物理48种解题模型

合集下载

物理解题方法6微元法

物理解题方法6微元法
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
*
*
二、其它类的“微元”模型(范例)
[例6]如图所示,S为一点光源。M为一平面镜,光屏与平面镜平行放置。SO是一条垂直照射到M上的光线,已知SO=L,若M以角速度绕O点逆时针匀速转动,则转过30o角时光点S’在屏上移动的瞬时速率v=___________。
*
*
[例7]如图所示,质量为m的均匀闭合绳圈套在表面光滑,半顶角为α的圆锥上,当绳圈平衡时,绳中的张力是多大?
*
*
[例5]右图为阴极射线管示意图。由阴极K产生的热电子(初速为0)经电压U加速后,打在阳极A板上。若A板附近单位体积内的电子数为N,电子打到A板上即被吸收。求电子打击A板过程中,A板所受的压强。
*
*
3、“柱体微元”模型在98年高考17题中的应用
[题目]来自质子源的质子(初速为0),经一加速电压为800Kv的直线加速器加速,形成电流强度为1mA的细柱形质子流。已知质子电量e=1.6×10-19C。这束质子流每秒打到靶上的质子数为——————————。假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n1和n2,则n1:n2=——————————。
1、“质量柱体模型”---------------△m=ρsv△t [例1]某地强风的风速为v,设空气的密度为ρ,如果将通过横截面积为s的风的动能全部转化为电能,则其电功率多大?

人教版高级高中物理必修一必修二物理模型

人教版高级高中物理必修一必修二物理模型

人教版高级高中物理必修一必修二物理模型文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]高中物理模型解题一、刹车类问题匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。

如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。

【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。

由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。

若汽车轮胎跟地面的动摩擦因数是,刹车线长是 14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大二、类竖直上抛运动问题物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。

此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。

【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。

那么下述结论正确的是()A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/sC物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m三、追及相遇问题两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。

两物体在同一直线上相向运动时,会出现相遇的现象。

解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。

分析方法有:物理分析法、极值法、图像法。

常规物理模型归类及解题方法和技巧汇总

常规物理模型归类及解题方法和技巧汇总

常规物理模型归类与解题方法和技巧汇总(共88题)2、常规物理模型的归类 (1)传送带模型:【例1】. 物块从光滑斜面上的P 点自由滑下通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P 点自由滑下,则 ( B )A .物块有可能落不到地面B .物块将仍落在Q 点C .物块将会落在Q 点的左边D .物块将会落在Q 点的右边【例2】传送带与水平面夹角为θ=37°,皮带以v=12 m/s 的速率沿顺时针方向转动,如图所示.今在传送带上端A 处无初速度地放上一个质量为m 的小物块,它与传送带间的动摩擦因数为μ=0.75,若传送带A 到B 的长度为L=24 m ,g 取10 m/s 2,则小物块从A 运动到B 的时间为多少?解析 小物块无初速度放在传送带上时,所受摩擦力为滑动摩擦力,方向沿斜面向下,对小物块用牛顿第二定律得mg sin θ+μmg cos θ=ma 解得a =12 m/s 2设小物块加速到12 m/s 运动的距离为x 1,所用时间为t 1由v t 2-0=2ax 1得x 1=6 m 由v t =at 1得t 1=1 s当小物块的速度加速到12 m/s 时,因mg sin θ=μmg cos θ,小物块受到的摩擦力由原来的滑动摩擦力突变为静摩擦力,而且此时刚好为最大静摩擦力,小物块此后随皮带一起做匀速运动.设AB 间的距离为L ,则L -x 1=vt 2解得t 2=1.5 s 从A 到B 的时间t =t 1+t 2解得t =2.5 s.【例3】如图所示,电动机带动滚轮做逆时针匀速转动,在滚轮的摩擦力作用下,将一金属板从光滑斜面底端A 送往斜面上端,倾角θ=30°,滚轮与金属板的切点B 到斜面底端A 距离L=6.5m ,当金属板的下端运动到切点B 处时,立即提起滚轮使其与板脱离。

已知板的质量m=1×103kg ,滚轮边缘线速度v=4m/s ,滚轮对板的正压力F N =2×104N ,滚轮与金属板间的动摩擦因数为μ=0.35,取g=10m/s 2。

