高一数学必修一经典题型举一反三——函数的表示法重难点题型【解析版】
高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

学习资料分享[公司地址]2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件)1,0(≠>=a a N a x 且结论数x 叫做以a 为底N 的对数,a 叫做对数的底数,N 叫做真数记法Nx a log =2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln .3.对数与指数的关系当0>a ,且1≠a 时,N x N a a x log =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ;(2)01log =a )1,0(≠>a a 且;(3))1,0(1log ≠>=a a a a 且.【知识点2对数的运算性质】1.运算性质条件0>a ,且1≠a ,0,0>>N M 性质NM MN a a a log log )(log +=N M NM a a a log log log -=M n M a n a log log =(n ∈R)2.换底公式ab bc c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).3.知识拓展(1)可用换底公式证明以下结论:①ab b a log 1log =;②1log log log =⋅⋅ac b c b a ;③b b a n a n log log =;④b n m b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是()A .(﹣∞,5)B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.3有意义,则实数t的取值范围是()【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【分析】根据对数式log(t﹣2)3有意义,【答案】解:要使对数式log(t﹣2)须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.(x+1)中,要使式子有意义,x的取值范围为()【变式1-2】在M=log(x﹣3)A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.a+log(c﹣b)a=2log 【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a•log(c﹣b)a.(c+b)a=,log(c﹣b)a=证明左端=右【分析】依题意,利用对数换底公式log(c+b)端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+===a•log(c﹣b)a.=2log(c+b)∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。
函数的三种表示方法 高中数学必修一 总复习课件

考点一 函数的三种表示方法
☞用解析法表示函数关系的优点是:函数关系清楚, 容易根据自变量的值求出对应的函数值,便于用解析 式来研究函数的性质.
☞用图象法表示函数关系的优点是:能直观形象地 表示出函数值的变化情况. ☞用列表法表示函数关系的优点是:不必通过计算 就知道自变量取某些值时函数的对应值.
【规律小结】列表法、图象法和解析式法是表示函数 的三种方法,其实质是一样的,只是形式上的区别, 列表和图象更加直观,解析式更适合计算和应用.在 对待不同题目时,选择不同的表示方法,因为有的函 数根本写不出其解析式.
法则.
x1 2 3 4
5
6
[解]列表法: y 1000 2000 4000 8000 16000 32000
考点一 函数的三种表示方法
【解】解析法:
解析式:y=1000×2x-1 (x∈{1,2,3,4,5,6}). 其中定义域为{1,2,3,4,5,6}, 值域为{1000,2000,4000,8000,16000,32000}. 对应法则f:x→y=1000×2x-1.
例1 已知某人在200课9年堂考互点动一 讲函练数的三种表示方法
1月份至6月份的月经济
【解】图象法:
收入如下:1月份为
1000元,从2月份起每
月的月经济收入是其上
一个月的2倍,用列表、
图象、解析式三种不同
形式来表示该人1月份
至6月份的月经济收入
y(元)与月份Байду номын сангаас号x的函
数关系,并指出该函数
的定义域、值域和对应
3.1.2 函数的表示法(第1课时)(教学课件) -高一数学(人教A版2019必修一)

课本练习
2. 画出函数y x 2 的图象.
y
y=|x-2|
x 2, x ≥ 2
y x2
2 x, x 2
2
1
O
1
2
ห้องสมุดไป่ตู้
3
4
x
课本练习
3. 给定函数f ( x ) x 1, g( x ) ( x 1)2 , x R,
(1) 画出函数f ( x ), g( x )的图象;
(2) x R, 用m( x )表示f ( x ), g( x )中的较小者, 记为m( x ) min{ f ( x ), g( x )},
用解析法可将函数y f ( x ) 表示为y 5 x , x {1, 2, 3, 4, 5}
用列表法可将函数y f ( x ) 表示为
笔记本数x
1
2
3
4
5
钱数y
5
10
15
20
25
课本例题
【例4】某种笔记本的单价是5元, 买x ( x {1, 2, 3,4,5})个笔记本需要 y 元,
课本例题
例6:(2) x R, 用M ( x )表示f ( x ), g( x )中的较大者, 记为
M ( x ) max{ f ( x ), g( x )},
例如,当x 2时, M (2) max{ f (2), g(2)} max{3, 9} 9.请分别
用图象法和解析法表示函数M ( x ).
的函数关系表示出来的方法 数关系表示出来的方法
量的解析式表示出来的方法
优点
不必通过计算就能直接看出 可以直观形象地表示随着 简明全面的概括了变量之间的对
高中数学 必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。
构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x xf x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(xg 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
最新人教版高一数学必修1第一章“函数的表示法”重难点分析

《函数的表示法》重难点分析
本节的教学重点是函数的三种表示方法和映射的概念,教学难点是用函数解决实际生活中的一些问题和分段函数.
(1)在函数的变量观点下,函数的表示法只能用解析式表示.现在讲了函数的集合定义后,函数也可以不用解析式表示,而用列表法和图象法表示.所以,学好函数的三种表示法,是以后熟练应用函数解决问题的关键.
(2)本节的教学难点是用函数解决实际生活中的一些问题.因为中学阶段研究的函数主要是能够用解析式表示的函数,根据实际问题中的条件列出函数解析式是本节的难点.分段函数也是本节的难点之一,教学中不必要求学生一次完成认识,可以根据学生的具体情况,采取不同要求.
(3)本小节最后一部分内容是在函数的基础上介绍映射的概念.把映射作为函数的推广来处理,能很好体现从特殊到一般的认知规律,这与以前的高中教科书是不同的.函数推广为映射,只是把函数中的两个数集推广为两个任意的集合.。
第三章-3.1.2 函数的表示法高中数学必修第一册人教A版
1, 为有理数,
分别定义如下:对任意的 ∈ ,函数 = ቊ
称为狄利克雷函数;记
0, 为无理数,
[]为不超过的最大整数,则称 = []为高斯函数.下列关于狄利克雷函数与高斯
函数的结论,错误的是( C
A.
=1
C. + − = 0
)
B. + 1 =
(1)写出函数的解析式;
【解析】由题设条件知,当 = 2时, = 100,当 = 14时, = 28,代入关系式得
2
2 + = 100,
= 1,
൞
解得ቊ
= 196.
14 + = 28,
14
所以 =
196
+ .
又 ≤ 20,且为正整数,所以函数的定义域是{|0 < ≤ 20, ∈ + }.
围,否则易出错),则 = − 1 2 ,所以
= −1
2
+ 2 − 1 = 2 − 1 ≥ 1 ,
所以函数 的解析式为 = 2 − 1 ≥ 1 .
方法2 (配凑法)
+ 1 = + 2 = + 2 + 1 − 1 = ( + 1)2 − 1.
