工程力学—第六章(II) 摩擦
工程力学第6章内力和内力图

工程力学教程电子教案
例题 6-1
K
FFE
FFA
FFC
内力和内力图
15
FAy A
FAx
K
E FE FB
a a aa
CD B
FC
取节点K,受力分析如图。由平衡方程
Fx 0, FFE FFA cos 45 0
Fy 0, FFC FFA cos 45 0
解得 FFE 2 kN,FFC 2 kN
B
C
F1
C
D
D
E
F
G
A
B
H
(a)
(b)
工程力学教程电子教案
内力和内力图
26
4. 小 结 (1) 节点法
(a)一般先研究整体,求支座约束力;
(b) 逐个取各节点为研究对象; (c) 求杆件内力; (d) 所选节点的未知力数目不大于2,由此开始计算。
(2) 截面法
(a)一般先研究整体,求支座约束力; (b) 根据待求内力杆件,恰当选择截面;
上,对于平面桁架,各力的作用线都在桁架的平 面内。
根据上述假设,桁架的各个杆件都是二力杆。 我们能比较合理的地选用材料,充分发挥材料的作 用,在同样跨度和荷载情况下,桁架比梁更能节省 材料,减轻自重。
工程力学教程电子教案
内力和内力图
10
3. 平面简单桁架的构成
节点
杆件
在平面问题中,为保证桁架几何形状不变,可 以由基本三角形ABC为基础,这时是3个节点,以后 每增加一个节点,相应增加两根不在一条直线上的 杆件,依次类推,最后将整个结构简支,这样构成 的桁架称为平面简单桁架。
2C
∑MF (F)=0
F
工程力学第六章(重心)

R2
12
4、实验法
工程中的一些形状复杂和质量分布不均匀的物体,重 心是难以计算的,这时可用实验法确定重心。
1)悬挂法:
求一个物体的重心,由于悬挂点 给物体的力和物体受的重力满足 二力平衡条件,重心必在过悬挂 点的铅直线上。 可以画一经过重心的直线,更换 悬挂点。
F
C
F
C
可以画另一经过重心的直线。 用这种方法,可以求出直线的交 点既为重心,如图所示。
i 1
n
l
z zC Pi i x P yi
i
连续体
x
yC
xC
xc
xdl
l
l
yc
ydl
l
l
zc
zdl
l
l
7
二、确定重心方法
1、查表法
对于均质物体,或有对称轴,对称中心的物体的重心在相应对称轴 ,对称中心上。如圆锥,圆柱重心在其轴线上,球体重心在其几何中心 上。简单形体的重心可以由工程手册查出。也可以进行计算.
1
§ 6-3 重心
一、重心坐标公式
一个物体可以看成是许多微小部分构成。 重力作用于物体的每个微小部分。 如图,每个微小物体的重力视为空间平行力系。整个物体 的重力是这个空间力系的合力。 物体无论如何放置,其合力作用线都通过物体上一个确 z 定点。这一点称为物体的重心。 平行力系合力为:
P Pi
yC
C
y
1 yC h 3 h 3 xC a 5
z
r
C
3 zC r 8
zC
z
y
a
C
x
h
C
yC
b
3 yC b 8
工程力学 第六章:平面杆件体系的几何组成分析

瞬变体系
工 程 力 学
无多余约束的几何 不变体系变体系
几种常用的分析途径 1、去掉二元体,将体系化简单,然后再分析。 2、如上部体系与基础用满足要求的三个约束相联可去 掉 基础,只分析上部。 3、当体系杆件数较多时,将刚片选得分散些,用链杆组 成的虚铰相连,而不用单铰相连。 4、由一基本刚片开始,逐步增加二元体,扩大刚片的范 围,将体系归结为两个刚片或三个刚片相连,再用规则判定。 5、由基础开始逐件组装 6、刚片的等效代换:在不改变刚片与周围的连结方式的 前提下,可以改变它的大小、形状及内部组成。即用一个等效 与外部连结等效)刚片代替它。
β
A P
A
β
Δ是微量
P N N
只有几何不变体系才 能作为建筑结构使用!!
§6.2刚片、自由度和约 束的概念
• 一、刚片 • 是指平面体系中几何形状不变的平面体。 • 在几何组成分析中,由于不考虑材料的应 变,所以,每根梁、每一杆件或已知的几 何不变部分均可视为刚片。 • 支承结构的地基也可以看做是一个刚片。
a
1、单链杆:仅在两处与其它物体用铰相连,不论其形 状和铰的位置如何。
一根链杆可以减少 体系一个自由度,相 工 当于一个约束。! 程 力 β 学
α
Ⅰ
1 5 3 6 4
1、2、3、4是链杆, 5、6不是链杆。
加链杆前3个自由度
加链杆后2个自由度
2、单铰: 联结 两个 刚片的铰 加单铰前体系有六个自由度 加单铰后体系有四个自由度
三刚片以三个无穷远处虚铰相连 组成瞬变体系
工 程 力 学
4、由一基本 刚片开始,逐 步增加二元体, 扩大刚片的范 围,将体系归 结为两个刚片 或三个刚片相 连,再用规 则判定。
工程力学:第六章 扭转

