第七章习题解答

合集下载

第7章习题解答

第7章习题解答

z 2 = z 1 + 130
2 z z ) 2 + 100 z ( z ) = 0 1 - ( 1 + 130 1 + 82 1 + 130
2 - 260 z z ´ 130 = 0 1 - 130 + 182 1 + 82
78 z ´ 130 - 130 2 = -48 ´ 130 = -6240 1 = 82 z 1 = -80 z 2 = z 1 + 130 = 130 - 80 = 50 f = 40cm
p 3 . 14 - 8 2 l 2 ´ 6328 ´ 10 - 3 ④ q= = = 2 . 315 ´ 10 rad pw0 3 . 14 ´ 0 . 0174
(5)有一个平凹腔,凹面镜曲率半径 R=5m,腔长 L=1m,光波长l=0.5mm,求①两镜 面上的基模光斑半径②基模高斯光束的远场发散角 解:①
2、双凹腔两反射镜面曲率半径分别为 R1=100cm、R2=82cm,腔长 L=130cm,求等价共焦 腔的焦参数。 解:
z1 +
f 2 = - R 1 z 1
z 1 +
f 2 = -100 z 1
2 2 z 100 z 1 + 1 + f = 0
w 0 =
f l
p
=
0 . 4 R l
p
(2)对称双凹腔长为 L,反射镜曲率半径 R=2.5L,光波长为l,求镜面上的基模光斑半 径。 解:
L L 2 f 2 = ( 2 R - L ) = (2 ´ 2 . 5 L - L ) = L 4 4 f = L
2 z 2
f
2

普通化学第七章课后习题解答

普通化学第七章课后习题解答

第七章沉淀反应参考答案P 142【综合性思考题】:给定体系0.02mol/LMnCl 2溶液(含杂质Fe 3+),经下列实验操作解答问题。

(已知K θSPMn(OH)2=2.0×10-13,K θSPMnS =2.5×10-13,K θbNH3=1.8×10-5,K θaHAc =1.8×10-5①与0.20mol/L 的NH 3.H 2O 等体积混合,是否产生Mn(OH)2沉淀?解:等体积混合后浓度减半,[Mn 2+]=0.01mol/L ,c b =[NH 3.H 2O]=0.10mol/L∵是一元弱碱体系,且c b /K b θ>500∴10.0108.1][5⨯⨯=⋅=--b b c K OH θ又∵ 622108.101.0][][--+⨯⨯=⋅=OH Mn Q c=1.8×10-8> K θSPMn(OH)2=2.0×10-13∴ 产生Mn(OH)2沉淀。

②与含0.20mol/L 的NH 3.H 2O 和0.2mol/LNH 4Cl 的溶液等体积混合,是否产生Mn(OH)2沉淀? 解:混合后属于NH 3.H 2O~NH 4Cl 的碱型缓冲液体系此时浓度减半:c b =[NH 3.H 2O]=0.2V/2V=0.1(mol.L -1)c S= [NH 4+]=0.2V/2V=0.1(mol.L -1)[Mn 2+]=0.02V/2V=0.01(mol.L -1)A 、求[OH -] 用碱型缓冲液计算式求算:s b b c c K OH ⋅=-θ][ 55108.11.01.0108.1--⨯=⨯⨯= B 、求Qc 22][][-+⋅=OH Mn Q c=0.01×[1.8×10-5]2=3.24×10-12C 、比较θ2)(,OH Mn SP K ∵13)(,100.22-⨯=>θOH Mn SP C K Q故有Mn(OH)2沉淀产生。

习题解答(第七章)

习题解答(第七章)
struct date birthday;
};
7.5有n个学生,每个学生的数据包括学号(num),姓名(name[20]),性别(sex),年龄(age),三门课成绩(score[3])。
(1)要求在main函数中输入这几个学生的数据,然后调用一个函数count,在该函数中计算出每个学生的总分和平均分,然后打印出所有各项数据(包括原有的和新求出的)。
}
7.7建立一个链表,每个节点包含的成员为:职工号、工资。
(1)用malloc函数开辟新节点。要求链表包含5个节点,从键盘输入节点中的有效数据。然后把这些节点的数据打印出来。要求用函数creat来建立链表,用list函数来输出数据。这5个职工的号码为0601,0603,0605,0607,0609。
printf("工龄: ");
a[i].ls=atoi(gets(numstr));
printf("工资: ");
a[i].wage=atof(gets(numstr));
printf("地址: ");
gets(a[i].addr);
}
printf("职工号职工名性别年龄工龄工资地址\n");
for(i=0; i<N; i++)
{
printf("请输入第%d个学生的记录:\n", i);
gets(numstr); student[i].num=atol(numstr);
gets(student[i].name);
student[i].sex=getchar(); getchar();
gets(numstr); student[i].age=atoi(numstr);

