高中数学平面向量知识点总结

合集下载

高中数学《平面向量》知识点总结

高中数学《平面向量》知识点总结
(1)平面向量的坐标表示
在直角坐标系内,我们分别取与 轴、 轴方向相同的两个单位向量 、 作为基底 任作一个向量 ,由平面向量基本定理知,有且只有一对实数 、 ,使得 .我们把 叫做向量 的(直角)坐标,记作 ,其中 叫做 在 轴上的坐标, 叫做 在 轴上的坐标.
(2)若 , ,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
2、两个向量平行的充要条件
向量共线定理:向量 与非零向量 共线的充要条件是:有且只有一个非零实数λ,使 =λ
∥ =
3、两个向量垂直的充要条件
设 , ,则
4、平面内两点间的距离公式
(1)设 ,则 或
(2)如果表示向量 的有向线段的起点和终点的坐标分别为A 、B ,那么 (平面内两点间的距离公式)
5、两向量夹角的余弦( )cos=
9、实数与向量的积:实数λ与向量 的积是一个向量,记作 ,它的长度与方向规定如下:
(Ⅰ) ;(Ⅱ)当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, ,方 向是任意的
10、两个向量的数量积:
已知两个非零向量 与 ,它们的夹角为 ,则 叫做 与 的数量积(或内积) 规定
11、向量的投影
附:三角形的四个“心”
重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.
内心:三角形三内角的平分线相交于一点.
垂心:三角形三边上的高相交于一点.
非零向量 与 有关系是: 是 方向上的单位向量
注意:(1)结合律不成立: ;
(2)消去律不成立 不能得到
(3) 不能得到 或
乘法公式成立:
6、线段的定比分点公式:设点 分有向线段 所成的比为 ,即 = ,则

平面向量知识点归纳总结图

平面向量知识点归纳总结图

平面向量知识点归纳总结图一、平面向量的定义1.1 平面向量的概念在平面上任意选定一个起点和一个终点之间的有序对称就称为平面向量,记作。

平面向量可以用有向线段来表示,有向线段的起点就是平面向量的起点,终点就是平面向量的终点。

1.2 平面向量的表示平面向量可以用坐标表示,设平面向量的起点为原点O,终点为点A(x, y),则平面向量记作。

1.3 平面向量的相等两个平面向量相等指的是它们的模相等,并且方向相同,即两个平面向量相等当且仅当。

二、平面向量的运算2.1 平面向量的加法设和,平面向量+的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。

2.2 平面向量的减法设,平面向量-的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。

2.3 数乘设,数的积是一个新的平面向量,其长度是向量的倍数,方向与向量相同。

三、平面向量的运算性质3.1 交换律3.2 结合律3.3 分配律四、平面向量的应用4.1 平面向量的线段设线段的两个端点分别为A(x1, y1)和B(x2, y2),则向量的终点减去起点的坐标差即为该线段的平面向量表示。

4.2 平面向量的位置关系(1) 共线若向量平行,则它们共线。

(2) 垂直若,则它们垂直。

4.3 平面向量的运动学应用若一个物体在平面内的任意两点A、B之间作平移运动,其位矢向量表示。

五、平面向量的数量积5.1 定义设,,则积。

5.2 计算(1)坐标法(2)数量积的几何意义5.3 性质(1)交换律(2)结合律(3)分配律5.4 应用(1)判断共线若,则共线。

(2)判断垂直若,则垂直。

(3)夹角公式若,则夹角α的余弦值是的数量积。

六、平面向量的叉乘6.1 定义设,把数视为数乘6.2 计算6.3 性质6.4 应用七、平面向量的混合积7.1 定义设、,则混合积7.2 计算7.3 性质7.4 应用八、几何向量8.1 平面向量的模8.2 单位向量8.3 平行四边形法则8.4 平面向量的夹角公式8.5 平面向量的坐标表示8.6 平面向量的位置关系总结平面向量是高中数学中的一个重要概念,它不仅有着丰富的几何意义,还具有广泛的物理意义。

高中数学常用公式及结论(平面向量总结)

高中数学常用公式及结论(平面向量总结)

高中数学常用公式及结论(平面向量总结)一、实数与向量的积的运算律:设λ、μ 为实数,那么:① 结合律:结合律图② 第一分配律:第一分配律图③ 第二分配律:第二分配律图二、向量 a 与向量 b 的数量积(或内积):数量积图三、平面向量的坐标运算:①平面向量的坐标运算图(1)②平面向量的坐标运算图(2)③平面向量的坐标运算图(3)④平面向量的坐标运算图(4)⑤平面向量的坐标运算图(5)四、求夹角和长度:① 求夹角:求夹角图② 求长度:求长度图五、平面两点间的距离公式:平面两点间的距离公式图六、共线向量定理:空间任意两个向量共线向量定理图①三点共线:三点共线图②与向量 a 共线的单位向量为与向量 a 共线的单位向量图七、共面向量:①定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