初中物理模型法解题——压强模型

初中物理模型法解题——压强模型

初中物理模型法解题———压强模型【模型概述】压强的种类(1)固体压强(2)液体压强(3)气体压强。

一、固体压强:p=(压力的作用效果)①当物体在水平面放置,且为柱体时,p=可推导为p=ρgh,两式都可用。

②物体叠加时,受力面积不变,压力相加。

③发生切割时,控制变量好比较。

二、液体压强:p=ρ液gh (液体具有流动性且液体受到重力而产生)①当容器水平放置,且为柱体时,液体压强计算可用p=和p=ρ液gh进行计算。

②液体压强特点:同种液体相同深度各个方向压强相等;同种液体内部压强与深度有关,深度越深压强越大;液体压强大小与液体的密度有关,在相同深度的不同种液体中,液体的密度越大压强越大;液体压强大小与容器的形状无关。

③容器形状决定看容器底部所受压力与液体重力的关系。

F压=G液F压G液F压= p S=ρ液gh S G液=ρ液gV液F压G液三、气体压强:p=(气体具有流动性且受到重力而产生)马德保半球实验:大气压强的存在。

托里拆利实验:标准大气压下,p0为76cm汞柱p0 1.0105pa。

随着海拔的升高,大气压强减小,水的沸点降低。

【知识链接】一、平衡力的特点当物体处于静止状态或匀速直线运动状态时,物体受到的力为平衡力,合力为零。

二力平衡的特点:大小相等;方向相反;作用在同一直线上;同一物体上。

二、重力与压力的辨别①当物体在水平地面处于静止时,F=G,如下图:②当物体在斜面上静止时,F G,如下图:③当物体置于竖直面上静止时,F=F0与G无关。

如下图:【例题1】一如图所示,放在水平地面上的两个实心长方体A、B,已知体积V A<V B,与地面的接触面积S A>S B,对地面的压强P A=P B。

下列判断正确的是()【解题思路】因为两长方体是静止在水平地面上,根据p=可以比较它们的重力关系,重力与质量成正比,可据推出它们的质量关系;又由于两物体为柱体,所以还可以用p=ρgh进行比较它们的密度关系。

高中物理12种解题方法与技巧与操作

高中物理12种解题方法与技巧与操作

高中物理12种解题方法与技巧1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。

(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

4抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解5圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.6牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。

初中物理模型法解题——浮力液面升降模型

初中物理模型法解题——浮力液面升降模型

初中物理模型法解题——浮力液面升降模型【模型概述】若变化前后液体中的物体都处于漂浮、悬浮状态,而无沉体出现,则液面不变;若液体中的物体,在变化前无沉体,而变化后有沉体出现,则液面下降;若液体中的物体,在变化前有沉体,而变化后无沉体出现,则液面升高.一、纯冰浸于液体,熔化后判断液面升降①纯冰在纯水中熔化;②纯冰在盐水(或其它密度比水大的液体)中熔化;③纯冰在密度比水小的液体中熔化;二、冰块中含有其它杂质,冰块熔化后判断水面升降。

①含有木块(或其它密度比水小的固体)的冰块在纯水中熔化;②含有石块(或其它密度比水大的固体)的冰块在纯水中熔化;③含有煤油(或其它密度比水小的液体)的冰块在纯水中熔化;三、冰块中含有一定质量的气体,冰块熔化后判断水面升降。

四、容器中的固态物质投入水中后判断液面升降①固态物质的密度小于水的密度②固态物质的密度等于水的密度③固态物质的密度大于水的密度五、解题关键无论液面上升、下降都要比较的是冰熔化前(或物体投放前)在液体中排开液体的体积和冰熔化成水后的体积(或物体投放后液体体积)的大小关系:①若前体积等于后体积,液面不变;设液体中的物体的总重为G,变化前后在液体中所受的总浮力分别为F浮、F浮′.若变化前后均无沉体出现,由浮沉条件知F浮′=F浮=G,ρ液gV排′=ρ液gV排,则V排′=V排,液面不变.②若前体积大于后体积,液面下降;若变化前无沉体,变化后有沉体,由浮沉条件知F浮=G,F浮′<G,则F浮′<F浮,即V排′<V排,故液面下降.③若前体积小于后体积,液面上升若变化前有沉体,变化后无沉体,由浮沉条件知F浮<G,F浮′=G,则F浮′>F浮,即V排′>V排,故液面上升.液面升降模型其它升降模型:【知识链接】一、阿基米德原理浸在液体中的物体受到向上的浮力,浮力的大小等于它排开的液体受到的重力。