第七章习题解答

第七章习题解答

习 题 七1. 判断下面所定义的变换,哪些是线性的,哪些不是:(1) 在向量空间V 中,σ (ξ)=ξ+α,α是V 中一固定的向量;(2) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,(233221x x x x +;(3) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,2(13221x x x x x +-;(4) 把复数域看作复数域上的向量空间,σ (ξ)=ξ.解 (1)当0=α时,σ是线性变换;当0≠α时,σ不是线性变换;(2)σ不是线性变换;(3)σ是线性变换;(4)σ不是线性变换;2. 设V 是数域F 上一维向量空间. 证明,σ是V 的一个线性变换的充要条件是:存在F 中的一个数a ,使得对任意ξ∈V ,都有σ (ξ)=a ξ .证明:充分性显然.必要性:令σ是ν的一个线性变换,设1ξ是ν的一个基.则νξσ∈)(1.那么)(1ξσ可由1ξ线性表示,不妨设11)(ξξσa =.对任意的νξ∈,有1ξξk =,则ξξξξσξσξσa k a a k k k =====)()()()()(1111.3. 设σ是向量空间V 的线性变换,如果σ k -1ξ≠0, 但σ k ξ=0,求证ξ, σξ, …, σ k -1ξ (k >0)线性无关.证明: 令 ++σξξ10l l ┄ +011=--ξσk k l ┈┈┈┈(1)(1)式两端用1-k σ作用得:++-ξσξσk k l l 110+0221=--ξσk k l由已知得: ==+ξσξσ1k k =,022=-ξσk 01≠-ξσk ,所以有 00=l .则(1)式变为: +σξ1l +011=--ξσk k l ┈┈┈┈(2)(2)式两端用2-k σ 作用得:ξσξσk k l l 211+-+0321=--ξσk k l同理01=l .重复上述过程有: ==10l l 01=-k l .4. 在向量空间R [x ]中,σ (f (x ))=f '(x ), τ (f (x ))=xf (x ), 证明,στ -τσ=ι.证明:对任意][)(x R x f ∈,有))(())()((x f x f σττσστ=-=-+=-=-)()()()())((())(('''x xf x xf x f x f x f x x f τστσ)(x f .所以στ -τσ=ι.5. 在向量空间R 3中,线性变换σ, τ如下:σ (x 1, x 2, x 3)=(x 1, x 2, x 1+x 2)τ (x 1, x 2, x 3)=(x 1+x 2-x 3, 0, x 3-x 1-x 2)(1) 求στ, τσ, σ2;(2) 求σ+τ, σ -τ, 2σ.解: (1) =---+=),0,(),,(213321321x x x x x x x x x σστ,(321x x x -+0,),,()321321x x x x x x τ=-+,∴τστ=.)0,0,0(),,(),,(2121321=+=x x x x x x x ττσ,∴0=τσ),,(),,(21213212x x x x x x x +=σσ=),,(2121x x x x +.∴σσ=2.(2) ),,)((321x x x τσ+=),,(321x x x σ+),,(321x x x τ),,(2121x x x x +=+),0,(213321x x x x x x ---+),,2(32321x x x x x -+=.),,)((321x x x τσ-=),,(321x x x σ),,(321x x x τ-),,(2121x x x x +=),0,(213321x x x x x x ---+-=)22,,(321232x x x x x x -++-.2),,(2321=x x x σ),,(2121x x x x +=)22,2,2(2121x x x x +.6. 已知向量空间R 3的线性变换σ为σ (x 1, x 2, x 3)=(x 1+x 2+x 3, x 2+x 3,-x 3)证明,σ是可逆变换,并求σ-1.证明:),0,0,1(),0,0,1(=σ, ),0,1,1(),0,1,0(=σ,),1,1,1(),1,0,0(-=σ. ∴ σ关于3R 的一个基),0,0,1(, ),0,1,0(,),1,0,0(的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=100110111A .显然,A 可逆,所以σ是可逆变换,而且⎪⎪⎪⎭⎫ ⎝⎛--=-1001100111A 所以-=⎪⎪⎪⎭⎫ ⎝⎛=--132113211(),,(x x x x A x x x σ,2x ,32x x +)3x -.7. 设σ, τ, ρ都是向量空间V 的线性变换,试证,(1)如果σ, τ都与ρ可交换,则στ, σ2也都与ρ可交换(若对任意α∈V ,都有στ (α)=τσ (α),就说σ与τ可交换);(2)如果σ+τ, σ-τ都与ρ可交换,则σ, τ也都与ρ可交换.证:(1)由已知ρττρρσσρ==,.那么==)()(τρσρστ)(ρτσ=)()(στρτσρ=.22)()()(ρσσσρρσσσρσρσ====.(2)同理可证.8. 证明,数域F 上的有限维向量空间V 的线性变换σ是可逆变换的充分必要条件是σ把非零向量变为非零向量.证明:不妨设ν是n 维的. ,,21ξξ,n ξ是它的一个基.σ关于这个基的矩阵为A .显然,σ可逆当且仅当A 可逆. σ把非零向量变为非零向量当且仅当{}0=σKer ,而秩σ=秩A ,σ的零度=σker dim .且秩σ+σ的零度=n.所以秩σ=n 当且仅当σ的零度是0,即A 可逆当且仅当0=σKer .故σ可逆当且仅当σ把非零向量变为非零向量.9. 证明,可逆线性变换把线性无关的向量组变为线性无关的向量组. 证明:令σ是向量空间ν的可逆线性变换, ,,21αα,m α是ν的一组线性无关的向量,令++)()(2211ασασk k +0)(=m m k ασ.两端用1-σ 作用得: +11αk +0=m m k α.由已知 ,,21αα,m α 线性无关,所以: ==21k k =0=m k .故 ),(),(21ασασ,)(m ασ 线性无关.10. 设{ε1, ε2, ε3}是F 上向量空间V 的一个基. 已知V 的线性变换σ在{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a (1) 求σ在{ε1, ε3, ε2}下的矩阵;(2) 求σ在{ε1, k ε2, ε3}下的矩阵(k ≠0,k ∈F );(3) 求σ在{ε1, ε1+ε2, ε3}下的矩阵.解:(1)⎪⎪⎪⎭⎫ ⎝⎛=222321323331121311231231),,(),,(a a a a a a a a a εεεεεεσ. (2)⎪⎪⎪⎪⎭⎫ ⎝⎛=33323123222113121132132111),,(),,(a ka a a k a a k a ka a k k εεεεεεσ. (3) =+),,(3211εεεεσ),,(3211εεεε+⎪⎪⎪⎭⎫ ⎝⎛++---+-⋅33323131232221212313222112112111a a a a a a a a a a a a a a a a 11. 在R 3中定义线性变换σ如下σ (x 1, x 2, x 3)=(2x 2+x 3, x 1-4x 2, 3x 1),∀(x 1, x 2, x 3)∈R 3.(1) 求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)下的矩阵;(2) 利用(1)中结论,求σ在基α1=(1, 1, 1),α2=(1, 1, 0),α3=(1, 0, 0)下的矩阵.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛-=003041120),,(),,(321321εεεεεεσ(2)从基{}321,,εεε到基{}321,,ααα的过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛=001011111P .σ在{}321,,ααα下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=⋅⎪⎪⎪⎭⎫ ⎝⎛-⋅-0010111110030411200111101000030411201P P=⎪⎪⎪⎭⎫ ⎝⎛---156266333.12. 已知M 2(F )的两个线性变换σ,τ如下σ (X )=X ⎪⎪⎭⎫ ⎝⎛-1111, τ (X )=⎪⎪⎭⎫ ⎝⎛-0201X , ∀X ∈M 2(F ). 试求σ+τ, στ在基E 11, E 12, E 21, E 22下的矩阵. 又问σ和τ是否可逆?若可逆,求其逆变换在同一基下的矩阵.证明:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+021*********)(111111E E E τσ =12112E E +222102E E +-.⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+200102011111)(121212E E E τσ =12110E E +222120E E -+.⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+110002011111)(212121E E E τσ=121100E E +2221E E ++.⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+10002011111)(222222E E E τσ =121100E E +2221E E -+.所以τσ+在基22211211,,,E E E E 下的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1120110200010012A . 同理可证στ在基22211211,,,E E E E 下的矩阵.121111)(E E E +=σ,121112)(E E E -=σ,222112112100)(E E E E E +++=σ,=)(22E σ2221121100E E E E -++.