② 共面向量定理:共面向量定理图③ 四点共面:四点共面图八、向量的平行与垂直:向量的平行与垂直图九、线段的定比分点公式:线段的定比分点公式图十、三角形的重心坐标公式:△ABC三个顶点的坐标分别为 A(x1 , y1)、B(x2 , y2)、C(x3 , y3), 则△ABC 的重心的坐标是三角形的重心坐标公式图十一、三角形四“心”向量形式的充要条件:设 O 为△ABC 所在平面上一点,角 A , B , C 所对边长分别为 a , b , c ,则①三角形四“心”向量形式的充要条件图(1)②三角形四“心”向量形式的充要条件图(2)③三角形四“心”向量形式的充要条件图(3)④三角形四“心”向量形式的充要条件图(4)。

高中数学必修二 专题02 平面向量的基本定理、坐标运算及数量积(重难点突破)(含答案)

高中数学必修二  专题02 平面向量的基本定理、坐标运算及数量积(重难点突破)(含答案)

专题02 平面向量的基本定理、坐标运算及数量积一、考情分析二、题型分析(一) 平面向量的基本定理与坐标表示知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·四川雅安中学高一月考)以下四组向量能作为基底的是( )A .B .C .D .12(1,2),(2,4)e e ==12(3,1),(1,3)e e =-=-12(2,1),(2,1)e e ==--121(,0),(3,0)2e e ==【答案】B【解析】对于,与共线,不能作为基底;对于,与不共线,能作为基底;对于,与共线,不能作为基底;对于,与共线,不能作为基底,故选B. (2).(2019·江西高一期末)设是平面内的一组基底,则下面四组向量中,能作为基底的是( )A .与B .与C .与D .与 【答案】C【解析】由是平面内的一组基底,所以和不共线,对应选项A :,所以这2个向量共线,不能作为基底;对应选项B :,所以这2个向量共线,不能作为基底; 对应选项D :,所以这2个向量共线,不能作为基底; 对应选项C :与不共线,能作为基底.故选:C .A 114220,e ⨯-⨯=∴2eB ()()1331180,e ⨯--⨯-=≠∴2eC ()()121120,e ⨯--⨯-=∴2eD 110030,2e ⨯-⨯=∴2e 12,e e 21e e -12e e -1223e e +1246e e --12e e +12e e -121128e e -+1214e e -12,e e 1e 2e 21e e -()12e e =--1223e e +()121462e e =---121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭12e e +12e e -(3).(2020·内蒙古高三月考)在正方形中,点为内切圆的圆心,若,则的值为( )A .B .C .D .【答案】D【解析】连并延长到与相交于点,设正方形的边长为1,则,设内切圆的半径为,则,可得. 设内切圆在边上的切点为,则,有,,故. 故选:DABCD O ABC ∆AO xAB yAD =+xy 1434-1412OB AC HABCD 122BH BD ==ABC ∆r)1BH OH OB r r =+=+==r =ABC ∆AB E ()1AO AE EO r AB r AD=+=-+22222112222AB AD AB AD ⎛⎛⎫-=-+=+- ⎪⎪⎝⎭⎝⎭x =1y =-11222xy ⎛⎫=-= ⎪ ⎪⎝⎭【变式训练1】.(2020·北京高三开学考试)在平行四边形ABCD 中,,,,则 .(用表示) 【答案】 【解析】如图:=-=+2=+=-+(-)=-+ =.故本题答案为. 【变式训练2】.(2020·辽宁高考模拟)在中,,,若,则( )A .B .C .D .【答案】D【解析】因为,所以点是的中点,又因为,所以点是的中点,所以有:,因此1AB e =2AC e =14NC AC =12BM MC =MN =12,e e 1225312e e -+MN CN CM CN BM CN 23BC 14AC 23AC AB 214e 212()3e e -1225312e e -+1225312e e -+ABC ∆2AB AC AD +=0AE DE +=EB xAB y AC =+3y x =3x y =3y x =-3x y =-2AB AC AD +=D BC 0AE DE +=E AD 11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故本题选D. 31,344x y x y =-=⇒=-(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ).(4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2020·福建高三月考)已知,若,则的坐标为( )A .B .C .D . 【答案】D【解析】设,因为,所以.所以,所以, 解得: ,.所以.故选D. (2).(2019·湖南高一期末)已知,,则( ) A .2 BC .4 D.【答案】C 【解析】由题得=(0,4)所以.故选:C(5,2),(4,3)a b =-=--230a b c -+=c 8(1,)3138(,)33-134(,)33134(,)33--(,)c x y =230a b c -+=(5,2)2(4,3)3(,)(0,0)x y ----+=(583,263)(0,0)x y ++-++=1330,430x y +=+=133x 43y =-134(,)33c =--()0,1A -()0,3B ||AB =AB ||04AB =+=【变式训练1】.(2020·湖北高一期中)已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】(1)(2),∵与共线,∴∴【变式训练2】.(2018·上海市嘉定区封浜高级中学高二期中)已知,为坐标原点.(1) 求向量的坐标及;(2) 若,求与同向的单位向量的坐标. 【答案】(1) ,;(2).【解析】 (1),.