F浮=G排液=ρ液gV排浸没时V排=V物部分浸入时V排=V-V出二、物体的浮沉条件(1)浸没在液体中的物体 (V排=V物)F浮<G物,下沉(ρ液<ρ物)F浮>G物,上浮(ρ液>ρ物)F浮=G物,悬浮(ρ液=ρ物)(2)漂浮在液面上的物体:F浮=G物(V排<V物)各类型问题的分析解答【例题1】有一块冰浮在容器的水面上,当冰块完全熔化后,水面高度将怎样变化?【解题思路】这是一道最典型最基础的题型,我们理解后,可作为其它类型题解决的知识点直接分析。

高中物理模型法解题——板块模型-高中物理八种板块模型

高中物理模型法解题——板块模型-高中物理八种板块模型

高中物理模型法解题———板块模型【模型概述】板块模型是多个物体的多个过程问题,是一个最经典、最基本的模型之一。

木板和物块组成的相互作用的系统称为板块模型,该模型涉及到静摩擦力、滑动摩擦力的转化、方向判断等静力学知识,还涉及到牛顿运动定律、运动学规律、动能定理和能量的转化和守恒等方面的知识。

板块类问题的一般解题方法(1)受力分析.(2)物体相对运动过程的分析.(3)参考系的选择(通常选取地面).(4)做v-t图像(5)摩擦力做功与动能之间的关系.(6)能量守恒定律的运用.一、含作用力的板块模型问题:【例题1】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为0.3,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力是多大?(设最大静摩擦力等于滑动摩擦力)(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木块与地面间的动摩擦因数都不变,只将水平恒力增加为30N,则木块滑离木板需要多长时间?【解题思路】(1)根据牛顿第二定律求出木板的加速度.(2)让木板先做匀加速直线运动,然后做匀减速直线运动,根据牛顿第二定律,结合位移之和等于板长求出恒力F作用的最短时间.(3)根据牛顿第二定律求出木块的最大加速度,隔离对木板分析求出木板的加速度,抓住木板的加速度大于木块的加速度,求出施加的最小水平拉力.(4)应用运动学公式,根据相对加速度求所需时间.【答案】(1)木板的加速度2.5m/s2;(2)要使木块能滑离木板,水平恒力F作用的最短时间1s;(3)对木板施加的最小水平拉力是25N;(4)木块滑离木板需要2s【解析】解:(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度=2.5m/s2(2)设拉力F作用t时间后撤去,木板的加速度为木板先做匀加速运动,后做匀减速运动,且a=﹣a′有at2=L解得:t=1s,即F作用的最短时间是1s.(3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则对木板:F1﹣μ1mg﹣μ(M+m)g=Ma木板木板能从木块的下方抽出的条件:a木板>a木块解得:F>25N(4)木块的加速度木板的加速度=4.25m/s2木块滑离木板时,两者的位移关系为x木板﹣x木块=L即带入数据解得:t=2s【变式练习】如图所示,质量M=1kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1m,用F=5N的水平恒力作用在铁块上,g取10m/s2.(1)若水平地面光滑,计算说明两木块间是否会发生相对滑动.(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间.【解题思路】(1)假设不发生相对滑动,通过整体隔离法求出A、B之间的摩擦力,与最大静摩擦力比较,判断是否发生相对滑动.(2)根据牛顿第二定律分别求出A、B的加速度,结合位移之差等于木块的长度求出运动的时间.【答案】(1)A、B之间不发生相对滑动;(2)铁块运动到木块右端的时间为.【解析】(1)A、B之间的最大静摩擦力为:f m>μmg=0.3×10N=3N.假设A、B之间不发生相对滑动,则对AB整体分析得:F=(M+m)a对A,f AB=Ma代入数据解得:f AB=2.5N.因为f AB<f m,故A、B之间不发生相对滑动.(2)对B,根据牛顿第二定律得:F﹣μ1mg=ma B,对A,根据牛顿第二定律得:μ1mg﹣μ2(m+M)g=Ma A根据题意有:x B﹣x A=L,,联立解得:.二、不含作用力的板块模型问题:【例题2】一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图像如图所示。

高中物理模型法解题——传送带模型

高中物理模型法解题——传送带模型

mA B v 高中物理模型法解题——— 传送带模型【模型概述】:传送带问题往往牵扯到运动学、动力学、功与能等多方面知识,经常伴随相对运动、摩擦力的突变和能量传递与耗散等复杂情境而存在,能够充分考查学生的分析能力和综合运用能力,因此这些知识内容成为多年来教学和考试的经典内容。