9.55
150 300
4.78 (kN m)
m4
9.55
P4 n
9.55
200 300
6.37
(kN m)
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
例 已知:一传动轴转数 n =300r/min,主动轮输入功率
P1=500kW,从动轮输出功率 P2=150kW,P3=150kW, P4=200kW,试绘制扭矩图。
解:①计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
500 300
15.9(kN m)
A
BC
m2
m3
9.55
P2 n
T2 m2 m3 (4.78 4.78) 9.56kN m
m 0 , T3 m4 0, T3 m4 6.37kN m
③绘制扭矩图 m2
m3
m1
m4
n
A
B
C
D
6.37kN.m
扭矩图
–
–
4.78kN.m
9.56kN.m
T 9.56 kN m, BC段为危险截面。 max
6.3 圆轴扭转时的应力及强度条件
第6章 扭转
6.1 扭转的概念 6.2 圆轴扭转时的内力 6.3 圆轴扭转时的应力及强度条件 6.4 圆轴扭转时的变形及刚度条件
6.1 扭转的概念
汽车传动轴
汽车方向盘
看到图片后大家再仔细想想我们日常生活中还有哪些属于 扭转变形?拧衣服
工程力学--第六章 剪切和挤压(强度和连接件的设计)

τ =FQ/Aτ≤[τ]=τb/nτ τ τ
连接件、被连接件 连接件、
剪断条件
工件、 工件、连接件
2)强度条件是一种破坏判据。判据的左端是工作状 2)强度条件是一种破坏判据。 强度条件是一种破坏判据 态下的控制参量(如应力),由分析计算给出; ),由分析计算给出 态下的控制参量(如应力),由分析计算给出; 右端则应是该参量的临界值,由实验确定。 右端则应是该参量的临界值,由实验确定。 3) 利用强度条件,可以进行 利用强度条件, 强度校核、截面设计、确定许用载荷或选材。 强度校核、截面设计、确定许用载荷或选材。 4) 强度计算或强度设计的一般方法为: 强度计算或强度设计的一般方法为:
剪切的实用计算
(1)剪力计算
以铆钉连接为例,沿剪切面切开, 取部分铆钉研究, 以铆钉连接为例,沿剪切面切开, 取部分铆钉研究,受力 如图。 如图。
双剪: 双剪:Q=P/2
一个剪切面
二个剪切面
单剪: 单剪:Q=P
强度计算
假定剪力Q均匀分布在剪切面上, 假定剪力 均匀分布在剪切面上, 均匀分布在剪切面上 以平均剪应力作为剪切面上的名义剪应 则有: 力,则有: τ=Q/A
P/A τ=Q/A =
P
剪切强度条件: 剪切强度条件: τ=Q/A≤[τ]=τb/nτ ≤τ τ
是材料剪切强度,由实验确定; τb是材料剪切强度,由实验确定;nτ是剪切安全系数。
剪断条件:对剪板、冲孔等需要剪断的情况, 剪断条件:对剪板、冲孔等需要剪断的情况,应满足
τ=Q/A>τb τ
Байду номын сангаас
功率、 功率、转速与传递的扭矩之关系:
冲 头 N Q
P=400kN d t
P N=P 落 料
理论力学6—桁架、摩擦、重心