(2),, 与同向的单位向量. ()1,2a =()3,2b =-2a b -k ka b +2a b -()7,2-12k =-()()()21,223,27,2a b -=--=-()()()1,23,23,22ka b k k k +=+-=-+()()()21,223,27,2a b -=--=-ka b +2a b -()()72223k k +=--12k =-(3,4),(5,10)A B ---O AB AB OC OA OB =+OC ()8,6AB =-10AB =21010OC n OC ⎛==- ⎝⎭()8,6AB =-2810AB ∴==()()()3,45,102,14OC OA OB =+=--+-=-22OC ==∴OC 21010OC n OC ⎛==- ⎝⎭(三) 平面向量的数量积知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA→=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则(1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|.特别地,a·a =|a|2或|a|=a ·a .(3)cos θ=a·b |a||b|.(4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则(1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.(3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1)(2020·浙江高一期末)已知向量,,则__________,与方向相反的单位向量__________.【解析】依题意,故与方向相反的单位向量为. (2).(2019·全国高考真题)已知=(2,3),=(3,t ),=1,则= A .-3B .-2C .2D .3 【答案】C 【解析】 由,,得,则,.故选C【变式训练1】.(2019·安徽高三月考(理))已知,,均为单位向量,与的夹角为,则的最大值为( ) ()3,4a =()1,2b =-2a b +=a c =34,55⎛⎫-- ⎪⎝⎭()21,8a b +=2218a b +=+=a c ()()()3,43,434,5553,4a a -----⎛⎫===-- ⎪---⎝⎭AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=-211BC ==3t =(1,0)BC =(2,3)(1,0)21302AB BC ==⨯+⨯=a b c a b 60()(2)c a c b +⋅-A .BC .2D . 3【答案】B 【解析】设与的夹角为,因为,,所以,所以,所以.故选:B .【变式训练2】.(2020·四川高一月考)已知,若,则实数=__________;=__________. 【答案】0 0【解析】∵,∴,∵,∴,解得. 故答案为.【变式训练3】.(2019·江苏高考真题)如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若,则的值是_____. 32c 2a b -θ222|2|443a b a a b b -=-⋅+=|2|3a b -=2()(2)(2)21|||2|cos 1c a c b cc a b a b c a b θ+⋅-=+⋅--⋅=+⋅--()(2)3cos c a c b θ+⋅-=max =cos 1θ=()()1,3,1,2a b ==-0a b λμ+=λμ()()1,3,1,2a b ==-()()()1,31,2,32a b λμλμλμλμ+=+-=+-0a b λμ+=0320λμλμ+=⎧⎨-=⎩0λμ=⎧⎨=⎩0,0λμ==ABC O 6AB AC AO EC ⋅=⋅ABAC. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD ., 得即故. 【变式训练4】.(2020·浙江高一期中)已知为单位向量,. (1)求;(2)求与的夹角的余弦值;()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭2213,22AB AC =3,AB AC =AB AC=,a b 12a b ⋅=2a b +2a b +b θ【答案】(1;(2).【解析】由题得; 由题得与的夹角的余弦值为故答案为:(1;(2.7222=4++4=5+4a b a b a b +⋅⋅2a b +b θ(2)2cos |2|||7a b b a b a b b θ+⋅⋅====+(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)(2020·江西高一期末)已知向量,,若,则( )A .B .C .D .【答案】D 【解析】向量,,且,,解得. 故选:D.(2).(多选题)已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( )A .a 与b 的夹角为钝角()1,a m =()2,5b =//a b m =152-25-52()1,a m =()2,5b =//a b 25m ∴=52m =B .向量a 在bC .2m +n =4D .mn 的最大值为2 【答案】CD对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误; 对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【变式训练1】(2020·浙江高一期中)已知向量满足.若,则 _______; ______.【答案】【解析】因为,所以(1)×m 4=0,所以m= 4.所以故答案为:(1). (2).【变式训练2】.(2020广东高一期末)已知, ;(1) 若,求的值;,a b (1,2),(2,)a b m =-=//a b m =||b =4-//a b ---2||=2+b =(4-)cos ,1(),sin ,1(θθ==b aR ∈θ)0,2(=+b a θθθcos sin 2sin 2+(2)若,,求的值.【答案】(1)(2) 【解析】(1),∴, ……1分∴ ; ……3分∴. ……7分(2), ……8分∴,两边平方得, ……10分 ,且, ∴∴, ……12分 ∴. ……分)51,0(=-b a(,2)θππ∈θθcos sin +12-75-)cos ,1(),sin ,1(θθ==b a)0,2()cos sin ,2(=+=+θθb asin cos 0,tan 1θθθ+=∴=-1tan tan 2tan cos sin cos sin 2sin cos sin 2sin 222222++=++=+θθθθθθθθθθθ21-=)51,0()cos sin ,0(=-=-θθb a51cos sin =-θθ2512cos sin =θθ(,2)θππ∈02512cos sin >=θθ⎪⎭⎫⎝⎛∈ππθ23,0cos sin <+θθ57cos sin 21cos sin -=+-=+θθθθ14。