= ( + ) = ( + ) + = 2 + + = 4 + 6,
= 2, = −2,
2 = 4,
于是有ቊ
解得ቊ
或ቊ
= −6,
=2
+ = 6,
所以 = 2 + 2或 = −2 − 6.
高一数学必修一函数的表示法(完整)
高一数学必修一函数的表示法(完整)1.2函数及其表示§1.2.2函数的表示法1教学目的:1.掌握函数的解析法、列表法、图象法三种主要表示方法.2.培养数形结合、分类讨论的数学思想方法,掌握分段函数的概念教学重点:解析法、图象法.教学难点:作函数图象教学过程:一、复习引入:1.函数的定义是什么?函数的图象的定义是什么?2.在中学数学中,画函数图象的基本方法是什么?3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?二、讲解新课:函数的表示方法表示函数的方法,常用的有解析法、列表法和图象法三种.⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.222例如,=60t,A=r,S=2rl,y=a某+b某+c(a0),y=某2(某2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.⑵列表法:就是列出表格来表示两个变量的函数关系.D优点:不需要计算就可以直接看出与自变量的值相对应的函数值.⑶图象法:就是用函数图象表示两个变量之间的关系.C例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数B关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这A样使得我们可以通过图象来研究函数的某些性质.三、例题讲解例1某种笔记本每个5元,买某{1,2,3,4}个笔记本的钱数记为y (元),试写出以某为自变量的函数y的解析式,并画出这个函数的图像解:这个函数的定义域集合是{1,2,3,4},函数的解析式为y=5某,某{1,2,3,4}.它的图象由4个孤立点A(1,5)B(2,10)C(3,15)D(4,20)组成,如图所示例2国内投寄信函(外埠),每封信函不超过20g付邮资80分,超过20g而不超过40g付邮资160分,依次类推,每封某g(0320,某(60,80],400,某(80,100].这个函数的图象是5条线段(不包括左端点),都平行于某轴,如图所示.这一种函数我们把它称为分段函数4003202401608020406080100某某例3画出函数y=|某|=某某0,的图象.某0.解:这个函数的图象是两条射线,分别是第一象限和第二象限的角平分线,如图所示.说明:①再次说明函数图象的多样性;y②从例4和例5看到,有些函数在它的定义域中,对于自变量某的不同取值范围,对应法则不同,这样的函数通常称为分段函数.注意某某0分段函数是一个函数,而不是几个函数.y=1某<0某③注意:并不是每一个函数都能作出它的图象,如狄利克雷{(Dirichlet)函数D(某)=1,某是有理数,.0,某是无理数,我们就作不出它的图象.某例4作出分段函数y某1某2的图像解:根据“零点分段法”去掉绝对值符号,即:y某2(2某1)3y某1某2=2某12某1某1作出图像如下例5作出函数y某列表描点:K'L'M'N'G'O'P'Q'(-5.0,-5.2)(-4.0,-4.3)(-3.0,-3.3)(-2.0,-2.5)(-1.0,-2.0)(-0.4,-3.0)(-0.3,-4.0)(-0.2,-5.0)QPOGNMLK(0.2,5.0)(0.3,4.0)(0.4,3.0)(1.0,2.0)(2.0,2.5)(3.0,3.3)(4.0,4.3)(5.0,5.2)某1的图象某2补充:1.作函数y=|某-2|(某+1)的图像分析显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.解:(1)当某≥2时,即某-2≥0时,1086Q4KLMGNPO2-10-5510-2N'M'L'K'G'O'-4P'Q'-619y(某2)(某1)某2某2(某)224当某<2时,即某-2<0时,-10-5864251019y(某2)(某1)某2某2(某)2.24219某2某24∴y219某2某24-2-4-665432这是分段函数,每段函数图象可根据二次函数图象作出-6-4-2124682.作出函数y|某2某3|的函数图像解:y2-1-2-3-4某2某32(某2某3)22某2某302某2某302步骤:(1)作出函数y=某2某3的图象(2)将上述图象某轴下方部分以某轴为对称轴向上翻折(上方部分不变),即得y=|某2某3|的图象23四、课后练习一、选择题1.已知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为()=-某=某+12=某-1=-某+12.已知函数f(某-1)=某-3,则f(2)的值为()A.-2B.6C.1D.03.已知f(某)=2,g(某)=某+1,则f(g(某))的表达式是()某-12某+2某某2某+2某f(1)=0f(n+1)=f(n)+3,n∈N2某2某-11某-1224.已知函数y=某,则f(3)等于()D.二、填空题5.已知函数f(某)的图象如图所示,则此函数的定义域是,值域是.6.已知f(某)与g(某)分别由下表给出某f(某)14233241某g(某)13213442那么f(g(3))=.4三、解答题7.解答下列问题:2(1)若f(某+1)=2某+1,求f(某);某(2)若函数f(某)=,f(2)=1,又方程f(某)=某有唯一解,求f(某).a某+b8.作下列各函数的图象:(1)y=2某2-4某-3(0≤某<3);9.已知函数2某,(某≤-1)f(某)=1,(-1<某≤1)-2某,(某>1)(1)求f(某)的定义域、值域;.=|某-1|;作出这个函数的图象.5(2)y(2)课后作业参考答案一、选择题1.112.B3.A[f(g(某))==2.]4.f(2)=f(1+1)=f(1)+3=0+3=3,2(某+1)-1某+2某∴f(3)=f(2+1)=f(2)+3=3+3=6.选二、填空题5.[-3,3][-2,2]6.【答案】1由表可得g(3)=4,∴f(g(3))=f(4)=1.三、解答题7.【解析】(1)令t=某+1,则某=t-1,∴f(t)=2(t-1)+1=2t -4t+3.∴f(某)=2某-4某+3.2(2)由f(2)=1得=1,即2a+b=2;2a+b某11-b由f(某)=某得=某变形得某(-1)=0,解此方程得:某=0或某=.又因为方程有唯a某+ba某+ba1-b1一解,所以=0,解得b=1,代入2a+b=2得a=,a22某所以所求解析式为f(某)=.某+28.【解析】(1)∵0≤某<3,∴这个函数的图象是抛物线2y=2某-4某-3介于0≤某<3之间的一段弧(如图(1)).某-1某≥1(2)所给函数可写成分段函数y=1-某某<1222是端点为(1,0)的两条射线(如图(2)).9.【解析】(1)f(某)的定义域为{某|某≤-1}∪{某|-1<某≤1}∪{某|某>1}={某|某≤-1或-1<某≤1或某>1}=R,f(某)的值域为{y|y≤-2}∪{1}∪{y|y<-2}={y|y≤-2或y=1},∴f(某)的定义域为R,值域为{y|y≤-2或y=1}.(2)根据解析式分段作图如图6。