所以σ在此基下的矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1100110000110011B . 显然,B 可逆.所以σ可逆. σ在同一基下的矩阵为: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-2121002121000021210021211B . 同理可讨论τ的可逆性及求τ的矩阵.13. 设σ是数域F 上n 维向量空间V 的一个线性变换. W 1, W 2是V 的子空间,并且V =W 1⊕W 2证明,σ是可逆变换的充要条件是V =σ ( W 1)⊕σ ( W 2)证明:令 ,1α,r α是1W 的一个基. 令 ,1+r α,n α是2W 的一个基. 由已知得: ,1α, n α是ν的一个基.必要性:设σ可逆,则 ),(1ασ,)(r ασ, )(1+r ασ,)(n ασ 也是ν的一个基.但=)(1W σ£( ),(1ασ,)(r ασ).=)(2W σ£( )(1+r ασ,)(n ασ)所以=ν+)(1W σ)(2W σ,⋂)(1W σ}0{)(2=W σ,故V =σ ( W 1)⊕ σ ( W 2).充分性:将必要性的过程倒过去即可.14. 设R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(2x 1-x 2, x 2-x 3, x 2+x 3)求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)及基η1=(1, 1, 0), η2=(0, 1, 1),η3=(0, 0, 1)下的矩阵.解: σ在基{ε1, ε3, ε2}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=110110012A .σ在基{321,,ηηη}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=-1100110011101100121100110011B =⎪⎪⎪⎭⎫ ⎝⎛--211110011.15. 在M 2(F )中定义线性变换σ为 σ (X )=⎪⎪⎭⎫ ⎝⎛-3210X , ∀X ∈M 2(F ). 求σ在基{ E 11, E 12, E 21, E 22}下的矩阵,其中E 11=⎪⎪⎭⎫ ⎝⎛0001, E 12=⎪⎪⎭⎫ ⎝⎛0010, E 21=⎪⎪⎭⎫ ⎝⎛0100, E 22=⎪⎪⎭⎫ ⎝⎛1000. 解: σ在基{22211211,,,E E E E }下的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=3020030210000100A . 16. 证明,与n 维向量空间V 的全体线性变换可交换的线性变换是数量变换.证明:由105P 习题二及第10题的结论易得.17. 给定R 3的两个基α1=(1, 0, 1), α2=(2, 1, 0), α3=(1, 1, 1);和 β1=(1, 2,-1), β2=(2, 2, -1), β3=(2, -1, -1). σ是R 3的线性变换,且σ(αi )=βi ,i =1, 2,3. 求(1) 由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵;(2) σ关于基{α1, α2 , α3}的矩阵;(3) σ关于基{β1, β2 , β3}的矩阵.解: (1)令)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε.则由{α1, α2 , α3}到{ε1,ε3, ε2}的过渡矩阵为:1101110121-⎪⎪⎪⎭⎫ ⎝⎛. 由基{ε1, ε3, ε2}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛101110221.所以由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为: ⎪⎪⎪⎭⎫ ⎝⎛----⋅⎪⎪⎪⎭⎫ ⎝⎛---=-1111222211111101211P =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 (2) σ ==),,(),,(321321βββαααP ),,(321ααα.所以σ在),,(321ααα下的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232. σ关于基{β1, β2 , β3}的矩阵为: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 18. 设α1=(-1, 0, -2), α2=(0, 1, 2), α3=(1, 2, 5),β1=(-1, 1, 0), β2=(1, 0, 1), β3=(0, 1, 2),ξ=(0, 3, 5)是R 3中的向量,σ是R 3的线性变换,并且σ(α1)=(2, 0, -1), σ(α2)=(0, 0, 1),σ(α3)=(0, 1, 2).(1) 求σ关于基{β1, β2 , β3}的矩阵;(2) 求σ(ξ)关于基{α1, α2 , α3}的坐标;(3) 求σ(ξ)关于基{β1, β2 , β3}的坐标.解:令⎪⎪⎪⎭⎫ ⎝⎛--=5222101011T ,⎪⎪⎪⎭⎫ ⎝⎛-=2101011112T .则从基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=⋅=-0101210011222341212211T T T T .又321135310311)1,0,2()(αααασ-+-=-= 321203231)1,0,0()(αααασ+-== 321300)2,1,0()(αααασ++==所以σ关于),,(321ααα的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311.从而σ关于基{β1, β2 , β3}的矩阵为:⋅⎪⎪⎪⎭⎫ ⎝⎛-==-2111000011AT T B ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311⎪⎪⎪⎭⎫ ⎝⎛-⋅010121001= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----31353103132343132310. (2)==)5,3,0(ξ321353135ααα+-.所以关于)(ξσ),,(321ααα的坐标为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅926967956353135A 由(2)可知=)(ξσ⋅),,(321ααα⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=(β1, β2 , β3)⋅⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956 所以关于)(ξσ{β1, β2 , β3}的坐标为:⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⋅⎪⎪⎪⎭⎫ ⎝⎛-211100001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--971926956. 19. 设R 3有一个线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+x 2,x 2+x 3,x 3),∀(x 1, x 2, x 3)∈R 3. 下列R 3的子空间哪些在σ之下不变?(1) {(0, 0, c )| c ∈R }; (2) {(0, b , c )| b , c ∈R };(3) {(a , 0, 0)| a ∈R }; (4) {(a , b , 0)| a , b ∈R };(5) {(a , 0, c )| a , c ∈R }; (6) {(a , -a , 0)| a ∈R }.解:(3)与(4)在σ之下不变.20. 设σ是n 维向量空间V 的一个线性变换,证明下列条件等价:(1) σ (V )=V ; (2) ker σ={0}.证明:因为秩σ+σ的零度=n. 所以秩σ=n 当且仅当σ的零度是0,即n =)(dim νσ当且仅当0k e r d i m=σ,因此V V =)(σ当且仅当}0{=σK e r .21. 已知R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+2x 2-x 3, x 2+x 3, x 1+x 2-2x 3),∀(x 1, x 2, x 3)∈R 3.求σ的值域σ (V )与核Ker σ的维数和基.解: σ关于基)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=211110121A .)1,0,1()(1=εσ,)1,1,2()(2=εσ,)(νσ))(),((21εσεσL =.),(ker ξσL =其中)1,1,3(-=ξ,1ker dim =σ.22. 设σ是向量空间V 的一个线性变换,W 是σ的一个不变子空间,证明,W 是σ 2的不变子空间.证明:由不变子空间的定义易证.23. 设σ是数域F 上n (>0)维向量空间V 的一个线性变换,{α1, α2 ,…, αr , αr +1,…, αn }是V 的基. 证明,如果{α1, α2 ,…, αr }是Ker σ的基,那么{σ (αr +1),…, σ (αn )}是Im σ的基.证明:已知{α1, α2 ,…, αr }是Ker σ的基, 则σ (αi )=0, i =1,2, …, r .令 l r +1σ (αr +1)+ l r +2σ (αr +2)+ …+ l n σ (αn )=0, 则σ ( l r +1αr +1+…+ l n αn )=0, l r +1αr +1+…+ l n αn ∈ Ker σ .所以 l r +1αr +1+…+ l n αn =l 1α 1+…+ l r αr但 α1, α2 ,…, αr , αr +1,…, αn 是V 的一个基, 故 l r +1=…= l n =0.所以 σ (αr +1),…, σ (αn ) 线性无关.又 Im σ = £(σ (α1), σ (α2)…, σ (αn )) = (σ (αr +1),…, σ (αn )).