高中数学必修二知识点全面归纳2024新版

高中数学必修二知识点全面归纳2024新版

高中数学必修二知识点全面归纳2024新版 第一章 平面向量 1.1 向量的概念 向量是既有大小又有方向的量。 向量的表示方法:用有向线段表示,记作 vec{AB}。

零向量、单位向量和平行向量的定义和性质。 向量的几何意义:向量可以表示位移、速度、力等物理量。

1.2 向量的运算 向量的加法和减法:平行四边形法则和三角形法则。 平行四边形法则:两个向量的和可以通过平行四边形的对角线来表示。 三角形法则:两个向量的和可以通过三角形的第三边来表示。 向量的数乘:数乘向量的几何意义和运算性质。 数乘向量的几何意义:数乘向量会改变向量的大小,但不改变其方向。 数乘向量的运算性质:数乘向量满足分配律、结合律等运算性质。 向量的线性运算:向量的线性组合及其应用。 向量的线性组合:两个或多个向量的线性组合可以表示为这些向量的加权和。 向量的线性相关性:判断向量组是否线性相关的方法。

1.3 向量的基本定理及坐标表示 向量的坐标表示方法:在平面直角坐标系中表示向量。 向量的坐标表示:向量可以用其起点和终点的坐标差来表示。 向量的分解:向量可以分解为两个或多个方向上的分量。 向量的模:向量的长度计算公式。 向量的模:向量的模是向量的长度,可以通过勾股定理计算。 向量的单位化:将向量单位化的方法及其应用。

向量的方向角和方向余弦。 向量的方向角:向量与坐标轴之间的夹角。 向量的方向余弦:向量与坐标轴方向的余弦值。

1.4 向量的应用 向量在物理中的应用:力的合成与分解。 力的合成:多个力的合成可以通过向量的加法来实现。 力的分解:一个力可以分解为多个方向上的分力。 向量在几何中的应用:点到直线的距离公式。 点到直线的距离:利用向量的方法计算点到直线的距离。 向量在几何变换中的应用:向量在平移、旋转等几何变换中的作用。

第二章 复数 2.1 复数的概念 复数的定义:形如 a+bi 的数,其中 i 是虚数单位,满足 i^2=1。 实数和虚数:复数由实数部分和虚数部分组成。 复数的分类:纯虚数、实数和一般复数。 复数的表示方法:代数形式和几何形式。 代数形式:复数的代数表示方法。 几何形式:复数在复平面上的几何表示。