桁架中各杆轴线的交点称为节点。
焊接
铆接
螺栓连接
6.1 桁架
各杆件轴线不在同一平面内的桁架,称为空间桁架。 各杆件轴线都在同一平面内的桁架,称为平面桁架。
一、如何进行平面桁架内力计 算?
力学特性 力学模型 分析计算
6.1 桁架
二、建立平面桁架力学模型
力学特性 力学模型 分析计算
考虑如下几点假设: 1.各杆件为直杆,各杆轴线位于同一平面内。 2.杆件与杆件间均用光滑铰链连接。 3.载荷作用在节点上且位于桁架几何平面内。 4.各杆件自重不计或平均分布在节点上。
6.2 摩擦
6.2.3 考虑摩擦的平衡问题
考虑摩擦时,求解物体平衡问题的步骤与前几章所述 大致相同,但有如下的几个特点:(1)分析物体受力时,必 须考虑接触面间切向的摩擦力Fs ,通常增加了未知量的数 目;(2)为确定这些新增加的未知量,还需列出补充方程, 即Fs ≤ fsFN,补充方程的数目与摩擦力的数目相同;(3)由于 物体平衡时摩擦力有一定的范围(即0≤Fs≤fsFN),所以有摩擦 时平衡问题的解亦有一定的范围,而不是一个确定的值。 工程中有不少问题只需要分析平衡的临界状态,这时 静摩擦力等于其最大值,补充方程只取等号。有时为了计 算方便,也先在临界状态下计算,求得结果后再分析、讨 论其解的平衡范围。
jf jf
FR
q
A
j
FRA
jf
6.2 摩擦
2 自锁现象 (2) 如果全部主动力的合力 FR的作用线在摩擦角j之外,则 无论这个力怎样小,物块一定 会滑动。因为在这种情况下,q > j f,而j ≤j f ,支承面的全约 束反力FRA和主动力的合力FR不 能满足二力平衡条件。应用这 个道理,可以设法避免发生自 锁现象。
《工程力学》课后习题答案全集

工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力和的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。
(b )同上。
由于力和的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。
2.不计杆重,画出下列各图中AB 杆的受力图。
解:(a )取杆AB 为研究对象,杆除受力外,在B 处受绳索作用的拉力,在A 和E 两处还受光滑接触面约束。
约束力和的方向分别沿其接触表面的公法线,并指向杆。
其中力与杆垂直,力通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力和,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且=。
研究杆AB ,杆在A 、B 两点受到约束反力和,以及力偶m 的作用而平衡。
根据力偶的性质,和必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力和,在B 点受到支座反力。
和相交于O 点,根据三力平衡汇交定理,可以判断必沿通过pB RpB Rp B T A N E N E N A N B N C N BN CN A N B N A N B N A T C T B N A T C TB NB、O两点的连线。
见图(d).第二章 力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
工程力学第6章 空间力系重心

载荷F。钢丝OA和OB所构成的
平面垂直于铅直平面Oyz,并与
该 平 面 相 交 于 OD , 而 钢 丝 OC
则沿水平轴y。已知OD与轴z间
的 夹 角 为 β , 又 ∠ AOD =
∠BOD = α,试求各钢丝中的
拉力。
空间汇交力系
例题4
A
D
Bz F3
F2 αα β
x
O
yC F1
解: 取O点为研究对象,受
力分析如图所示,这些力构 成了空间共点力系。
F
空间汇交力系
例题4
力F2与x轴之间 的 夹 角 为 90o - α , 故它在该轴上的投 影为:
F2x F2 cos (90o ) F2 sin
空间汇交力系
例题4
DB z
A
F' F3
F2 αα β
x
O
yC F1
列平衡方程
Fx 0, F2 sin F3 sin 0 Fy 0,
例题3
Fx
Fz
6-4 空间力系的平衡方程
空间力系的平衡方程为:
Fx 0, mx (F ) 0 Fy 0, my (F ) 0 Fz 0, mz (F ) 0
空间汇交力系
例题4
如图所示为空气动力天平
上测定模型所受阻力用的一个
悬挂节点O,其上作用有铅直
Fz 0,
FAz FBz (F3 F4 ) cos 30 (F1 F2 ) 0
Mx 0, FAZ 0.25 m FBZ 1.25 m (F3 F4) cos 30 0.75 m 0
M y 0, (F1 F2 ) 0.4 m (F3 F4 ) 0.2 m 0 Mz 0, FAx 0.25 m FBx 1.25 m (F3 F4 )sin 30 0.75 m 0