专题4 一次函数与方程、不等式的关系-重难点题型(举一反三)(浙教版)(解析版)
专题5.4 一次函数与方程、不等式的关系-重难点题型【浙教版】【知识点1 一次函数与一元一次方程、不等式的关系】【例1】(2020秋•包河区期中)根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.【解题思路】(1)利用函数图象写出函数值为0时对应的自变量的值即可;(2)利用函数图象写出x=1时对应的函数值即可(3)利用函数图象写出函数值为﹣3时对应的自变量的值即可.【解答过程】解:(1)当x=2时,y=0,所以方程kx+b=0的解为x=2;(2)当x=1时,y=﹣1,所以代数式k+b的值为﹣1;(3)当x=﹣1时,y=﹣3,所以方程kx+b=﹣3的解为x=﹣1.【变式1-1】(2021秋•泰兴市校级期末)已知一次函数y=kx+1与y=−12x+b的图象相交于点(2,5),求关于x的方程kx+b=0的解.【解题思路】首先将(2,5)点代入一次函数解析式求出k,b的值,进而解方程得出答案.【解答过程】解:∵一次函数y=kx+1与y=−12x+b的图象相交于点(2,5),∴5=2k+1,5=−12×2+b,解得:k=2,b=6,则kx+b=0为:2x+6=0,解得:x=﹣3.【变式1-2】一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为多少?【解题思路】先求出函数的解析式,再把y=4代入,即可求出x.【解答过程】解:把(0,1)和(2,3)代入y=kx+b得:{b=12k+b=3,解得:k=1,b=1,即y=x+1,当y=4时,x+1=4,解得:x=3,∴方程kx+b=4的解为x=3.【变式1-3】已知一次函数y=kx﹣6的图象如图(1)求k的值;(2)在图中的坐标系中画出一次函数y=﹣3x+3的图象(要求:先列表,再描点,最后连线);(3)根据图象写出关于x的方程kx﹣6=﹣3x+3的解.【解题思路】(1)将点(4,0)代入y=kx﹣6,利用待定系数求出k的值;(2)利用描点法画出一次函数y=﹣3x+3的图象;(3)根据图象写出它们的交点坐标,即可得到关于x的方程kx﹣6=﹣3x+3的解.【解答过程】解:(1)∵一次函数y=kx﹣6的图象过点(4,0),∴4k﹣6=0,∴k=3 2;(2)列表:描点:在平面直角坐标系中描出两点(0,3)、(1,0),连线:过点(0,3)、(1,0)画直线,得出一次函数y=﹣3x+3的图象;(3)一次函数y=kx﹣6与y=﹣3x+3的图象交于点(2,﹣3),则关于x的方程kx﹣6=﹣3x+3的解为x=2.【题型2 一次函数的与一元一次不等式(数形结合)】【例2】(2021春•高明区期末)一次函数y1=ax+b与y2=cx+d的图象如图所示,下列说法:①对于函数y1=ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第二象限;③不等式ax﹣d≥cx﹣b的解集是x≥4;④a﹣c=14(d﹣b),其中正确的是()A.①②③B.①③④C.②③④D.①②④【解题思路】根据题意和函数图象中的数据,可以判断各个小题中的结论是否成立,从而可以解答本题.【解答过程】解:由图象可得,对于函数y=ax+b来说,y随x的增大而增大,故①正确;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②不正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到a﹣c=14(d﹣b),故④正确;故选:B.【变式2-1】(2021•安徽模拟)已知一次函数y1=kx+3(k为常数,且k≠0)和y2=x﹣3.当x<2时,y1>y2,则k的取值范围是()A.﹣2≤k≤1且k≠0B.k≤﹣2C.k≥1D.﹣2<k<1且k≠0【解题思路】解不等式kx+3>x﹣3,根据题意得出k﹣1<0且−6k−1≥2且k≠0,解此不等式即可.【解答过程】解:∵一次函数y1=kx+3(k为常数,且k≠0)和y2=x﹣3,当x<2时,y1>y2,∴kx+3>x﹣3,∴kx﹣x>﹣6,∴k﹣1<0且−6k−1≥2且k≠0,当k﹣1<0时,−6k−1≥2时,k≥﹣2,所以不等式组的解集为﹣2≤k<1且k≠0;当k=1时,也成立,故k的取值范围是﹣2≤k≤1且k≠0,故选:A .【变式2-2】(2021春•盐湖区校级期末)我们知道,若ab >0.则有{a >0b >0或{a <b <0.如图,直线y =kx +b 与y =mx +n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx +b )(mx +n )>0的解集是( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >2【解题思路】由若不等式(kx +b )(mx +n )>0,则{kx +b >0mx +n >0或{kx +b <0mx +n <0,然后分类讨论,分别根据函数图象求得解集.【解答过程】解:∵若ab >0.则有{a >0b >0或{a <0b <0,∴若不等式(kx +b )(mx +n )>0,则{kx +b >0mx +n >0或{kx+b <0mx +n <0.当{kx +b >0mx +n >0,由图得:{x <−0.5x >2,此时该不等式无解.当{kx +b <0mx +n <0,由图得:{x >−0.5x <2,此时不等式组的解集为﹣0.5<x <2.综上:﹣0.5<x <2.故选:B .【变式2-3】(2021春•中山市期末)一次函数y 1=ax +b 与y 2=cx +d 的图象如图所示,下列说法:①对于函数y 1=ax +b 来说,y 随x 的增大而减小;②函数y =ax +d 的图象不经过第一象限;③不等式ax +b >cx +d 的解集是x >3;④d ﹣b =3(a ﹣c ).其中正确的有( )A .①③B .②③④C .①②④D .②③【解题思路】仔细观察图象:①根据函数图象直接得到结论;②观察函数图象可以直接得到答案;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④根据两直线交点可以得到答案.【解答过程】解:由图象可得:对于函数y 1=ax +b 来说,y 随x 的增大而减小,故①说法正确;由于a <0,d <0,所以函数y 2=ax +d 的图象经过第二,三,四象限,即不经过第一象限,故②说法正确,由图象可得当x <3时,一次函数y 1=ax +b 图象在y 2=cx +d 的图象上方,∴ax +b >cx +d 的解集是x <3,故③说法不正确;∵一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,∴3a +b =3c +d∴3a ﹣3c =d ﹣b ,∴d ﹣b =3(a ﹣c ).故④说法正确,故选:C .