部编版高中数学必修二第六章平面向量及其应用知识点总结归纳完整版

部编版高中数学必修二第六章平面向量及其应用知识点总结归纳完整版

(名师选题)部编版高中数学必修二第六章平面向量及其应用知识点总结归纳完整版单选题1、在平行四边形ABCD 中,AC ⃑⃑⃑⃑⃑ =(1,2),BD ⃑⃑⃑⃑⃑⃑ =(3,4),则AB ⃑⃑⃑⃑⃑ ·AD ⃑⃑⃑⃑⃑ =( )A .-5B .-4C .-3D .-2答案:A分析:根据向量的加法和减法的几何意义,结合向量的数量积运算,即可得到答案;∵ AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ ,BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ,∴ AC ⃑⃑⃑⃑⃑ 2=AB ⃑⃑⃑⃑⃑ 2+2AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ 2,BD ⃑⃑⃑⃑⃑⃑ 2=AD ⃑⃑⃑⃑⃑ 2−2AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ 2,∴ AC ⃑⃑⃑⃑⃑ 2−BD ⃑⃑⃑⃑⃑⃑ 2=4AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ =12+22−(32+42)=−20,∴AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ =−5,故选:A2、已知平面向量a ,b ⃑ ,c 满足:|a |=2,|b ⃑ |=3,a ⊥(a −b ⃑ )且2a −b ⃑ +c =0⃑ ,则|c |为()A .1B .3C .√3D .9答案:B分析:根据向量垂直可得a ⋅b ⃑ =4,进而根据向量模长的计算即可求解.由a ⊥(a −b ⃑ )得a ⋅(a −b ⃑ )=0⇒a ⋅b ⃑ =4,由2a −b ⃑ +c =0⃑ 得c =−2a +b ⃑ ⇒c 2=(−2a +b ⃑ )2=4a 2−4a ⋅b ⃑ +b ⃑ 2=16−4×4+9=9,故|c |=3,故选:B3、向量a ,b ⃑ 满足a =(1,√3),|b ⃑ |=1,|a +b ⃑ |=√3,则b ⃑ 在a 方向上的投影为( )A .-1B .−12C .12D .1答案:B解析:根据题条件,先求出a ⋅b ⃑ ,再由向量数量积的几何意义,即可求出结果.因为向量a ,b ⃑ 满足a =(1,√3),|b ⃑ |=1,|a +b⃑ |=√3, 所以|a |2+2a ⋅b ⃑ +|b ⃑ |2=3,即4+2a ⋅b ⃑ +1=3,则a ⋅b⃑ =−1, 所以b ⃑ 在a 方向上的投影为|b →|cos <a →,b →>=a →⋅b →|a →|=−12. 故选:B.4、在△ABC 中,内角A,B,C 的对边分别为a,b,c ,且a (sin A −sin B )+b sin B =c sin C,a +b =2c =2,则△ABC 的面积为( )A .3√38B .√34C .√32D .3√32 答案:B分析:由正弦定理化角为边结合余弦定理可求出C =π3,再由已知可求出ab =1,即可求出面积.因为a (sin A −sin B )+b sin B =c sin C ,由正弦定理得a (a −b )+b 2=c 2,即a 2+b 2−c 2=ab ,所以cos C =a 2+b 2−c 22ab =12, 又C ∈(0,π),所以C =π3.又a +b =2c =2,则c =1,a +b =2,由a 2+b 2−c 2=a 2+b 2−1= ab,(a +b)2−3ab =1,得ab =1.所以S △ABC =12ab sin C =12×1×1×sin π3=√34. 故选:B.5、已知单位向量a ,b⃑ ,则下列说法正确的是( ) A .a =b ⃑ B .a +b ⃑ =0⃑ C .|a |=|b ⃑ |D .a //b⃑ 答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a ,b ⃑ 为单位向量,向量a ,b⃑ 的方向不一定相同,A 错误; 对于B ,向量a ,b ⃑ 为单位向量,但向量a , b⃑ 不一定为相反向量,B 错误; 对于C ,向量a ,b ⃑ 为单位向量,则|a |=|b⃑ |=1,C 正确; 对于D ,向量a ,b ⃑ 为单位向量,向量a ,b ⃑ 的方向不一定相同或相反,即a 与b⃑ 不一定平行,D 错误. 故选:C.6、对任意量给非零向量a,b⃑,定义新运算:a×b⃑=|a⃑ |sin⟨a⃑ ,b⃑⟩|b⃑|.已知非零向量m⃑⃑ ,n⃑满足|m⃑⃑ |>3|n⃑|,且向量m⃑⃑ ,n⃑的夹角θ∈(π4,π2),若4(m⃑⃑ ×n⃑)和4(n⃑×m⃑⃑ )都是整数,则m⃑⃑ ×n⃑的值可能是()A.2B.3C.4D.174答案:B分析:由n⃑×m⃑⃑ =|n⃑ |sinθ|m⃑⃑⃑ |=k4(k∈Z)结合|m⃑⃑ |>3|n⃑|>0可得0<k4<13,从而求得k,可得|m⃑⃑⃑ ||n⃑ |=4sinθ,确定34<sinθ<1,再根据m⃑⃑ ×n⃑=|m⃑⃑⃑ |sinθ|n⃑ |=4sin2θ即可确定答案.