氢离子的光谱线,对其他稍微复杂的原子就无能为力了;另外,它完全没有涉及谱线强度、宽度及偏振性等.从理论体系上讲,这个理论的根本问题在于它以经典理论为基础,但又生硬的加上与经典理论不相容的若干重要假设,如定态不辐射和量子化条件等,因此它远不是一个完善的理论.但是玻尔的理论第一次使光谱实验得到了理论上的说明,第一次指出经典理论不能完全适用于原子内部运动过程,揭示出微观体系特有的量子化规律.因此它是原子物理发展史上一个重要的里程碑,对于以后建立量子力学理论起到了巨大的推动作用.另外,玻尔理论在一些基本概念上,如“定态”、“能级”、“能级跃迁决定辐射频率”等在量子力学中仍是非常重要的基本概念,虽然另有一些概念,如轨道等已被证实对微观粒子不再适用.作业(P224):27。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档