【题型3 一次函数的与一元一次不等式(取值范围)】【例3】(2021春•海淀区期末)在平面直角坐标系xOy 中,直线l :y 1=x +1与直线l 2:y 2=2x ﹣2交于点A .(1)求点A 的坐标;(2)当y 1>y 2时,直接写出x 的取值范围;(3)已知直线l 3:y 3=kx +1,当x <3时,对于x 的每一个值,都有y 3>y 2,直接写出k 的取值范围.【解题思路】(1)由直线l :y 1=x +1与直线l 2:y 2=2x ﹣2交于点A ,故可联立方程组:{y =x +1,y =2x −2.得{x =3y =4,故A (3,4).(2)根据函数图象,可知:当y 1>y 2时,x <3.(3)当x <3时,对于x 的每一个值,都有y 3>y 2,故当x <3,y 3﹣y 2>0恒成立,得1≤k ≤2.【解答过程】解:(1)由题意得:{y =x +1,y =2x −2.解得:{x =3,y =4.∴A (3,4).(2)如图,当y 1>y 2时,x <3.(3)当x <3,y 3>y 2恒成立,则x <3,y 3﹣y 2>0恒成立.∵y 3=kx +1,y 2=2x ﹣2,∴y 3﹣y 2=(kx +1)﹣(2x ﹣2)=(k ﹣2)x +3.∴若x <3,y 3﹣y 2>0恒成立,则[(k ﹣2)x +3]min >0.当k ﹣2=0,即k =2,[(k ﹣2)x +3]min =3>0.当k ﹣2>0,即k >2,[(k ﹣2)x +3]min 不存在.当k ﹣2<0,即k <2,[(k ﹣2)x +3]min =3(k ﹣2)+3≥0,故k ≥1.综上:1≤k ≤2.【变式3-1】(2021春•茌平区期末)已知:如图一次函数y 1=﹣x ﹣2与y 2=x ﹣4的图象相交于点A .(1)求点A 的坐标;(2)若一次函数y 1=﹣x ﹣2与y 2=x ﹣4的图象与x 轴分别相交于点B 、C ,求△ABC 的面积.(3)结合图象,直接写出y 1≥y 2时x 的取值范围.【解题思路】(1)将两个函数的解析式联立得到方程组{y =−x −2y =x −4,解此方程组即可求出点A 的坐标;(2)先根据函数解析式求得B 、C 两点的坐标,可得BC 的长,再利用三角形的面积公式可得结果;(3)根据函数图象以及点A 坐标即可求解.【解答过程】解:(1)解方程组{y =−x −2y =x −4,得{x =1y =−3,所以点A坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,x=﹣2,则B点坐标为(﹣2,0);当y2=0时,x﹣4=0,x=4,则C点坐标为(4,0);∴BC=4﹣(﹣2)=6,∴△ABC的面积=12×6×3=9;【变式3-2】(2021春•海珠区期末)已知一次函数y1=ax+b的图象交x轴和y轴于点B和D;另一个一次函数y2=bx+a的图象交x轴和y轴于点C和E,且两个函数的图象交于点A(1,4)(1)当a,b为何值时,y1和y2的图象重合;(2)当0<a<4,且在x<1时,则y1>y2成立.求b的取值范围;【解题思路】(1)把A(1,4)代入y1=ax+b求得a+b=4,得到b=4﹣a,于是得到结论;(2)根据题意列不等式即可得到结论;【解答过程】解:(1)∵y1=ax+b的图象过点A(1,4),∴a+b=4,∴b=4﹣a,∴y1=ax+(4﹣a),y2=(4﹣a)x+a,∵y1和y2的图象重合,∴a=4﹣a,∴a=2,b=2;即当a=2,b=2时,y1和y2的图象重合;(2)∵a+b=4,如图1,∴a=4﹣b,∴y1=(4﹣b)x+b,y2=bx+(4﹣b),∵0<a<4,0<4﹣b<4且x<1时,y1>y2成立,∴由图象得4﹣b<b,∴2<b<4;【变式3-3】(2020春•赣县区期末)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数y=−23x的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=−23x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x 的不等式0<−23x <kx +b 的解集.【解题思路】(1)先确定B 的坐标,然后根据待定系数法求解析式;(2)先求得C 的坐标,然后根据题意求得平移后的直线的解析式,把C 的坐标代入平移后的直线的解析式,即可求得M 的值;(3)找出直线y =−23x 落在y =kx +b 的下方且在x 轴上方的部分对应的x 的取值范围即可.【解答过程】解:(1)∵正比例函数y =−23x 的图象经过点B (a ,2),∴2=−23a ,解得,a =﹣3,∴B (﹣3,2),∵一次函数y =kx +b 的图象经过点A (﹣2,4),B (﹣3,2),∴{−2k +b =4−3k +b =2,解得{k =2b =8,∴一次函数y =kx +b 的解析式为y =2x +8;(2)∵一次函数y =2x +8的图象与x 轴交于点C ,∴C (﹣4,0),∵正比例函数y =−23x 的图象向下平移m (m >0)个单位长度后经过点C ,∴平移后的函数的解析式为y =−23x ﹣m ,∴0=−23×(﹣4)﹣m ,解得m =83;(3)∵一次函y =kx +b 与正比例函数y =−23x 的图象交于点B (﹣3,2),且一次函数y =2x +8的图象与x 轴交于点C (﹣4,0),∴关于x 的不等式0<−23x <kx +b 的解集是﹣3<x <0.【题型4 一次函数与一元一次不等式(面积问题)】【例4】(2021春•诸城市期末)如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>−4 5.(1)分别求出k,b,m的值;(2)求S△ACD.【解题思路】(1)首先利用待定系数法确定直线的解析式,然后根据关于x的不等式kx+b>1﹣mx的解集是x>−45得到点D的横坐标为−45,再将x=−45代入y=32x+3,得:y=95,将x=−45,y=95代入y=1﹣mx求得m=1即可;(2)先确定直线与x轴的交点坐标,然后利用三角形的面积公式计算即可.【解答过程】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),{−2k+b=0b=3,解得:k=32,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>−4 5,∴点D的横坐标为−4 5,将x=−45代入y=32x+3,得:y=95,∴D(−45,95),将x=−45,y=95代入y=1﹣mx,解得:m=1;(2)如图,过点D作DH⊥AC于H,则DH=9 5对于y =1﹣x ,令y =0,得:x =1,∴点C 的坐标为(1,0),∴S △ACD =12•AC •DH =12×[1﹣(﹣2)]×95=2710.【变式4-1】(2021春•东辽县期末)已知直线y =kx +5交x 轴于A ,交y 轴于B 且A 坐标为(5,0),直线y =2x ﹣4与x 轴于D ,与直线AB 相交于点C .(1)求点C 的坐标;(2)根据图象,写出关于x 的不等式2x ﹣4>kx +5的解集;(3)求△ADC 的面积.