八年级数学第七章 一元一次不等式典型例题

合集下载

一元一次不等式经典例题+习题

一元一次不等式经典例题+习题

可编写可改正【经典例题1】1、已知 a< b,则以下不等式中不正确的选项是()<4b+4 < b+4 C. ﹣ 4a<﹣ 4b﹣4<b﹣ 42、不等式3x+ 2< 2x+ 3 的解集在数轴上表示正确的选项是()3、实数 a,b,c 在数轴上对应的点以以下列图所示,则以下式子中正确的选项是()> bc B.|a–b| = a–b C. – a < – b < c D. – a–c > – b–c【经典例题2】4、若是不等式组恰有3个整数解,则 a 的取值范围是()≤﹣ 1<﹣1 C. ﹣ 2≤ a<﹣ 1 D. ﹣ 2< a≤﹣ 15、对于 x 的不等式组有四个整数解,则 a 的取值范围是()A. ﹣<a≤﹣B. ﹣≤ a<﹣C. ﹣≤ a≤﹣D. ﹣<a<﹣6、若对于的不等式组有三个负整数解,则的取值范围是().<a<-3<a ≤-2≤ a<-3≤ a≤ -2【经典例题3】7、某商品的进价为800 元 , 销售标价为1200 元, 后出处于该商品积压, 商铺准备打折销售,要保证收益率不低于5% , 该商品最多可打( )A.9 折折 C.7 折 D.6 折可编写可改正8、在抗震救灾中,某抢险地段需实行爆破. 操作人员点燃导火线后,要在炸药爆炸前跑到400 米以外的安全地区.已知导火线的焚烧速度是厘米/ 秒,操作人员跑步的速度是 5 米 / 秒 . 为了保证操作人员的安全,导火线的长度要高出()厘米厘米厘米厘米9、某大型商场从生产基地购进一批水果,运输过程中质量损失10%,假定不计商场其他费用,若是商场要想最少获得20%的收益,那么这种水果的售价在进价的基础上应最少提高()%%【经典例题4】10、不等式﹣ 3x﹣ 1< 7 的负整数解是_________.11、某种商品的进价为15 元,销售时标价是元。

由于市场不景气销售情况不好,商铺准备降价办理,但要保证收益率不低于10%,那么该店最多降价____________元销售该商品。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解3. 2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【答案】(1)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【解析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)分别求出三种方案的燃油费用,比较即可得解.试题解析:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【考点】1.一次函数的应用2.一元一次不等式组的应用.4.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.5.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.6.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.【答案】16000≤x≤18000.【解析】下个月的产量为x件,根据“劳动时间”和“预计下月市场对J牌产品需求量为16000件”可列不等式组求解.试题解析:设下个月的产量为x件,根据题意得,解得:16000≤x≤18000答:下个月的产量不少于16000件,不多于18000件.考点: 一元一次不等式组的应用.7.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】C【解析】根据第四象限内横坐标为正,纵坐标为负可得,解得再根据在数轴上表示不等式的解集时,小于向左,大于向右,含等号实心,不含等号空心,可得x的取值范围在数轴上可表示为C选项.【考点】解不等式组8.若>a对任意实数x恒成立,则a的取值范围是。

八年级一元一次不等式练习题(经典版)

八年级一元一次不等式练习题(经典版)

一元一次不等式1、下列不等式中,是一元一次不等式的是 ( )A012>-x ; B 21<-; C 123-≤-y x ; D 532>+y ;2.下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 3. 下列各式中,是一元一次不等式的是( ) (1)2x<y (2)(3)(4)4.用“>”或“<”号填空.若a>b,且c ,则:(1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b; (4)c-a_____c-b (5); (6)5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .三. 解下列不等式,并在数轴上表示出它们的解集.(1) 8223-<+x x 2. x x 4923+≥-(3). )1(5)32(2+<+x x (4). 0)7(319≤+-x (5) 31222+≥+x x (6) 223125+<-+x x(7) 7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x (9)1215312≤+--x x (10) 215329323+≤---x x x(11)11(1)223x x -<- (12) )1(52)]1(21[21-≤+-x x x(13) 41328)1(3--<++x x (14) ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组,并在数轴上表示它的解集 1. ⎩⎨⎧≥-≥-.04,012x x2.⎩⎨⎧>+≤-.074,03x x4⎪⎩⎪⎨⎧+>-<-.3342,121x x x x 5.-5<6-2x <3.6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx8⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-10.532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩ 11.⎪⎩⎪⎨⎧≥--+.052,1372x x x12.⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x13.14321<--<-x四.变式练习 1不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值围是( ).(A)m ≤2 (B)m ≥2(C)m ≤1(D)m ≥12. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.3. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .4. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值围.5. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值围.6. 适当选择a 的取值围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有.7. 当310)3(2k k-<-时,求关于x 的不等式k x x k ->-4)5(的解集.8. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.9. 当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.10. 已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值围.11. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.12. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值围.13. k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14. 已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值围.15. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值围.探究: 1、 如果不等式组x a x b >⎧⎨<⎩无解,问不等式组11y a y b +≥⎧⎨+≤⎩的解集是怎样的?2、已知()()3525461x x x ++<-+,化简3113x x +--。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。