也正是因为这一特性,使得传送带问题成为几乎所有学生的一大疑难。

学生通常可能不同程度存在以下问题:1.对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2.对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3.对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

一,物块在水平传送带上运动情况的判断(摩擦力方向) 例|1如图所示,水平传送带以4m/s 的速度顺时针匀速运动,主动轮与从动轮的轴心距为12m 。

现将一物体m 轻轻放在A 轮的正上方,物体与传送带之间的动摩擦因数为0.2,则物体m 经多长时间运动到B 轮的正上方?(物体m 可视为质点,g 取10 m/s 2)【启导】要求得物体在在传送带上运动的时间,关键是确定物体在传送带上的运动过程。

那么,怎样来确定物体的运动情况呢?我们可以假设物体在传送带上一直做匀加速运动,然后将传送带轴距带入速度与位移的关系式()中,求出物体的最大速度,再与传送带速度相比较。

如果比传送带速度大,则说明物体一直匀加速不可能,应该是先匀加速到传送带速度再与传送带保持相对静止,做匀速运动;若其小于等于传送带速度,则说明物体一直做匀加速运动,其中等于说明物体刚好运动到传送带末端时与传送带共速。

物体运动情况一旦确定,就可以运用运动学规律求解要求的物理量了! ax v v 2202=-【解析】假设物体在传送带上一直做匀加速运动,则① ②联立①②式,代入数据,解得 m/s > v因此,物块在传送带上一直加速不可能,应是先匀加速至与传送带共速,然后再匀速运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理48种解题模型
物理学作为自然科学中的一门重要学科,在很多人眼中,都是非常难以理解和掌握的。