【解题思路】(1)根据点A 的坐标利用待定系数法可求出直线AB 的解析式,联立直线AB 、CD 的解析式成方程组,通过解方程组即可求出点C 的坐标;(2)根据直线AB 、CD 的上下位置关系结合点C 的坐标,即可得出不等式2x ﹣4>kx +5的解集;(3)利用一次函数图象上点的坐标特征可求出点D 的坐标,再根据三角形的面积公式即可求出△ADC 的面积.【解答过程】解:(1)∵直线y =kx +5经过点A (5,0),∴5k +5=0,解得:k =﹣1,∴直线AB 的解析式为y =﹣x +5.联立直线AB 、CD 的解析式成方程组,{y =−x +5y =2x −4,解得:{x =3y =2,∴点C 的坐标为(3,2).(2)观察函数图象可知:当x >3时,直线y =2x ﹣4在直线y =﹣x +5的上方, ∴不等式2x ﹣4>kx +5的解集为x >3.(3)当y =2x ﹣4=0时,x =2,∴点D 的坐标为(2,0),∴S △ACD =12(x A ﹣x D )•y C =12×(5﹣2)×2=3.【变式4-2】(2020春•宁化县校级月考)如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P(a,2).(1)求出不等式2x≤kx+3的解集;(2)求出△OAP的面积.【解题思路】(1)利用一次函数图象上点的坐标特征先求出a的值,然后观察函数图象,写出直线y=kx+3在直线y=2x上方所对应的自变量的取值范围即可;(2)先求出直线l2的解析式,再求出A点坐标,然后利用三角形面积公式求解.【解答过程】解:(1)把P(a,2)代入y=2x得2a=2,解得a=1,则P(1,2),当x≤1时,2x≤kx+3,所以不等式2x≤kx+3的解集为x≤1;(2)把P(1,2)代入y=kx+3得k+3=2,解得k=﹣1,所以直线l2的解析式为y=﹣x+3,当y=0时,﹣x+3=0,解得x=3,则A(3,0),所以△OAP的面积=12×2×3=3.【变式4-3】已知一次函数y1=﹣2x﹣3与y2=12x+2.(1)在同一平面直角坐标系中,画出这两个函数的图象;(2)根据图象,不等式﹣2x﹣3>12x+2的解集为x<﹣2;(3)求两图象和y轴围成的三角形的面积.【解题思路】(1)先求出直线y1=﹣2x﹣3,y2=12x+2与x轴和y轴的交点,再画出两函数图象即可;(2)直线y1=﹣2x﹣3的图象落在直线y2=12x+2上方的部分对应的x的取值范围就是不等式﹣2x﹣3>12x+2的解集;(3)根据三角形的面积公式求解即可.【解答过程】解:(1)函数y1=﹣2x﹣3与x轴和y轴的交点分别是(﹣1.5,0)和(0,﹣3),y2=12x+2与x轴和y轴的交点分别是(﹣4,0)和(0,2),其图象如图:(2)观察图象可知,函数y1=﹣2x﹣3与y2=12x+2交于点(﹣2,1),当x<﹣2时,直线y1=﹣2x﹣3的图象落在直线y2=12x+2的上方,即﹣2x﹣3>12x+2,所以不等式﹣2x﹣3>12x+2的解集为x<﹣2;故答案为x<﹣2;(3)∵y1=﹣2x﹣3与y2=12x+2与y轴分别交于点A(0,﹣3),B(0,2),∴AB=5,∵y1=﹣2x﹣3与y2=12x+2交于点C(﹣2,1),∴△ABC的边AB上的高为2,∴S△ABC=12×5×2=5.【题型5 一次函数的与一元一次不等式(求点的坐标)】【例5】如图,直线y=kx+b与坐标轴相交于点M(3,0),N(0,4),且MN=5.(1)求直线MN的解析式;(2)根据图象,写出不等式kx+b≥0的解集;(3)若点P 在x 轴上,且点P 到直线y =kx +b 的距离为125,直接写出符合条件的点P的坐标.【解题思路】(1)把点M 、N 的坐标分别代入一次函数解析式,列出关于系数k 、b 的方程组,通过解方程组求得它们的值;(2)直线y =kx +b 在x 轴及其上方的部分对应的x 的取值范围即为所求;(3)作△OMN 的高OA .根据三角形的面积公式求出OA =OM⋅ON MN =3×45=125,则点P 的坐标是(0,0);在x 轴上作O 关于M 的对称点为(6,0),易得(6,0)到直线y =kx +b 的距离也为125.【解答过程】解:(1)∵直线y =kx +b 与坐标轴相交于点M (3,0),N (0,4), 所以{3k +b =0b =4,解得:{k =−43b =4, ∴直线MN 的解析式为:y =−43x +4;(2)根据图形可知,当x ≤3时,y =kx +b 在x 轴及其上方,即kx +b ≥0,则不等式kx +b ≥0的解集为x ≤3;(3)如图,作△OMN 的高OA .∵S △OMN =12MN •OA =12OM •ON ,∴OA =OM⋅ON MN =3×45=125,∴点P 的坐标是(0,0);在x 轴上作O 关于M 的对称点为(6,0),易得(6,0)到直线y =kx +b 的距离也为125,所以点P 的坐标是(0,0)或(6,0).【变式5-1】(2021春•顺德区期末)一次函数y 1=kx +b 和y 2=﹣4x +a 的图象如图所示,且A (0,4),C (﹣2,0).(1)由图可知,不等式kx +b >0的解集是 x >﹣2 ;(2)若不等式kx +b >﹣4x +a 的解集是x >1.①求点B 的坐标;②求a 的值.【解题思路】(1)根据函数图象和题意可以直接写出不等式kx +b >0的解集;(2)①由题意可以求得k 、b 的值,然后将x =1代入y 1=kx +b 即可求得点B 的坐标; ②根据点B 也在函数y 2=﹣4x +a 的图象上,从而可以求得a 的值.【解答过程】解:(1)∵A (0,4),C (﹣2,0)在一次函数y 1=kx +b 上,∴不等式kx +b >0的解集是x >﹣2,故答案为:x >﹣2;(2)①∵A (0,4),C (﹣2,0)在一次函数y 1=kx +b 上,∴{b =4−2k +b =0,得{k =2b =4,∴一次函数y 1=2x +4,∵不等式kx +b >﹣4x +a 的解集是x >1,∴点B 的横坐标是x =1,当x =1时,y 1=2×1+4=6,∴点B 的坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10,即a 的值是10.【变式5-2】(2020秋•南京期末)已知直线y =kx +b 经过点A (5,0),B (1,4).(1)求直线AB 的函数关系式;(2)若直线y =2x ﹣4与直线AB 相交于点C ,求点C 的坐标;(3)根据图象,直接写出当x 在什么范围内,不等式2x ﹣4>kx +b .【解题思路】(1)利用待定系数法即可求得函数的解析式;(2)解两个函数解析式组成方程组即可求解;(3)关于x 的不等2x ﹣4>kx +b 的解集就是函数y =kx +b 的图象在下边的部分自变量的取值范围.【解答过程】解:(1)根据题意得{5k +b =0k +b =4,解得{k =−1b =5,则直线AB 的解析式是y =﹣x +5;(2)根据题意得{y =−x +5y =2x −4,解得:{x =3y =2,则C 的坐标是(3,2);(3)根据图象可得不等式的解集是x >3.