从而结论成立.24. 对任意α∈R 4,令σ (α)=A α,其中A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---2122552131211201 求线性变换σ的核与象. 解: α1 = ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--02232, α2 = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1021, Ker σ =£(α1,α2). σ (ε1) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2111, σ (ε2) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2220.Im σ =£(σ (ε1), σ (ε2)).25. 设 σ,τ 是向量空间V 的线性变换,且σ+τ=ι,στ=τσ=θ. 这里ι是V 的恒等变换,θ 是V 的零变换. 证明:(1) V =σ(V )⊕τ (V );(2) σ(V )=Ker τ.证明: (1) ∀ξ∈ V , ξ=ι (ξ)=(σ+τ)(ξ)=σ (ξ)+τ (ξ).所以V =σ (V )+τ (V ).对任意ξ∈σ (V )∩τ (V ). 则ξ=σ (ξ1)+ τ (ξ2).由已知条件可得ξ= ι (σ (ξ1)) = (σ+τ)(σ (ξ1)) = σ·(σ (ξ1) = σ·(τ (ξ2)= στ (ξ2) = 0 .故结论成立.(2 ) 对任意σ (ξ)∈σ (V ), 则 τ(σ (ξ))= 0, 所以 σ (ξ)∈Ker τ .反之, 对任意ξ∈Ker τ , 则τ(ξ)= 0.由已知条件可得,ξ= (σ+τ)(ξ)=σ (ξ)+τ (ξ)=σ (ξ),所以ξ∈σ (V ).26. 在向量空间F n [x ]中,定义线性变换τ为:对任意f (x )∈F n [x ],τ(f (x )) =x f'(x )-f (x ). 这里f '(x )表示f (x )的导数.(1)求Ker τ及Im τ;(2)证明,V =Ker τ⊕Im τ.解: (1) 令τ ( f (x )) = x f '(x )-f (x ) = 0其中 f (x ) = a 0 + a 1x + … + a n x n . 则(a 1x +2a 2x 2+ … +n a n x n )- f (x ) = 0(0- a 0) + ( a 1- a 1)x + (2a 2- a 2) x 2 + … + (n a n -a n )x n = 0有 ⎪⎪⎩⎪⎪⎨⎧===00020n a a a, 所以 f (x ) = a 1x ,Ker τ =£(x ), Im τ=£(1,x 2, … ,x n ).(2) 显然 .27. 已知向量空间V 的线性变换σ在基{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛--121101365求σ的本征值及相应的本征向量. 问是否存在V 的一个基使得σ 关于这个基的矩阵是对角阵?解: 本征值λ=2 (三重), 属于λ=2的线性无关的本征向量为:ξ1=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0131 , ξ2=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1031, 故σ 不能对角化.28. 设σ是向量空间V 的可逆线性变换,证明(1) σ的本征值一定不为0;(2) 如果λ是σ 的本征值,那么λ1是σ-1的本征值. 证明: (1) 反设σ 有一本征值为0,则存在ξ≠0,ξ∈ V , 使得σ (ξ)=0·ξ= 0 . 因为σ 可逆, 所以 σ -1(σ (ξ))=0, 即ξ= 0.矛盾.(2) 设λ是σ 的本征值,由(1)得λ≠0,且有σ (ξ)=λξ,ξ≠0.σ -1(σ (ξ))=λσ -1 (ξ). 即 σ -1 (ξ)=λ1ξ, 所以结论成立. 补 充 题1. 设σ是数域F 上n 维向量空间V 的一个线性变换. 证明(1) Ker σ ⊆Ker σ2 ⊆ Ker σ3 ⊆…(2) Im σ ⊇Im σ2 ⊇Im σ3 ⊇…证明: (1)对任意正整数n ,下证Ker σ n ⊆ Ker σ n +1对任意ξ∈ Ker σ n ., σ n (ξ)=0, σ (σ n (ξ))=0即σ n +1(ξ)=0, 所以ξ∈ Ker σ n +1.(2) 对任意正整数n ,下证Im σ n ⊇Im σ n +1.对任意ξ∈Im σ n +1, 则存在 η∈ V , 使得ξ=σ n +1(η)=σ n (σ (η))∈Im σ n .2. 设A 是数域F 上的n 阶矩阵. 证明,存在F 上的一个非零多项式f (x ), 使得f (A )=0.[不用Cayley-Hamilton 定理证. ]证明: 由于dimM n (F) = n 2, 所以I, A, A 2, …, A 2n 线性相关,故存在 F 上的不全为零的一组数k 0,, k 1, … ,k 2n ,使得+++2210A k A k I k ┄+022=n n A k .取=)(x f +++2210x k x k k ┄+ 022=n n x k ,结论得证. 3. 设V 是n 维向量空间, σ是V 的一个可逆线性变换, W 是σ的一个不变子空间. 证明, W 也是σ-1的不变子空间.证明:令{α1, α2 ,…, αr }是W 的一个基,因为W 是σ的不变子空间,所以 ,1,)(=∈i i ωασ,r .又σ是可逆的,所以 ),(1ασ,)(r ασ线性无关,故 ),(1ασ,)(r ασ也是W 的一个基.因为r i i i ,,1,))((1 =∈=-ωαασσ.所以W 关于1-σ不变.4. 设σ是数域F 上向量空间V 的一个线性变换, σ2=σ. 证明:(1) Ker σ ={ξ-σ (ξ)|ξ∈V };(2) V =Ker σ ⊕Im σ ;(3) 若τ是V 的一个线性变换, 那么Ker σ 和Im σ 都在τ之下不变的充要条件是στ=τσ.[提示:证(3)的必要性,利用(2). ]证明:(1)对于任意的,ker σξ∈则.0)(=ξσ那么{}V ∈-∈-=-=ξξσξξσξξξ)()(0.反之,任意的{}V ∈-∈-ξξσξξσξ)()(,有-=-)())((ξσξσξσ 0)()()(2=-=ξσξσξσ,故σξσξker )(∈-.(2)由(1)的解果可知:σσIm ker +=V ,对任意的σσξIm ker ⋂∈,则有:)()(211ησησηξ=-=,因此0)()()(121=-=ησησξσ.同时还有:ξησησξσ===)()()(222所以0=ξ,结论成立.(3)充分性易证.必要性:设Ker σ 和Im σ 都在τ之下不变,由(2)的结论得:1,ξξξ=∈∀V ),(2ξσ+其中σξker 1∈.又因为+-=+-=-))(())(())()(())((1121ξστξτσξσξτσστξτσστ )()))(((222ξτσξστσ-.由已知,,Im ))((,ker )(21σξστσξτ∈∈不妨设)())((32ξσξστ=,所以 0)()())(())(())((2323=-=-=-ξτσξσξστξσσξτσστ.5. 设σ是数域F 上n 维向量空间V 的一个线性变换, σ2=ι. 证明, V =W 1⊕W 2, 这里W 1={ξ∈V |σ(ξ)=ξ},W 2={η∈V |σ(η)=-η}.[提示:∀α∈V ,α=21(α+σ(α))+21(α-σ(α)). ]证明:首先对2)(2)(,ασαασααα-++=∈∀V ,由于 =+)2)((ασασ2)(2)()(2ασαασασ+=+,=-)2)((ασασ=-2)()(2ασασ 2)(ασα-- 所以12)(W ∈+ασα,22)(W ∈-ασα,故21W W V +=.其次对任意的21W W ⋂∈α,则αασ=)(,αασ-=)(.所以0,02==αα.那么V =W 1⊕W 2,结论成立.6. 设V 是复数域C 上一个n 维向量空间, σ, τ是V 的线性变换, 且στ=τσ . 证明(1) 对σ的每一本征值λ来说,V λ={ξ∈V |σ(ξ)=λξ}是τ的不变子空间;(2) σ与τ有一公共本征向量.[提示:证(2)时,考虑τ在V λ上的限制. ]证明: (1)易证.(2).由(1)可知λV 是τ的不变子空间.则λτV 是λV 的一个线性变换.因此λτV 在复数域C 上一定有一个本征值,不妨设为μ.即存在λαV ∈≠0,使得 μαατλ=))((V .而)())((ατατλ=V ,所以α是τ的属于μ的一个本征向量.由α的取法,结论得证.7. 设A 是秩为r 的n 阶半正定矩阵. 证明,W ={ξ∈R n |ξ T A ξ=0}是R n 的n -r 维子空间.[提示:利用习题三第33题的结论,可得W 是齐次线性方程组BX =0的解空间. ]证明:由习题三第33题的结论得:B B A T =,其中B 是秩为r 的n r ⨯矩阵.则)()(ξξξξξξB B B B A T T T T ==,那么0=ξξA T 当且仅当0=ξB .=W {}0=∈ξξB R n .因为秩r B =,所以齐次线性方程组0=Bx 的解空间是r n -维的.即r n W -=dim .8. 设σ,τ是F 上向量空间V 的线性变换,且σ2=σ,τ2=τ. 证明,(1) Im σ=Im τ 当且仅当 στ=τ, τσ=σ;(2) Ker σ=Ker τ 当且仅当 στ=σ, τσ=τ.证明:(1)必要性:设τσm m I I =,,V ∈∀ξ则σξτIm )(∈.令)()(1ξσξτ=,则 )()())(()(11ξτξσξσσξστ===.所以τστ=.同理可证στσ=. 充分性:设τστ=,στσ=.对任意的σξσIm )(∈,则τξστξτσξσIm ))(())(()(∈==所以τσIm Im ⊆,同理可证στIm Im ⊆.(2)必要性:设Ker σ=Ker τ.对任意的V ∈ξ,因为0)()())((2=-=-ξτξτξξττ所以τξξτker)(∈-,则0))((=-ξξτσ,即)())((ξσξτσ=,故σστ=.勤劳的蜜蜂有糖吃同理可证ττσ=.充分性:设ττσ=,σστ=.对任意的σξker ∈,则0)(=ξσ.且0)0())(())(()(====τξστξτσξτ所以τξker ∈,故τσker ker ⊆.同理可证στker ker ⊆.。