但是,只要我们熟练掌握一些基本的解题模型,就能够事半功倍、游刃有余地解决许多看上去很难的物理问题。

接下来,我将为大家介绍48种常见的物理解题模型。

1. 直线运动的加速度模型:一定的力作用于物体上,且物体重力不变,则物体的加速度与受力大小成正比例,与物体的质量成反比例。

2. 圆周运动的加速度模型:半径为r,匀速转动的运动物体,其向心加速度的大小为a=v²/r。

3. 加速度的符号问题:保证在仅受重力、弹力或其他内力作用时,加速度始终沿自定义的正方向。

4. 平衡盘的模型:保证整个平衡盘处于平衡状态,使物体上下平衡的原理,即M1g=M2g。

5. 质心速度的计算模型:物体质心的速度为物体上任意一点的速度和所受的加速度的叠加。

6. 动量守恒的模型:自由物体的总动量在碰撞前后不变,即P1=P2。

7. 动能守恒的模型:自由物体的总动能在碰撞前后不变,即
K1=K2。

8. 力的合成与分解的模型:可以将任意的力分解成沿不同方向
的力的合成,或者将一个力分解为沿不同方向的力的分量。

9. 泰勒级数的模型:通过将方程进行泰勒级数展开,可以简化
常见的物理问题,特别是在计算复杂函数时。

10. 碰撞动能损失的模型:碰撞时,动能不会完全转化为其他
形式的能量,存在动能损失。

11. 弹性碰撞的模型:碰撞过程中,物体的动量和动能都被保持,原始的运动方向没有改变。

12. 非弹性碰撞的模型:碰撞过程中,物体的动量被保持,而
动能被部分转化为其他形式的能量,如声能,热能等。

13. 刚体的平移运动模型:刚体的平移运动模型是指刚体的物
理坐标恒定不变,仅受外部作用力的影响而使质点进行平移运动。

14. 刚体的转动运动模型:刚体的转动运动模型是指刚体在旋
转过程中,每个时刻都有一个刚体质心,以及对该质心产生旋转
的角速度和角加速度。

15. 刚体的平移动量守恒模型:刚体平移过程中,系统动量在
碰撞前后恒定不变,即M1V1+M2V2=M1V1'+M2V2'。

16. 刚体的转动动量守恒模型:旋转中的刚体,质心的速度为质点的速度,动量为质点动量之和,即MV=Iω。

17. 力矩的模型:力矩可以由力和杆长度的乘积计算得出,并且用于判断物体单独旋转的能力。

18. 物体的摩擦力模型:静摩擦力是物体不动力学平衡的重要原因,动摩擦力是物体运动阻力的主要因素。

19. 波的传播模型:各类物理波动的传播,都是由于波源在媒介中产生起伏而进行传播的。

20. 管道中流体的流速模型:用质量守恒、能量守恒、动量守恒等基本原理,可以计算出在管道内各点水的速度、压力及流量等参数。

21. 功率的模型:力所做的功的大小是力和物体位移之积,功率则是单位时间内做功的大小,即功率=P=Fv。

22. 感应电流的模型:感应电流的产生是由于电磁感应现象产生的,即当导体在磁场中移动时,会产生一定方向的电流。

23. 磁场对运动电荷的影响模型:电场和磁场对质点的力的影响是由于电荷带上的静电力和磁场作用力的相互作用产生的。

24. 交流电的模型:交流电模型是指,在一定时间间隔内,电源输出的电流方向和大小都是经常变化的模型。

25. 各种导体的电阻模型:在导体上,电流流过导体时,产生
了一定的电阻,即阻碍电流流动的力,它与导体的材料和温度都
有关。

26. 理想气体模型:理想气体模型是指在一定的物理条件下,
气体的分子之间的相互作用可以忽略不计,压强与体积成反比例,温度与气体压强和体积的乘积成正比。

27. 热交换的模型:热交换模型是指热的自由流动和转化过程。

它跟热传递媒介、环境的温度等因素有关。

28. 摆的运动模型:一个简单的单摆,它的振动频率只与摆长L 和重力加速度g有关,即f=1/2π√g/L。

29. 牛顿第二定律的模型:物体所受的合外力等于物体质量和
物体加速度的乘积。

30. 牛顿万有引力定律的模型:万有引力定律是指两个物体之
间的引力大小与它们的质量和距离的平方成正比例。

31. 声波的传播模型:声音的传播是由于声源振动时,在空气
中产生了压缩波和稀疏波相继传播所产生的声波。

32. 热学问题的计算模型:热力学包括了热的产生、传递、转
化等方面的问题,通过物体对热的吸收、释放,可计算出热力学
问题的解。

33. 行星运动的模型:行星的运动受到太阳的引力和行星在运
动中所受到的其他影响力的影响,可以通过万有引力定律和动量
守恒原理进行计算和解答。

34. 剪应力和剪应变的模型:物体受到切力时,剪应力是指剪
切力作用于物体上时产生的质点上应力的大小。

剪应变是指在剪
应力作用下,物体沿剪切平面产生的变形程度。

35. 磁器件作用的模型:磁场与电场不同,磁场是不直接对电
荷有作用的,在物体内部可能发生磁化和自感现象。

36. 能量守恒的模型:能量守恒是指在物理过程中,所有形式
的能量之和保证不变,它包括动能、势能等多种形式。

37. 电势能的模型:电势能是指电荷在电场中所具有的能量,
它与电荷本身的电量和电场的强度有关。

38. 电容器的模型:电容器是电路中能够储存电荷的元件,它
是由两个带电板组成的,通常被用于电信技术中。

39. 电路中电阻的模型:电阻是指电路中电荷流动受到的阻碍,而电阻大小决定了向电器供给的电流。

40. 电感器的模型:电感器是电路中具有电流感应作用和电磁
能储存能力的元器件,是计算电路等相关方面的重要表现。

41. 机械波的模型:机械波是指物质振动在介质中形成的波。

与此同时,机械波也可以产生共振效应、反射、衍射和干涉等现象。

42. 光能量的计算模型:光能量的计算是由光的频率、波长、
光强等多种参数结合而成的。

43. 光线的反射和折射模型:光线在介质之间分别发生反射和
折射,通过描述光线在介质之间、进入和离开物体时的轨迹、强
度等参数,可以解决许多光学方面的问题。

44. 物理过程中的误差分析模型:在物理实验中,出现误差是
很常见的,引起误差的原因包括人为操作、设备不精确等多种因素。

45. 热力学问题的热能计算模型:热力学问题研究的是热能的
产生、传递和转化等方面的问题,其中热能的计算是解决问题时
不可或缺的环节。

46. 电场的模型:电场是由电荷产生的,在电场内的带电粒子
会受到电场力的作用,从而具有一定的运动状态。

47. 磁场和电流的模型:通过对电流的运动轨迹、电流的方向、满足安培环路定则等多种因素的综合考虑,可以计算出磁场和电
流与其它物理参数之间的关系。

48. 牛顿第一定律的模型:物体所受的合外力等于零,则物体将保持原有的运动状态,即匀速直线运动或静止。

相关文档
最新文档