【变式5-3】在平面直角坐标系中,直线y =﹣2x +1与y 轴交于点C ,直线y =x +k (k ≠0)与y 轴交于点A ,与直线y =﹣2x +1交于点B ,设点B 的横坐标为﹣2.(1)求点B 的坐标及k 的值;(2)求直线y =﹣2x +1、直线y =x +k 与y 轴所围成的△ABC 的面积;(3)根据图象直接写出不等式﹣2x +1>x +k 的解集.【解题思路】(1)对于y =﹣2x +1,计算自变量为﹣2时的函数值可得到B 点坐标,然后把B 点坐标代入y =x +k 可得到k 的值;(2)先确定两直线与y 轴的交点A 、C 的坐标,然后利用三角形面积公式求解;(3)观察函数图象,写出直线y =﹣2x +1在直线y =x +k 上方所对应的自变量的范围即可.【解答过程】解:(1)当x =﹣2时,y =﹣2×(﹣2)+1=5,则B (﹣2,5). 把B (﹣2,5)代入y =x +k 得﹣2+k =5,解得k =7;(2)当x =0时,y =﹣2x +1=1,则C (0,1);当x =0时,y =x +7=7,则A (0,7)所以AC =7﹣1=6,所以S △ABC =12×6×2=6;(3)x <﹣2.【例6】(2021•济南二模)中国古代数学专著《九章算术》“方程”一章记载用算筹(方阵)表示二元一次方程组的方法,发展到现代就是用矩阵式(a 1b 1a 2b 2)(x y )=(c 1c 2)来表示二元一次方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2,而该方程组的解就是对应两直线(不平行)a 1x +b 1y =c 1与a 2x +b 2y =c 2的交点坐标P (x ,y ).据此,则矩阵式(4−1−31)(x y )=(3−1)所对应两直线交点坐标是 (2,5) .【解题思路】根据题意得出方程组,求出方程组的解,再得出答案即可.【解答过程】解:根据题意得:{4x −y =3①−3x +y =−1②,①+②,得x =2,把x =2代入①,得8﹣y =3,解得:y =5,所以方程组的解为{x =2y =5,∴两直线交点坐标是(2,5),故答案为:(2,5).【变式6-1】如图,直线y =﹣2x +6与直线y =mx +n 相交于点M (p ,4).(1)求p 的值;(2)直接写出关于x ,y 的二元一次方程组{y =−2x +6y =mx +n 的解;(3)判断直线y =3nx +m ﹣2n 是否也过点M ?并说明理由.【解题思路】(1)根据直线y =﹣2x +6经过点M ,即可求出p .(2)由图象可知交点的坐标就是方程组的解.(3)先求出m +n =4,用代入法可以解决.【解答过程】解:(1)∵直线y =﹣2x +6经过点M (p ,4),∴4=﹣2p +6,∴p =1.(2)由图象可知方程组的解为{x =1y =4,(3)结论:直线y =3nx +m ﹣2n 经过点M ,理由如下:∵点M (1,4)在直线y =mx +n 上,∴m +n =4,∴当x =1,时,y =3nx +m ﹣2n =m +n =4,∴直线y =3nx +m ﹣2n 经过点M .【变式6-2】(2021秋•文成县期末)如图,l 1,l 2分别表示两个一次函数的图象,它们相交于点P ,(1)求出两条直线的函数关系式;(2)点P 的坐标可看作是哪个二元一次方程组的解;(3)求出图中△APB 的面积.【解题思路】(1)由图可得两函数与坐标轴的交点坐标,用待定系数法可求出它们的函数解析式;(2)联立两个一次函数的解析式,所得方程组的解即为P 点坐标.(3)△ABP 中,以AB 为底,P 点横坐标的绝对值为高,可求出△ABP 的面积.【解答过程】解:(1)设直线l 1的解析式是y =kx +b ,已知l 1经过点(0,3),(1,0), 可得:{b =3k +b =0,解得{b =3k =−3,则函数的解析式是y =﹣3x +3;同理可得l 2的解析式是:y =x ﹣2.(2)点P 的坐标可看作是二元一次方程组{y =−3x +3y =x −2的解.(3)易知:A (0,3),B (0,﹣2),P (54,−34);∴S △APB =12AB •|x P |=12×5×54=258.【变式6-3】(2020秋•西安期末)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x 人,甲、乙两家旅行社实际收费为y 1、y 2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?【解题思路】(1)当两函数图象相交时,两家旅行社收费相同,由图象即可得出答案.(2)由图象比较收费y 1、y 2,即可得出答案.(3)当有50人时,比较收费y1、y2,即可得出答案.【解答过程】解:(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;(2)由图象知:当有30人以下时,y1<y2,所以选择甲旅行社合算;(3)由图象知:当有50人参加时,y1>y2,所以选择乙旅行社合算;。
第01章 集合与函数的概念章末重难点题型(举一反三)-2019-2020学年高一数学必修一举一反三
姓名,年级:时间:第一章集合与函数的概念章末重难点题型【举一反三系列】【考查角度1 集合中元素的个数】【考情分析】给定一个或多个集合和一些限制条件,求出其中某个特定集合中元素的个数,一般为选择题难度不大。
【考法解读】结合题设条件,利用枚举法列举出所有元素,剔除重复元素即可确定集合中元素的个数.【例1】(2019春•衡水校级月考)已知集合A={0,1,2,3},集合B={(x,y)|x∈A,y ∈A,x≠y,x+y∈A},则B中所含元素的个数为( )A.3 B.6 C.8 D.10【分析】通过x的取值,确定y的取值,推出B中所含元素的个数.【答案】解:当x=0时,y=1,2,3;满足集合B.当x=1时,y=0,2;满足集合B.当x=2时,y=0,1;满足集合B.当x=3时,y=0.满足集合B.共有8个元素.故选:C.【点睛】本题考查集合的基本运算,元素与集合的关系,考查计算能力.【变式1—1】(2019•嘉兴模拟)若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},则集合B中的元素个数为()A.9 B.6 C.4 D.3【分析】通过列举可得x,y∈A的数对共9对,再寻找符合题意的(x,y),即为集合B中的元素个数.【答案】解:通过列举,可知x,y∈A的数对共9对,即(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9种,∵B={(x,y)|x+y﹣4>0,x,y∈A},∴易得(2,3),(3,2),(3,3)满足x+y﹣4>0,∴集合B中的元素个数共3个.故选:D.【点睛】列举题目中的几种不同情况,注意做到不重不漏,考查学生的分析能力,属于基础题.【变式1-2】(2019秋•湖北校级月考)已知集合A={1,2,3,4,5},B={(x,y)丨x ∈A,y∈A,|x﹣y|∈A},则B中所含元素的个数为()A.6 B.12 C.16 D.20【分析】依题意,x∈A,y∈A,|x﹣y|∈A,可求得集合B的元素个数,从而可得答案.