化工原理课后习题答案第七章吸收习题解答

化工原理课后习题答案第七章吸收习题解答

第七章 吸 收7-1 总压101.3 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用,通过实验测定其亨利系数E 为4.13 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。

(溶液密度近似取为1000kg/m 3)解:溶质在液相中的摩尔分数:50640.01391000501864x ==+ 二氧化硫的平衡分压:*34.13100.0139kPa=57.41kPa p Ex ==⨯⨯相平衡常数:634.1310Pa40.77101.310PaE m P ⨯===⨯7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数),求填料塔出口水溶液中硫化氢的最大浓度。

已知塔内温度为20℃,压强为1.52×105 Pa ,亨利系数E 为48.9MPa 。

解:相平衡常数为:6548.910321.711.5210E m P ⨯===⨯ 硫化氢的混合气进口摩尔浓度:15340.04305953429y ==+若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即:41max 0.0430 1.3410321.71y x m -===⨯7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。

(1)含NO 2 0.003(摩尔分率)的水溶液和含NO 2 0.06 (摩尔分率) 的混合气接触,总压为101.3kPa ,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =1.68×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。

解:(1)相平衡常数为:51311.6810Pa 1.658101.310Pa E m P ⨯===⨯ *1 1.6580.0030.00498y m x ==⨯=由于 *y y >,所以该过程是吸收过程。

高频电子线路最新版课后习题解答第七章——角度调制与解调答案

高频电子线路最新版课后习题解答第七章——角度调制与解调答案

第七章 思考题与习题7.1 什么是角度调制?解:用调制信号控制高频载波的频率(相位),使其随调制信号的变化规律线性变化的过程即为角度调制。

7.2 调频波和调相波有哪些共同点和不同点,它们有何联系?解:调频波和调相波的共同点调频波瞬时频率和调相波瞬时相位都随调制信号线性变化,体现在m f MF ∆=;调频波和调相波的不同点在:调频波m f m f k V Ω∆=与调制信号频率F 无关,但f m f k V M Ω=Ω与调制信号频率F 成反比;调相波p p m M k V Ω=与调制信号频率F 无关,但m f m f k V Ω∆=Ω与调制信号频率F 成正比;它们的联系在于()()d t t dtϕω=,从而具有m f MF ∆=关系成立。

7.3 调角波和调幅波的主要区别是什么?解:调角波是载波信号的频率(相位)随调制信号的变化规律线性变化,振幅不变,为等福波;调幅波是载波信号的振幅随调制信号的变化规律线性变化,频率不变,即高频信号的变化规律恒定。

7.4 调频波的频谱宽度在理论上是无限宽,在传送和放大调频波时,工程上如何确定设备的频谱宽度? 解:工程上确定设备的频谱宽度是依据2m BW f =∆确定7.5为什么调幅波调制度 M a 不能大于1,而调角波调制度可以大于1?解:调幅波调制度 M a 不能大于,大于1将产生过调制失真,包络不再反映调制信号的变化规律;调角波调制度可以大于1,因为f fcmmV M k V Ω=。

7.6 有一余弦电压信号00()cos[]m t V t υωθ=+。

其中0ω和0θ均为常数,求其瞬时角频率和瞬时相位解: 瞬时相位 00()t t θωθ=+ 瞬时角频率0()()/t d t dt ωθω==7.7 有一已调波电压1()cos()m c t V A t t υωω=+,试求它的()t ϕ∆、()t ω∆的表达式。

如果它是调频波或调相波,它们相应的调制电压各为什么?解:()t ϕ∆=21A t ω,()()12d t t A t dtϕωω∆∆==若为调频波,则由于瞬时频率()t ω∆变化与调制信号成正比,即()t ω∆=()f k u t Ω=12A t ω,所以调制电压()u t Ω=1fk 12A t ω 若为调相波,则由于瞬时相位变化()t ϕ∆与调制信号成正比,即 ()t ϕ∆=p k u Ω(t )所以调制电压()u t Ω=1pk 21A t ω 由此题可见,一个角度调制波可以是调频波也可以是调相波,关键是看已调波中瞬时相位的表达式与调制信号:与调制信号成正比为调相波,与调制信号的积分成正比(即瞬时频率变化与调制信号成正比)为调频波。