【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。

初二不等式计算题目20道

初二不等式计算题目20道

一元一次不等式与不等式组1.某同学在解不等式组的过程中,画的数轴除不完整外,没有其他问题.则他解的不等式组可能是()A.B.C.D.2.不等式组的解集在数轴上表示为()A.B.C.D.3.不等式组的解集是()A.x<3B.x≥2C.2<x<3D.2≤x<34.不等式组的解集是x<1,则a的取值范围是()A.a=1B.a=2C.a=3D.a=﹣35.关于x的不等式组无解,则a的取值范围是()A.a>﹣B.a≥﹣C.a<D.a≤6.下列式子一定成立的是()A.若ac2=bc2则a=bB.若ac>bc,则a>bC.若a>b则ac2>bc2D.若a<b,则7.下列结论正确的是()A.如果a>b,c>d,那么a﹣c>b﹣dB.如果a>b,那么C.如果a>b,那么D.如果,那么a<b8.)不等式组的解集是()A.x≥1B.x≤1C.x>1D.x<19.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x元/支,若使该种钢笔的月销量不低于105支,则x应满足的不等式为()A.180﹣15x≥105B.180﹣(x﹣14)≤105C.180+15(x+14)≥105D.180﹣15(x﹣14)≥10511.不等式3x﹣1>﹣4的最小整数解是.12.如图,在数轴上,点A,B分别表示数1,﹣2x+3.则x的取值范围是.13.直线l1:y=kx+b与直线l2:y=﹣3x在同一平面直角坐标系中的图象如图所示,则关于x的不等式﹣3x>kx+b的解集为.14.已知关于x的不等式组恰好有两个整数解,则实数a的取值范围是.15.临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货量不低于总进货量的,则豆沙粽最多购进袋.16.我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的收入各为多少万元?(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?17.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.18.学校准备购置一批教师办公桌椅,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求一套A型桌椅和一套B型桌椅的售价各是多少元;(2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A 型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.19.某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.20.某校其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:三班学生平均每人捐款的金额大于49元,小于50元.请根据以上信息,帮助吴老师解决下列问题:(1)求出二班与三班的捐款金额各是多少元;(2)求出三班的学生人数.。

初二数学一元一次不等式知识点及经典例题

初二数学一元一次不等式知识点及经典例题

一元一次不等式重点:不等式的性质和一元一次不等式的解法。

难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。

知识点一:不等式的概念1.不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

符号语言表示为:如果,那么。

基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

符号语言表示为:如果,并且,那么(或)。

基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

一元一次不等式考点一、不等式的概念 (3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质 (3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1 考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

(完整版)《一元一次不等式组的应用》典型例题

(完整版)《一元一次不等式组的应用》典型例题

《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式
O x y l 1l 2
-13(第12题图)解:设有x 间宿舍,则有(4x +19)名学生 根据题意,得 ⎩⎨⎧<--+>--+6)1(6)194(,
0)1(6)194(x x x x 解不等式组,得 ⎪⎪⎩
⎪⎪⎨
⎧><219,2
25x x 即225219<<x 又因为x 为正整数,
所以12,11,10=x
57,53,4994=+x . 答:可能有10间宿舍,49名学生;
或11间宿舍,53名学生;
或12间宿舍,57名学生.
注:本题也可列不等式组
⎩⎨⎧≤--+≥--+5
)1(6)194(,1)1(6)194(x x x x (你知道为什么吗?)
10.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,求关于x 的不等式21k x k x b >+的解集. 解:由函数图象可知
关于x 的不等式21k x k x b >+的解集是:
1-<x
注:b x k x k +12、对应了两函数的函数值(点的纵坐标),所以“函数值较大”在图象上就反映为“图象在上面”.
9.用若干辆载重量为8吨的汽车运一批货
物,若每辆汽车只装4吨,则剩下20吨货
物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.有多少辆汽车?多少吨货物?
解:
注意:“不满也不空”所表示的不等关系.
10.如图,一次函数11y x =--与反比例函数22
y x
=-
的图象交于点A 、B ,求当12y y >的x 的取值范围. 解:
注意:可以类似地得出
21y y <时,x 的取值范围.。

相关文档
最新文档