【答案】解:∵A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,|x﹣y|∈A},∴当|x﹣y|=1时,(1,2),(2,3),(3,4),(4,5),(2,1),(3,2),(4,3),(5,4);当|x﹣y|=2时,(1,3),(2,4),(3,5),(3,1),(4,2),(5,3);当|x﹣y|=3时,(1,4),(2,5),(4,1),(5,2),当|x﹣y|=4时,(1,5),(5,1)B={(x,y)丨x∈A,y∈A,|x﹣y|∈A},中元素的个数是20个.故选:D.【点睛】本题考查集合中元素个数的最值,理解题意是关键,考查排列组合的应用,考查分析运算能力,属于中档题.【变式1-3】(2019秋•沙坪坝区校级月考)已知A={1,2,3},B={2,3,4,5},D={(x,y)|x∈A∩B,y∈A∪B},则D中所含元素个数为()A.8 B.10 C.16 D.25【分析】求出A与B的交集,确定出x,求出A与B的并集,确定出y,即可确定出D,做出判断.【答案】解:∵A={1,2,3},B={2,3,4,5},∴A∩B={2,3},A∪B={1,2,3,4,5},∵D={(x,y)|x∈A∩B,y∈A∪B},则D中所含元素为(2,1);(2,2);(2,3);(2,4);(2,5);(3,1);(3,2);(3,3);(3,4);(3,5)个数为10.故选:B.【点睛】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.【考查角度2 判断集合间的关系】【考情分析】给定两个集合,考查两个集合间的包含、相等关系,这类试题难度很小,一般为送分题.【考法解读】认真分析两集合中的元素,结合集合间的包含、相等的定义即可获解.【例2】(2019春•和平区校级月考)已知集合M={x|(x﹣1)(x﹣2)≤0},N={x|x >0},则( )A.N⊆M B.M⊆N C.M∩N=∅D.M∪N=R【分析】利用集合的子集真子集关系,集合的基本运算可得正确选项.【答案】解:已知集合M={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},N={x|x>0},则由集合的运算和集合的关系可得:M⊆N,B正确;故选:B.【点睛】本题主要考查集合的基本运算,集合间的关系,比较基础.【变式2-1】已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则() A.M=N B.M⫋N C.N⫋M D.M∩N=∅【分析】将集合M,N中的表达式形式改为一致,由N的元素都是M的元素,即可得出结论.【答案】解:M={x|x=+,k∈Z}={x|,k∈Z},N={x|x=+,k∈Z}={x|,k∈Z},∵k+2(k∈Z)为整数,而2k+1(k∈Z)为奇数,∴集合M、N的关系为N⊊M.故选:C.【点睛】本题考查集合的关系判断,考查学生分析解决问题的能力,属基础题.【变式2-2】(2018秋•安庆期中)下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}【分析】根据题意,结合集合相等的意义,即其中的元素完全相同;依次分析选项,A中:M、N都是点集,但(2,3)与(3,2)是不同的点,则M、N是不同的集合,B中:M、N都是数集,都表示2,3两个数,是同一个集合,对于C:M是点集,而N是数集,则M、N是不同的集合,D中:M是数集,N是点集,则M、N是不同的集合,综合可得答案.【答案】解:根据集合的定义,依次分析选项可得:对于A:M、N都是点集,(2,3)与(3,2)是不同的点,则M、N是不同的集合,故不符合;对于B:M、N都是数集,都表示2,3两个数,是同一个集合,符合要求;对于C:M是点集,表示直线x+y=1上所有的点,而N是数集,表示函数x+y=1的值域,则M、N是不同的集合,故不符合;对于D:M是数集,表示1,2两个数,N是点集,则M、N是不同的集合,故不符合;故选:B.【点睛】本题考查集合的概念与集合相等的意义,解题的关键在于分析集合的意义,认清集合中元素的性质.【变式2-3】(2018秋•张家口期末)设集合P={y|y=x2+1),M={x|y=x2+1},则集合M与集合P的关系是()A.M=P B.P∈M C.M⊊P D.P⊊M【分析】由函数的定义域及值域得:P=,M=R,即P⊊M,得解【答案】解:因为y=x2+1≥1,即P=,M={x|y=x2+1}=R,所以P⊊M,故选:D.【点睛】本题考查了集合的表示及函数的定义域及值域,属简单题【考查角度3 集合间的运算】【考情分析】给你两个集合,考查两集合间的交、并、补或它们的综合运算的结果,这是高考中考查集合的最常见形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一经典题型举一反三(新课标) 函数的表示法重难点题型
知识链接
举一反三 【考点1 函数的三种表示方法】 【练1】某种笔记本的单价是5元,买)5,4,3,2,1(xx本笔记本需要y元,试用三种方法表 示函数)(xfy. 【思路分析】利用函数的三种表示方法,即可将y表示成x的函数. 【答案】解:(1)列表法: x 1 2 3 4 5 y 5 10 15 20 25 (2)图象法 (3)解析法:y=5x,x∈{1,2,3,4,5}. 【点睛】本题考查函数的三种表示方法,列表法,图象法以及解析法,比较基础. 【练1.1】已知函数f(x),g(x)分别由下表给出:
x 1 2 3 f(x) 2 1 1
x 1 2 3 g(x) 3 2 1 则f(g(1))的值为______;当g(f(x))=2时,x=______.
【思路分析】根据表格先求出g(1)=3,再求出f(3)=1,即f[g(1)]的值;由g(x)=2求出x=2,即f(x)=2,再求出x的值.
【答案】解:由题意得,g(1)=3,则f[g(1)]=f(3)=1 ∵g[f(x)]=2,即f(x)=2,∴x=1. 故答案为:1,1. 【点睛】本题是根据表格求函数值或自变量的值,看清楚函数关系和自变量对照表格求出. 【练1.2】在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图可表示为( ) 【思路分析】利用在y轴的右侧,S的增长会越来越快,切线斜率会逐渐增大,从而选出正确的选项. 【答案】解:由题意知,当t>0时,S的增长会越来越快, 故函数S图象在y轴的右侧的切线斜率会逐渐增大, 故选:B. 【点睛】本题考查函数图象的变化特征,函数的增长速度与图象的切线斜率的关系,体现了数形结合的数学思想.
【练1.3】如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则
)3(1ff
的值等于________.
【思路分析】先求出f(3)=1,从而𝑓[1𝑓(3)]=f(1),由此能求出结果.
【答案】解:函数f(x)的图象是曲线OAB, 其中点O,A,B的坐标分别为(0,0),(1,2),(3,1), ∴f(3)=1, 𝑓[1𝑓(3)]=f(1)=2. 故答案为:2.