《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析


可以看出,由于 k0 得存在,电流的方向和电场方向并不一致。 (2)当 t → ∞ 时有
⎛ =k G JG ⎞ JJ G e=Δ ⎜ − 0 i + k ′ ⎟ G eEz t e=Δ k0 Δ JG ⎝ ⎠ j ( t ) = lim = =e k′ ∗ 2 t →∞ 2 2 2 2 2 2 2 m = Δ ⎛ ⎞ =k e Ez t =Δ Δ ∗ m∗ = 2 ⎜ 2 20 2 + ⎟ ∗ + 2 2 2 m m∗ 2 = ⎠ m e Ez t ⎝ e Ez t G (3)设所求的电流为 j ,在空穴处加一个电子,则能带为满带,满带的电流为零,因而有
eEz t ,因而 = G eE t JG ⎞ ⎛ z − k k′⎟ ⎜ 0i + = ⎝ ⎠
从初始条件可解出 k x ( t ) = k0 , k y ( t ) = 0, k z ( t ) = −
G j=
e=Δ ⎛ e2 Ez2t t m∗ = 2 ⎜ k02 + =2 ⎝ ⎞ Δ 2 ⎟ ∗ +Δ ⎠m
x=
nZn ,依 7.3 题,有 nCu
2nZn + nCu 3π = = 1.36 4 nα
1
第七章 能带结构分析 即
( 2 x + 1) nCu

=
3π = 1.36 4
而 nα = nZn + nCu = (1 + x ) nCu 因此得到
2x +1 3π = x +1 4

x=
3π − 4 = 0.563 8 − 3π
⎛ 2 e2 B 2 cos 2 θ e2 B 2 sin 2 θ ⎞ eB sin θ cos ϕ iω = iω ⎜ −ω + + ⎟=0 ml∗ mt∗2 mt∗2 ml∗2 ⎠ ⎝ eB sin θ cos ϕ iω − mt∗

第七章 傅里叶变换习题解答

习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=2tdt c f(t))(ωωπos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ⎰⎰+∞∞-+∞∞--⋅==dt t i t t f dt e t f G ti )sin (cos )()()(ωωωω⎰⎰+∞∞-+∞∞-⋅-⋅=tdt t f i t t f ωωsin )(cos )(当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt i G ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。

ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=1()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有02()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中 同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中 02()()cos πa f t tdt ωω+∞=⋅⎰2.在上一题中,设()f t=21,0,1ttt⎧<⎪⎨≥⎪⎩.计算()aω的值.解:120011120012222()()cos d cos d0cos d πππ221cos d d sinππ122sin sin2dππ2sinπ2sinπa f t t t t t t t tt t t tt t t tωωωωωωωωωωωωωωω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅=⎰⎰⎰⎰⎰⎰3.计算函数sin,6π()0,6πt tf tt⎧≤⎪=⎨≥⎪⎩的傅里叶变换.解:6π6π6π6π6π2()()()d sin d sin(cos sin)d2sin sin dsin6ππ(1)i t i tf f u f t e t t e tt t i t ti t t tiωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换||(1)()tf t e-=解:||(||)0(1)(1)2F()()()d d d2d d1i t t i t t i tt i t if f t e t e e t e te t e tωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e -=⋅解:因为2222214F[].()(2)2.t t t t e ee et t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t tt t t t i t i t t tt t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩ (4)41()1f t t =+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i tt t t t t t tt t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰41R(z)=1z +,则R(z)1)i i +-+.R()d 2π[R())]2π[R()1)]i t i z i z t e t i res z e i i res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|44cos ||||d Re[d ]sin )1122i tt e t t t t ωωωωω+∞+∞--∞-∞==+++⎰⎰(5) 4()1t f t t =+ 解:4444()d 1sin cos d d 11sin d 1i tt G e tt tt t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z+则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F(t )是解析函数,而且在带形区域.|Im()|8t <内有界.定义 函数2()G ω为22222()F()d .i t G t e t ωω--=⋅⎰ 证明当10时.有21P V ()d F()2πi t G e t t ωω+∞-∞⋅⋅→⎰ 对所有实数t 成立. (书上有推理过程)6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解:因为1F(())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较. 不难看出 sgn()()().t u t u t =--故.[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]00000000001()F(F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所有8.设函数()f t 的傅里叶变换F()ω,a 为一常数.证明:1F[()]()=F ||1F[()]()()d ()d i ti t f at a a f at f at et f at e at a ωωωωω+∞+∞---∞-∞⎛⎫⋅ ⎪⎝⎭=⋅=⋅⎰⎰解:当a >0时,令u=at .则1F[()]()()d u i t a f at f u e u aω-+∞-∞=⋅⎰当a <0时,令u=at ,则1F[()]()F()f at aaωω=-.故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()()[]()()[]()e d e d ed e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅⋅---∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦证明:()[]()()()()()0000000e +e cos 21e e 22212i t i ti t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F iωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t .解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()00()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i it ta i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:。