由题意可得n⃑×m⃑⃑ =|n⃑ |sinθ|m⃑⃑⃑ |=k4(k∈Z).因为|m⃑⃑ |>3|n⃑|>0,所以0<|n⃑ ||m⃑⃑⃑ |<13.因为θ∈(π4,π2),所以√22<sinθ<1,所以0<|n⃑ ||m⃑⃑⃑ |sinθ<13,即0<k4<13,解得0<k<43.因为k∈Z,所以k=1,所以n⃑×m⃑⃑ =|n⃑ |sinθ|m⃑⃑⃑ |=14,则|m⃑⃑⃑ ||n⃑ |=4sinθ,则|n⃑ ||m⃑⃑⃑ |=14sinθ<13,得34<sinθ<1,故m⃑⃑ ×n⃑=|m⃑⃑⃑ |sinθ|n⃑ |=4sin2θ∈(94,4),符合该条件的是3,故选:B7、已知a=(2,−1),b⃑=(x,4),且a⊥b⃑,则|a+b⃑|=()A.1B.3C.√5D.5答案:D分析:利用向量的垂直,求出x,然后求解向量的模.解:a=(2,−1),b⃑=(x,4),且a⊥b⃑,可得2x−4=0,解得x=2,所以a+b⃑=(4,3),则|a+b⃑|=√42+32=5.故选:D.8、已知向量a=(1,2),b⃑=(3,0),若(λa−b⃑)⊥a,则实数λ=()A.0B.35C.1D.3答案:B分析:根据平面向量的坐标运算,结合两向量垂直,数量积等于零,求得λ的值. 因为向量a=(1,2),b⃑=(3,0),且(λa−b⃑)⊥a,所以(λa−b⃑)⋅a=0,即λa2−a⋅b⃑=0,所以有5λ−3=0,解得λ=3,5故选:B.小提示:方法点睛:该题考查的是有关向量的问题,解题方法如下:(1)根据向量垂直向量数量积等于零,建立等式;(2)根据向量数量积运算法则进行化简;(3)利用向量数量积坐标公式求得结果.多选题9、已知a=(1,3),b⃑=(−2,1),下列计算正确的是()A.a+b⃑=(−1,4)B.a−b⃑=(3,2)C.b⃑−a=(1,2)D.−a−b⃑=(1,2)答案:AB分析:根据向量坐标表示的线性运算即可得出答案.解:因为a=(1,3),b⃑=(−2,1),所以a+b⃑=(−1,4),故A正确;a−b⃑=(3,2),故B正确;b⃑−a=(−3,−2),故C错误;−a−b⃑=(1,−4),故D错误.故选:AB.10、(多选)已知向量a,b⃑,在下列命题中正确的是()A.若|a |>|b⃑|,则a>b⃑B.若|a |=|b⃑|,则a=b⃑C.若a=b⃑,则a//b⃑D.若|a |=0,则a=0答案:CD分析:根据向量相等和模值相等的区别分析四个选项便可得出答案.解:向量的模值可以比较大小,但是向量不能比较大小,故A 错;向量的模值相等,只能证明大小相等并不能说明方向也相同,故B 错;两个向量相等,这两个向量平行,所以C 正确;模值为零的向量为零向量,故D 正确故选:CD11、设向量a →=(k ,2),b →=(1,-1),则下列叙述错误的是( )A .若k <-2,则a →与b →的夹角为钝角B .|a →|的最小值为2C .与b →共线的单位向量只有一个为(√22,−√22) D .若|a →|=2|b →|,则k =2√2或-2√2答案:CD分析:对于A 选项,得k <2且k ≠-2,所以A 选项正确;对于B 选项,|a →|≥2,所以B 选项正确;对于C 选项,与b →共线的单位向量为(√22,−√22)或(−√22,√22),所以C 选项错误;对于D 选项,得k =±2,所以D 选项错误.对于A 选项,若a →与b →的夹角为钝角,则a →·b →<0且a →与b →不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,所以A 选项正确;对于B 选项,|a →|=√k 2+4≥√4=2,当且仅当k =0时等号成立,所以B 选项正确;对于C 选项,|b →|=√2,与b →共线的单位向量为±b →|b →|,即与b →共线的单位向量为(√22,−√22)或(−√22,√22),所以C选项错误;对于D 选项,∵|a →|=2|b →|=2√2,∴√k 2+4=2√2,解得k =±2,所以D 选项错误.故选:CD填空题12、△ABC的内角A、B、C的对边分别为a、b、c,已知ccosB+√33bsinC−a=0,设D为AB边的中点,若CD=√7且√3BC=2BD,则BC=____________.答案:2分析:由正弦定理化边为角,利用诱导公式、两角和的正弦公式展开变形求得C,已知√3a=c,由余弦定理得b=2a,求出B=π2,再由勾股定理求得BC.由正弦定理可得:sinCcosB+√33sinBsinC−sinA=0.又在三角形中,sinA=sin(B+C),∴sinCcosB+√33sinBsinC=sin(B+C)=sinBcosC+cosBsinC,∴√33sinBsinC=sinBcosC.又在三角形中,sinB>0,∴√33sinC=cosC,∴tanC=√3.∵C∈(0,π),∴C=π3.由点D为AB的中点,√3BC=2BD,得√3BC=AB即√3a=c,而c2=a2+b2−ab得b2−ab−2a2=0得b=2a或b=−a(舍去),∴cosB=a2+c2−b22ac =0,则B=π2,在△BCD中有,CD=√7,√3BC=2BD,B=π2,则BD2+BC2=CD2,解得BC=2,即a=2.所以答案是:2.。