【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用. 【考点2 描点法作函数图象】 【练2】作出下列函数的图象并写出定义域、值域. (1)y=2x; (2)y=(x﹣2)2+1;
(3)y=2𝑥; (4)y=2x+1,x∈Z且|x|<2. 【思路分析】分别根据函数的单调性进行求解即可. 【答案】解:(1)y=2x的定义域(﹣∞,+∞),值域(﹣∞,+∞); (2)函数y=(x﹣2)2+1≥1;定义域为(﹣∞,+∞),值域[1,+∞). (3)y=2𝑥的定义域为(﹣∞,0)∪(0,+∞),值域为(﹣∞,0)∪(0,+∞); (4)y=2x+1,x∈Z且|x|<2.的定义域为{﹣1,0,1},此时y=﹣1,1,3,即值域为{﹣1,1,3}, 对应的图象为:
【点睛】本题主要考查函数定义域和值域的求解,比较基础. 【练2.1】画下列函数图象并求值域. (1)y=﹣x2+2x+3;
(2)y=|﹣x2+2x+3|;
(3)y=|x﹣2|﹣|x﹣1|; (4)y=﹣x2+2|x|+3;
(5)y=|x﹣2|+|x﹣1|. 【思路分析】利用绝对值的几何意义,画出图象并求值域. 【答案】解:(1)y=﹣x2+2x+3,如图所示,值域为(﹣∞,4]
(2)y=|﹣x2+2x+3|,如图所示,值域为[0,+∞),
(3)y=|x﹣2|﹣|x﹣1|,如图所示,值域为[﹣1,1] (4)y=﹣x2+2|x|+3,如图所示,值域为(﹣∞,4]
(5)y=|x﹣2|+|x﹣1|,如图所示,值域为[1,+∞) 【点睛】本题考查函数的图象与性质,考查学生的作图能力,考查学生的计算能力,正确作出函数的图
象是关键.
【练2.2】作出下列函数的图象并写出它们的值域. (1)y=|x﹣1|+|x+1|; (2)y=x,x∈z且|x|≤2. 【思路分析】(1)运用分段函数化简函数y,即可得到所求图象和值域; (2)求得整点坐标,即可得到所求图象和值域. 【答案】解:(1)y=|x﹣1|+|x+1|
={
2𝑥,𝑥≥12,−1<𝑥<1−2𝑥,𝑥≤−1,
值域为[2,+∞); (2)y=x,x∈z且|x|≤2, 可得x=﹣2,y=﹣2;x=﹣1,y=﹣1;x=0,y=0; x=1,y=1;x=2,y=2. 值域为{﹣2,﹣1,0,1,2}.
【点睛】本题考查函数的图象的画法和运用:求值域,考查运算能力,属于基础题. 【练2.3】画出二次函数f(x)=﹣x2+2x+3的图象,并根据图象回答下列问题:
(1)比较f(0)、f(1)、f(3)的大小; (2)若x1<x2<1,比较f(x1)与f(x2)的大小;
(3)求函数f(x)的值域. 【思路分析】先画出函数的图象,由图象即可得到相应的答案. 【答案】解:图象如图所示: (1)由图象可得f(1)>f(0)>f(3), (2)x1<x2<1,函数在(﹣∞,1)上为增函数,
∴f(x1)<f(x2), (3)由函数图象可得函数的值域为(﹣∞,4].
【点睛】本题考查了二次函数图象的画法和识别,属于基础题. 【考点3 求函数解析式—待定系数法】 【练3】设二次函数()fx满足(0)1f,且(1)()4fxfxx,求()fx的解析式. 【思路分析】用待定系数法设出f(x)=ax2+bx+c=0(a≠0),再通过已知条件列方程可解得; 【答案】解 设所求二次函数为f(x)=ax2+bx+c=0(a≠0), ∵f(0)=1,∴c=1,则f(x)=ax2+bx+1=0,(a≠0), 又∵f(x+1)﹣f(x)=4x, ∴a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=4x, 即 2ax+a+b=4x,得,{2𝑎=4𝑎+𝑏=0∴{𝑎=2𝑏=−2∴f(x)=2x2﹣2x+1, 【点睛】本题考查了函数解析式的求解及常用方法,属 中档题. 【练3.1】已知二次函数()fx满足条件(0)1f和(1)()2fxfxx,求()fx的解析式;
【思路分析】据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得
【答案】解:设y=f(x)=ax2+bx+c ∵f(0)=1,f(x+1)﹣f(x)=2x ∴c=1;a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=2x ∴∴2a=2,a+b=0 解得a=1,b=﹣1 函数f(x)的表达式为f(x)=x2﹣x+1 【点睛】本题考查利用待定系数法,方程组法,换元法求函数的解析式,属于基础题. 【练3.2】已知()yfx是一次函数,且有[()]98ffxx,求()fx的解析式. 【思路分析】设f(x)=ax+b(a≠0),由f[f(x)]=9x+8.比较对应项系数可得方程组,解出即得a,b.从而得到函数解析式.
【答案】解:设f(x)=ax+b(a≠0), 则f[f(x)]=af(x)+b=a(ax+b)+b=a2x+ab+b=9x+8 ∴a2=9且ab+b=8, 解得,a=3,b=2或a=﹣3,b=﹣4, ∴一次函数的解析式为:f(x)=3x+2或f(x)=﹣3x﹣4. 【点睛】本题考查一次函数的性质及图象,属基础题,若已知函数类型,可用待定系数法求其解析式.属于基础题.
【练3.3】已知二次函数2()fxxaxb,{|()2}{22}Axfxx,试求()fx的解析式.
【思路分析】由已知中二次函数f(x)=x2+ax+b,A={x|f(x)=2x}={22},可得方程(x)=x2+ax+b=2x有两个相等的实根22,由韦达定理求出a,b的值得答案.
【答案】解:∵二次函数f(x)=x2+ax+b,A={x|f(x)=2x}={22}, 故方程(x)=x2+ax+b=2x有两个相等的实根22, 即方程x2+(a﹣2)x+b=0有两个相等的实根22, 即22+22=﹣(a﹣2)且22×22=b, 解得:a=﹣42,b=484, 故f(x)=x2﹣42x+484. 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是答案的关键,是基础题.
【考点4 求函数解析式—换元法】 【练4】设函数()fx满足2(23)1fxxx,求()fx的解析式; 【思路分析】可设2x﹣3=t,从而求得𝑥=12𝑡+32,代入f(2x﹣3)=x2+x﹣1并整理可得出𝑓(𝑡)=
1
4𝑡2+
2𝑡+114,从而得出𝑓(𝑥)=14𝑥2+2𝑥+114;
【答案】解:设2x﹣3=t,则x=12𝑡+32,带入f(2x﹣3)=x2+x﹣1得:𝑓(𝑡)=(
12𝑡+32)2+12𝑡+3
2−1=
14𝑡2+2𝑡+114;
∴𝑓(𝑥)=14𝑥2+2𝑥+114;