概率论与数理统计习题及答案第七章

习题7-11.选择题(1)设总体X 的均值口与方差 /都存在但未知,而X 1,X 2,L ,X n 为来自X 的样本,则均值 口与方差 (T 2的矩估计量分别是 ().(A) X 和(B)1 nX 和—(Xn i 1i )2.(C)口和 2(T・1 (D) X 和一 nn(X ii 1 x)2.解 选(D).(2) 设X : U[0,],其中 e >0为未知参数,又X ,,X 2,L ,X n 为来自总体X 的样本 ,则e 的矩估计量是().(A) X . (B)2X . (C)max{X i }.(D)mi^X i}.解选(B).2.设总体X 其中0v B v 为未知参数,X1, X 2,…,X.为来自总体X 的样本,试求e 的矩 估计量.解 因为 E (X )=(- 2)x3 e +1x (1 -4 e )+5x e =1-5 e ,令 1 5 X 得到的矩估计量为3.设总体X 的概率密度为f(x ;)(1)x ,0 x 1,0,其它•其中 0> -1是未知参数,X ,冷… ,X n 是来自 X 的容量为n 的简单随机样本求:(1) 的矩估计量;⑵ 0的极大似然估计量•解 总体X 的数学期望为-19 2X 1令E(X) X ,即一1 X,得参数B 的矩估计量为?•21 X设X 1, X 2,…,x n 是相应于样本X 1, X 2,…,X n 的一组观测值,则似然函 数为n(1)n X i , 0x i 1,i 10,其它.In xi 1In X ii 14.设总体X 服从参数为的指数分布,即X 的概率密度为E(X)1xf(x)dx o (1)x dx当 0<X i <1(i =1,2,3,…,n )时,L >0 且 In L nln(1)In X i ,i 1dln LnIn x =0,得0的极大似然估计值为而0的极大似然估计量为f(X,xe , x 0,其中0为未知参数,X, X2,)0, x< 0,…,X n为来自总体X的样本,试求未知参数的矩估计量与极大似然估计量解因为E(X)= 1= X , 所以的矩估计量为设X1, X2,…,x n是相应于样本X i, X2,…,X 的一组观测值,则似然函数取对数Xii 1然估计量为In L 0,得5.设总体X的概率密度为f (x,) 其中(0< <1)是未知参数.X, N为样本值x1, X2,L ,x n中小于极大似然估计量•解⑴ X E(X) xnInnXn e 11X).的极大似然估计值为1,的极大似X0,X2,0x1,, 1< x< 2,其它,…,X n为来自总体的简单随机样本,记1的个数.dx 2x(1求:(1)e的矩估计量;(2)e的3 3 —)dx ,所以矩一X .2 21⑵ 设样本X ,X 2 ,L X n 按照从小到大为序(即顺序统计量的观测值)有如下关系:X (1) w X (2)X ( Ni <1 W X ( N +1) W X (N+2)X (n ).似然函数为N n NL()(1 ),X (1) w X (2) w L w X ( N ) 1W X (N1) W X (N2) w L w X n ,0,其它.考虑似然函数非零部分,得到In L ( 0 ) = N ln 0 + ( n -N ) ln(1 - 0 ),令d |nL ( )」o ,解得0的极大似然估计值为? N .d1n习题7-2的无偏估计量•1.选择题:设总体X 的均值与方差 2都存在但未知,X i ,X 2,L ,X n 为X 的样本,则无论总体 X 服从什么分布,()1X i和丄 (XiX)2.(B)n i 1 n i1 n(C)X i 和n 1 i 1解 选(D).2.若X 1 ,X 2lx1 1X 2kX 334解 要求E( 7X 1-X j 和丄 1 i 1 n 1n(X ii 1X)2.(X i1)2 • (D)X i 和丄(X i)2.X 3为来 自总体X : N(,2)的样本,且的无偏估计量,问k 等于多少1 11 「2 kX 3)3 4k解之,k=g(A)13.设总体X的均值为0,方差2存在但未知,又X「X2为来自总体X1 2 2的样本,试证:—(X i X2)为的无偏估计21 2 1 2 2证因为E[—(X i X2) ] —E[(X i 2X^2 X2 )]2 2-[E(X i2) 2E(X i X2)E(X22)]-2 2所以-(X i X2)2为2的无偏估计•2习题7-31.选择题(1)总体未知参数的置信水平为的置信区间的意义是指()(A)区间平均含总体95%的值.(B)区间平均含样本95%的值.(C) 未知参数有95%的可靠程度落入此区间.(D) 区间有95%的可靠程度含参数的真值•解选(D).(2)对于置信水平1- a (0< a <1),关于置信区间的可靠程度与精确程度F列说法不正确的是().(A)若可靠程度越咼,则置信区间包含未知参数真值的可能性越大(B)如果a越小,则可靠程度越高,精确程度越低•(C)如杲1 - a越小,则可靠程度越高,精确程度越低•(D)若精确程度越高,则可靠程度越低,而1- a越小.解选(C)习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试,取得数据如下(单位:小时): 1050, 1100, 1080 , 1120, 1250, 1040, 1130, 1300, 1200设灯泡寿命服从正态分布 N 口 , 902),取置信度为,试求当天生产的全部灯泡的平均寿命的置信区间所求置信区间为(x - z /2 , X - z /2 ) \l n J n 90 90 (1141.11 = 1.96,1141.11 r 1.96)V 9V 9(1082.31,1199.91).2.为调查某地旅游者的平均消费水平,随机访问了40名旅游者,算得平均消费额为 X 105元,样本标准差s 28元•设消费额服从正态分布 取置信水平为,求该地旅游者的平均消费额的置信区间解计算可得X 105, s 2 =282.对于a =,查表可得t_(n 1) t o.025(39)2.0227.2所求口的置信区间为3. 假设某种香烟的尼古丁含量服从正态分布 .现随机抽取此种香烟 8支解计算得到X1141.11, CT 2 =902.对于a =,查表可得Z /2Z).Q25匸96*(Xt (n 1), x ■■- n 2s —t (n ■■- n 21)) (1052.0227, 1052.0227)2828为一组样本,测得其尼古丁平均含量为毫克,样本标准差s=毫克.试求此种香烟尼古丁含量的总体方差的置信水平为的置信区间.a =,查表可得 2(n 1) 爲5(7) 20.278,并说明该置信区间的实际意义1 2的置信水平为的置信区间是,”的实际意义是:在两总体第一个正态总体的均值1比第二个正态总体均值 2大〜,此结 论的可靠性达到95%.5.某商场为了了解居民对某种商品的需求 ,调查了 100户,得出每户月2解已知n =8, s2 2 (n 1)0.995(7) 1 - 20.989,所以方差d 2的置信区间为((n 1)S 2(2_ (n 1)22 22(8 1) 2.4 (8 1) 2.4 _2 —)(, )=,.2(n 廿丿 20.2780.9891 -(n 1)S 4.某厂利用两条自动化流水线灌装番茄酱 ,分别从两条流水线上抽取样本:X ,X 2,…,X 12 及 Y ,Y 2,…,丫17,算出 x 10.6g, y2 29.5g, s 1 2.4, s 2 4.7 .假设这两条流水线上装的番茄酱的重量都服从正态分布 ,且相互独立,其均值分别为2又设两总体方差1:.求2置信水平为的置信区间解由题设2 2x 10.6,y 9.5,s 12.4, s 2 4.7,n12,n 2 17,m 1)s 2 仏 1)s :(12 1) 2.4(171) 471.94212 17 2t_gn 22q n 2 22) t °.°25(27)2.05181,所求置信区间为((X y)11) ((10.6 9.5) 2.05181 1.94结论“方差相等时, [(a n 22)s w2)平均需求量为10公斤,方差为9 .如果这种商品供应10000户,取置信水平为•(1) 取置信度为,试对居民对此种商品的平均月需求量进行区间估计(2) 问最少要准备多少这种商品才能以99%的概率满足需要解(1) 每户居民的需求量的置信区间为_ s(xt(n* n_ s1), xt (nV n1)) (xs卅,%s川)(10,9J492.575,10 2.575)(9.2275,10.7725). 100J10010000户居民对此种商品月需求量的置信度为的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要。

第七章习题答案解析

第七章 不完全竞争的市场1、根据图中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。

解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为:25)515(=-=d e 或者 2)23(2=-=d e 再根据公式)11(d e P MR -=,则A 点的MR 值为:MR=2×(2×1/2)=1 (2)与(1)类似,根据需求的价格点弹性的几何意义,可得B 点的需求的价格弹性为:21101015=-=d e 或者 21131=-=d e 再根据公式d e MR 11-=,则B 点的MR 值为:1)2111(1-=-⨯=MR 2、图7-19是某垄断厂商的长期成本曲线、需求曲线和收益曲线。