高中数学平面向量知识点与典型例题总结(师)

高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。

记作:AB 或a 。

2.向量的模:向量的大小(或长度),记作:||AB 或||a 。

3.单位向量:长度为1的向量。

若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

AB BA =-。

8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。

10.共线定理://a b a b λ=?。

当0λ>时,a b 与同向;当0λ<时,a b 与反向。

11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)四边形ABCD 是平行四边形的条件是AB CD =。

(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(6)因为向量就是有向线段,所以数轴是向量。

(7)若a 与b 共线, b 与c 共线,则a 与c 共线。

专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视

专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。

高中数学有关平面向量的公式的知识点总结

高中数学有关平面向量的公式的知识点总结高中数学中,关于平面向量的公式有很多。

以下是一些常见的知识点总结:1. 平面向量的表示:- 平面向量可以用坐标表示,即一个有序数对(a,b),其中a和b称为向量的横纵坐标。

- 平面向量也可以用有向线段表示,即在平面上用一条有方向的线段来表示向量,线段的起点为向量的始点,终点为向量的终点。

2. 向量的加法和减法:- 平面向量的加法满足平行四边形法则,即将两个向量的始点相接,以它们的终点为对角线的平行四边形的对角线。

- 向量的减法可以看作是加上负向量,即将减法转化为加法。

3. 数乘:- 平面向量与一个实数或标量相乘,相当于将向量的长度(模)乘以这个实数,并改变向量的方向,若实数为负数,则改变向量的方向。

4. 向量的数量积(内积):- 向量的数量积是一个标量,表示为向量的点乘,也可以称为内积。

- 内积的计算公式:a·b = |a||b|cosθ,其中a与b分别为两个向量,|a|和|b|为它们的长度(模),θ为它们之间的夹角。

5. 向量的向量积(叉乘):- 向量的向量积是一个向量,表示为向量的叉乘,也可以称为外积。

- 外积的计算公式:a×b = |a||b|sinθn,其中a与b分别为两个向量,|a|和|b|为它们的长度(模),θ为它们之间的夹角,n为垂直于它们所在平面的单位法向量。

6. 向量的共线和垂直:- 两个向量共线的条件是它们的夹角为0度或180度,也就是它们的数量积等于0或它们的向量积等于0。

- 两个向量垂直的条件是它们的夹角为90度,也就是它们的数量积等于0。

这些是高中数学中关于平面向量的一些常见的公式和知识点。

还有一些额外的知识点如向量在坐标系中的投影、单位向量、平面向量的判定式等,这些知识点会在更进一步的数学学习中涉及到。

高中数字必修二(平面向量)知识点及定理公式

高中数学必修二(平面向量)知识点及定理公式一、向量的概念:既有大小,又有方向的量。

二、特殊向量1.长度为0的向量叫做零向量,记作0.2.长度等于1个单位长度的向量,叫做单位向量。

三、向量间的关系1.平行向量:方向相同或相反的非零向量叫做平行向量,也叫共线向量,记作a//b 。

2.相等向量:长度相等且方向相同的向量叫做相等向量,记作a=b 。

四、向量的加法五、|a|,|b|与|a+b|的关系一般地,||||||b a b a +≤+,当且仅当a,b 方向相同时等号成立。

六、向量加法的运算律1.交换律:a+b=b+a2.结合律:(a+b)+c=a+(b+c)七、向量的减法)()(b a b a aa -+=-=--八、向量的数乘1.||||||a a λλ=:当λ>0时,λa 的方向与a 的方向相同。

当λ<0时,与a 的方向相反。

2.运算律:ba b a a a a aa λλλμλμλλμμλ+=++=+=)()3())(2()()()1(向量a b b a a λ=≠共线的充要条件:与)0(。

B C A a+b a b A B CDa b a+bOb a a-b九、向量的数量积θcos ||||b a b a =•当0=θ时,a 与b 同向,||||b a b a =•当πθ=时,a 与b 反向,||||b a b a -=• 当2πθ=时,a 与b 垂直,0=•b a 特别的:a a a a a a •==•||||2或,||||||b a b a ≤•数量积的运算律:cb ac b a b a b a ab b a •+•=•+•=••=•c ))(3()())(2()1(λλ十、平面向量坐标基本定理如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2。

2211e e a λλ+=十一、向量的坐标表示向量a 坐标:),(y x a =一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.

②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,ABaBCb,则a+b=ABBC=AC (1)aaa00;(2)向量加法满足交换律与结合律; ABBCCDPQQRAR,但这时必须“首尾相连”. 3、向量的减法: ① 相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 ②向量减法:向量a加上b的相反向量叫做a与b的差,③作图法:ba可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4、实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下: (Ⅰ)aa; (Ⅱ)当0时,λa的方向与a的方向相同;当0时,λa的方向与a的方向相反;当0时,0a,方向是任意的 5、两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b=a 6、平面向量的基本定理:如果21,ee是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,使:2211eea,其中不共线的向量21,ee叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a可表示成axiyj,记作a=(x,y)。 2平面向量的坐标运算:

(1) 若1122,,,axybxy,则1212,abxxyy

(2) 若2211,,,yxByxA,则2121,ABxxyy (3) 若a=(x,y),则a=(x, y) (4) 若1122,,,axybxy,则1221//0abxyxy

(5) 若1122,,,axybxy,则1212abxxyy 若ab,则02121yyxx 三.平面向量的数量积 1两个向量的数量积:

已知两个非零向量a与b,它们的夹角为,则a·b=︱a︱·︱b︱cos

叫做a与b的数量积(或内积) 规定00a 2向量的投影:︱b︱cos=||aba∈R,称为向量b在a方向上的投影投影的绝对值称为射影 3数量积的几何意义: a·b等于a的长度与b在a方向上的投影的乘积 4向量的模与平方的关系:22||aaaa 5乘法公式成立: 2222abababab; 2222abaabb222aabb 6平面向量数量积的运算律: ①交换律成立:abba ②对实数的结合律成立:abababR ③分配律成立:abcacbccab 特别注意:(1)结合律不成立:abcabc; (2)消去律不成立abac不能得到bc (3)ab=0不能得到a=0或b=0 7两个向量的数量积的坐标运算: 已知两个向量1122(,),(,)axybxy,则a·b=1212xxyy 8向量的夹角:已知两个非零向量a与b,作OA=a, OB=b,则∠AOB= (001800)叫做向量a与b的夹角 cos=cos,ababab••=222221212121yxyxyyxx 当且仅当两个非零向量a与b同方向时,θ=00,当且仅当a与b反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题 9垂直:如果a与b的夹角为900则称a与b垂直,记作a⊥b 10两个非零向量垂直的充要条件: a⊥ba·b=O02121yyxx平面向量数量积的性质

一、选择题 1.在△ABC中,AB=AC,D,E分别是AB,AC的中点,则( ).

A.AB与AC共线B.DE与CB共线 C.AD与AE相等 D.AD与BD相等 2.下列命题正确的是( ). A.向量AB与BA是两平行向量 B.若a,b都是单位向量,则a=b C.若AB=DC,则A,B,C,D四点构成平行四边形 D.两向量相等的充要条件是它们的始点、终点相同 3.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C

满足OC=OA+OB,其中 ,∈R,且+=1,则点C的轨迹方程为( ). A.3x+2y-11=0 B.(x-1)2+(y-1)2=5 C.2x-y=0 D.x+2y-5=0 4.已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是A.6 B.3 C.23 D.56

5.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则AP= A.λ(AB+AD),λ∈(0,1) B.λ(AB+BC),λ∈(0,22) C.λ(AB-AD),λ∈(0,1) D.λ(AB-BC),λ∈(0,22) 6.△ABC中,D,E,F分别是AB,BC,AC的中点,则DF=( ).

(第1题) A.EF+ED B.EF-DE C.EF+AD D.EF+AF 7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为( ). A.2 B.4 C.6 D.12 8.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的( ). A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点 C.三条中线的交点 D.三条高的交点 9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为( ). A.平行四边形 B.矩形 C.梯形 D.菱形 10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是( ). A.AD与BC B.OA与OB C.AC与BD D.EO与OF 二、填空题 11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k= . 12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x= . 13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于 . 14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m等于 .

15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的 . 16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是 . 三、解答题

17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求 λ为何值时,点P在第三象限内?

(第10题) 18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.

19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).

20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.

(第18题)

(第19题) 一、选择题 1.B 解析:如图,AB与AC,AD与AE不平行,AD与BD共线反向. 2.A 解析:两个单位向量可能方向不同,故B不对.若AB=DC,可能A,B,C,D四点共线,故C不对.两向量相等的充要条件是大小相等,方向相同,故D也不对. 3.D 解析:提示:设OC=(x,y),OA=(3,1),OB=(-1,3),OA=(3,),OB=(-,3),又OA+OB=(3-,+3), ∴ (x,y)=(3-,+3),∴33+=-=yx ,又+=1,由此得到答案为D. 4.B 解析:∵(a-2b)⊥a,(b-2a)⊥b, ∴(a-2b)·a=a2-2a·b=0,(b-2a)·b=b2-2a·b=0, ∴ a2=b2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cosθ.解得cos θ=21. ∴ a与b的夹角是3π. 5.A 解析:由平行四边形法则,AB+AD=AC,又AB+BC=AC,由 λ的范围和向量数乘的长度,λ∈(0,1). 6.D

解析:如图,∵AF=DE, ∴ DF=DE+EF=EF+AF.

7.C 解析:由(a+2b)·(a-3b)=-72,得a2-a·b-6b2=-72. 而|b|=4,a·b=|a||b|cos 60°=2|a|, ∴ |a|2-2|a|-96=-72,解得|a|=6. 8.D

解析:由 OA·OB=OB·OC=OC·OA,得OA·OB=OC·OA, 即OA·(OC-OB)=0, 故BC·OA=0,BC⊥OA,同理可证AC⊥OB, ∴ O是△ABC的三条高的交点. 9.C

解析:∵AD=AB+BC+DC=-8a-2b=2BC,∴AD∥BC且|AD|≠|BC|. ∴ 四边形ABCD为梯形. 10.D

解析:AD与BC,AC与BD,OA与OB方向都不相同,不是相等向量.

(第1题)

相关文档
最新文档