试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线;(3)长期均衡时的利润量。

解答:本题的作图结果下图所示:(1)长期均衡点为E 点,因为,在E 点有MR=LMC 。

由E 点出发,均衡价格为P 0,均衡数量为Q 0。

(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线如图所示。

在Q 0 的产量上,SAC 曲线和LAC 曲线相切;SMC 曲线和LMC 曲线相交,且同时与MR 曲线相交。

(3)长期均衡时的利润量有图中阴影部分的面积表示,即л=(AR(Q 0)-SAC(Q 0)Q 03、已知某垄断厂商的短期成本函数为30001461.023++-=Q Q Q STC ,反需求函数为P=150-3.25Q求:该垄断厂商的短期均衡产量与均衡价格。

解答:因为140123.02+-==Q Q dQ dSTC SMC且由225.3150)25.3150()(Q Q Q Q Q Q P TR -=-==得出MR=150-6.5Q根据利润最大化的原则MR=SMCQ Q Q 5.6150140123.02-=+-解得Q=20(负值舍去)以Q=20代人反需求函数,得P=150-3.25Q=85所以均衡产量为20 均衡价格为854、已知某垄断厂商的成本函数为236.02++=Q Q TC ,反需求函数为P=8-0.4Q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1 第二章 气相色谱习题解答 1. 简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。

2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记录系统. 气相色谱仪具有一个让载气连续运行 管路密闭的气路系统. 进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中.

3.当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么? 答:固定相改变会引起分配系数的改变,因为分配系数只于组分的性质及固定相与流动相的性质有关. 所以(1)柱长缩短不会引起分配系数改变 (2)固定相改变会引起分配系数改变 (3)流动相流速增加不会引起分配系数改变 (4)相比减少不会引起分配系数改变

4.当下列参数改变时: (1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? 答: k=K/b,而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 故:(1)不变化,(2)增加,(3)不改变,(4)减小 解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择 2-2

最佳载气流速.P13-24。 5.试以塔板高度H做指标,讨论气相色谱操作条件的选择. (1)选择流动相最佳流速。 (2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。 (3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。 (4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。 (5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大) (6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体试样0.1~10mL. (7)气化温度:气化温度要高于柱温30-70℃。

6. 试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些因素的影响? 解:参见教材P14-16 A 称为涡流扩散项 , B 为分子扩散项, C 为传质阻力项。 下面分别讨论各项的意义: (1) 涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱的扩张。由于 A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性 λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 (2) 分子扩散项 B/u 由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩 2-3

散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气 ( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 (3) 传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两项。 所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。 对于填充柱:液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面 的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略 。 由上述讨论可见,范弟姆特方程式对于分离条件的选择具有指导意义。它可以说明 ,填充均匀程度、担体粒度、载气种类、载气流速、柱温、固定相液膜厚度等对柱效、峰扩张的影响。 用在不同流速下的塔板高度 H 对流速 u 作图,得 H-u 曲线图。在曲线的最低点,塔板高度 H 最小 ( H 最小 ) 。此时柱效最高。该点所对应的流速即为最佳流速 u 最佳 ,即 H 最小 可由速率方程微分求得:

0CuBdudH2 C

Buopt BC2AHmin

当流速较小时,分子扩散 (B 项 ) 就成为色谱峰扩张的主要因素,此时应采用相对分子质量较大的载气 (N2 , Ar ) ,使组分在载气中有较小 的扩散系数。而当流速较大时,传质项 (C 项 ) 为控制因素,宜采用相对分子质量较小的载气 (H2 ,He ) ,此时组分在载气中有较大的扩散系数,可减小气相传质阻力,提 2-4

高柱效。 7. 当下述参数改变时: (1)增大分配比,(2) 流动相速度增加, (3)减小相比, (4) 提高柱温,是否会使色谱峰变窄?为什么? 答:(1)保留时间延长,峰形变宽 (2)保留时间缩短,峰形变窄 (3)保留时间延长,峰形变宽 (4)保留时间缩短,峰形变窄

8.为什么可用分离度R作为色谱柱的总分离效能指标? 答: )1)(1(41)(2121)1()2(kknYYttRRR 分离度同时体现了选择性与柱效能,即热力学因素和动力学因素,将实现分离的可能性与现实性结合了起来.

9.能否根据理论塔板数来判断分离的可能性?为什么? 答: 不能,有效塔板数仅表示柱效能的高低,柱分离能力发挥程度的标志,而分离的可能性取决于组分在固定相和流动相之间分配系数的差异. 10.试述色谱分离基本方程式的含义,它对色谱分离有什么指导意义? 答:色谱分离基本方程式如下: )1)(1(41kknR

它表明分离度随体系的热力学性质(a和k)的变化而变化,同时与色谱柱条件(n改变)有关> (1)当体系的热力学性质一定时(即组分和两相性质确定),分离度与n的平方根成正比,对于选择柱长有一定的指导意义,增加柱长可改进分离度,但过分增加柱长会显著增长保留时间,引起色谱峰扩张.同时选择性能优良的色谱柱并对色谱条件进行优化也可以增加n,提高分离度. (2)方程式说明,k值增大也对分离有利,但k值太大会延长分离时间,增加分析成本. (3)提高柱选择性a,可以提高分离度,分离效果越好,因此可以通过选择合适的固定 2-5

相,增大不同组分的分配系数差异,从而实现分离. 11.对担体和固定液的要求分别是什么? 答:对担体的要求; (1)表面化学惰性,即表面没有吸附性或吸附性很弱,更不能与被测物质起化学反应. (2)多孔性,即表面积大,使固定液与试样的接触面积较大. (3)热稳定性高,有一定的机械强度,不易破碎. (4)对担体粒度的要求,要均匀、细小,从而有利于提高柱效。但粒度过小,会使柱压降低,对操作不利。一般选择40-60目,60-80目及80-100目等。 对固定液的要求: (1)挥发性小,在操作条件下有较低的蒸气压,以避免流失 (2)热稳定性好,在操作条件下不发生分解,同时在操作温度下为液体. (3)对试样各组分有适当的溶解能力,否则,样品容易被载气带走而起不到分配作用. (4)具有较高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力. (5)化学稳定性好,不与被测物质起化学反应. 担体的表面积越大,固定液的含量可以越高.

12. 试比较红色担体与白色担体的性能,何谓硅烷化担体?它有何优点? 2-6 2-7

13.试述“相似相溶”原理应用于固定液选择的合理性及其存在的问题。 解:样品混合物能否在色谱上实现分离,主要取决于组分与两相亲和力的差别,及固定液的性质。组分与固定液性质越相近,分子间相互作用力越强。根据此规律: (1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸点次序先后流出色谱柱,沸点低的先出峰,沸点高的后出峰。 (2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离,极性小的先流出色谱柱,极性大的后流出色谱柱。 (3)分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰,极性组分(或易被极化的组分)后出峰。 (4)对于能形成氢键的试样、如醉、酚、胺和水等的分离。一般选择极性的或是氢键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后流出,不易形成氢键的先流出,最易形成氢键的最后流出。 (5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。 以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性。事实上在色谱柱中的作用是较复杂的,因此固定液酌选择应主要靠实践。

14.试述热导池检测器的工作原理。有哪些因素影响热导池检测器的灵敏度?

相关文档
最新文档