(word完整版)初中几何旋转典型例题归类
初中几何翻折旋转问题题型汇总

证明题之旋转平移折叠1.在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).2.如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△AD E沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.3.在折纸这种传统手工艺术中,蕴含很多数学思想,我们可以通过折纸得到一些特殊图形。
把一张正方形纸片按照下面步骤折叠后展开。
图1 A O B C DE 图2B(1) 猜想四边形ABCD 是什么四边形? (2) 请证明你的猜想.4.(本小题满分10分)如图1,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8.以OB 为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.5.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形; (2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3;(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当θ= °时,EP 的长度最大,最大值为 .6.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'''D F CE ,旋转角为α.(1)当点'D 恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC ,且0°<α<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.A A C C CA 1A 1BBB11E P图1图2图3θ7. 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立。
初中几何旋转经典例题

初中几何旋转经典例题【最新版】目录1.初中几何旋转的概念和基本原理2.旋转变换的性质和应用3.经典例题解析3.1 正三角形类型的旋转3.2 正方形类型的旋转3.3 平移、旋转、轴对称的易错题型整理正文初中几何旋转经典例题初中几何中的旋转是一种重要的变换方式,它不仅可以帮助我们更好地理解图形的性质,还能在解决实际问题中发挥关键作用。
本文将围绕初中几何旋转的概念、性质和应用,以及经典例题进行讲解。
一、初中几何旋转的概念和基本原理旋转是指将一个图形围绕某一点按某个方向转动一定的角度,这样的图形变换叫做旋转。
旋转时,旋转中心不变,旋转角度也不变。
根据旋转的方向和角度,旋转可以分为顺时针旋转和逆时针旋转。
二、旋转变换的性质和应用旋转变换具有以下性质:1.旋转变换不改变图形的大小和形状。
2.旋转变换只改变图形的位置,不改变图形的方向。
3.旋转变换可以用来简化问题,将复杂的图形变为简单的图形。
4.旋转变换在实际问题中有广泛的应用,如计算旋转体的表面积和体积等。
三、经典例题解析1.正三角形类型的旋转【例 1】如图(1-1),设 p 是等边 abc 内的一点,pa=3,pb=4,pc=5,apb 的度数是 60°。
将 abp 绕 a 点按逆时针方向旋转 60°,使得 ab 与 ac 重合。
经过这样旋转变化,将图(1-1-a)中的 pa、pb、pc 三条线段集中于图(1-1-b)中的一个 p"cp 中,此时 p"ap 也为正三角形。
2.正方形类型的旋转【例 2】如图,以点 O 为旋转中心将正方形 AMNB 顺时针旋转 90°,得到三角形 ANG。
连接 GN,易得∠GBC=90°,∠MGN=∠ANG=45°,∠MGB=∠ANC=90°,所以三角形 AMN 全等于三角形 ANG,所以 GN=MN,又因为∠GMB=90°,所以 MN>BN,所以 MN 最大,能构成直角三角形。
苏州北外附属苏州湾外国语学校数学旋转几何综合(培优篇)(Word版 含解析)

苏州北外附属苏州湾外国语学校数学旋转几何综合(培优篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=2DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG 是等腰直角三角形, ∴DE =2DG .(3)①如图3﹣1中,当E ,F ,C 共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6,∴CG =12CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值92=最小值32= 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF922=当点F在AC延长线上时,CE有最小值,图形如下:同理,CE=EF-CF322 =【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.3.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE ≌△DCB (ASA )∴BC=EC∴△ECB 为等边三角形∴∠CEB=60º∵BC ⊥CD∴∠ECA=∠BCD=90º∴在Rt △AEC 中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 23 【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.4.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725.【解析】【分析】(1)图形经过旋转以后明确没有变化的边长,证明AOC BOD≅,得出AC=BD ,延长BD交AC于E,证明∠AEB=90︒,从而得到BD AC⊥.(2) 如图3中,设AC=x,在Rt△ABC中,利用勾股定理求出x,再根据sinα=sin∠ABC=ACAB 即可解决问题【详解】()1证明:如图2中,延长BD交OA于G ,交AC于E.∵90AOB COD∠=∠=,∴AOC DOB∠=∠,在AOC和BOD中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD≅,∴AC BD=,CAO DBO∠=∠,∵90DBO GOB∠+∠=,∵OGB AGE∠=∠,∴90CAO AGE∠+∠=,∴90AEG∠=,∴BD AC⊥.()2解:如图3中,设AC x=,∵BD、CD在同一直线上,BD AC⊥,∴ABC是直角三角形,∴222AC BC AB+=,∴222(17)25x x ++=, 解得7x =,∵45ODC DBO α∠=∠+∠=,45ABC DBO ∠+∠=, ∴ABC α∠=∠, ∴7sin sin 25AC ABC AB α=∠==. 【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.5.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS BC DE a ∴==,BCD 1S BC DE 2=⋅,2BCD 1S a 2∴=;()2BCD 的面积为21a 2,理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB绕点B顺时针旋转90得到线段BE ,AB BD∴=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AAS,BC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB EFAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111SBC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4.【点睛】 本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.6.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 的中点,连接CF ,DF .(1)如图1,当点D 在AB 上,点E 在AC 上时 ①证明:△BFC 是等腰三角形;②请判断线段CF ,DF 的关系?并说明理由;(2)如图2,将图1中的△ADE 绕点A 旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF 且CF ⊥DF .理由见解析;(2)(1)中的结论仍然成立.理由见解析. 【解析】 【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF ,根据∠CFD=2∠ABC ,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF 至G 使FG=DF ,连接BG ,CG ,DC ,首先证明△BFG 和△EFD 全等,然后再证明△BCG 和△ACD 全等,从而得出GC=DC ,∠BCG=∠ACD ,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB ,∴CF=BF=EF ,∴△BFC 是等腰三角形. ②解:结论:CF=DF 且CF ⊥DF .理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F 是BE 的中点,∴CF=DF=12BE=BF , ∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2, ∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC ,又∵△ABC 是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°, ∴CF=DF 且CF ⊥DF .(2)(1)中的结论仍然成立.理由如下:如图,延长DF 至G 使FG=DF ,连接BG ,CG ,DC ,∵F 是BE 的中点,∴BF=EF , 又∵∠BFG=∠EFD ,GF=DF ,∴△BFG ≌△EFD (SAS ),∴∠FBG=∠FED ,BG=ED , ∴BG ∥DE ,∵△ADE 和△ACB 都是等腰直角三角形, ∴DE=DA ,∠DAE=∠DEA=45°,AC=BC ,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG ﹣∠EBA ﹣∠ABC=∠DEF ﹣(180°﹣∠AEB ﹣∠EAB )﹣45° =∠DEF ﹣180°+∠AEB+∠EAB ﹣45°=(∠DEF+∠AEB )+∠EAB ﹣225° =360°﹣∠DEA+∠EAB ﹣225°=360°﹣45°+∠EAB ﹣225°=90°+∠EAB , 而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB , ∴∠CBG=∠DAC ,又∵BG=ED ,DE=DA ,∴BG=AD ,又∵BC=AC , ∴△BCG ≌△ACD (SAS ),∴GC=DC ,∠BCG=∠ACD , ∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG 是等腰直角三角形,又∵F 是DG 的中点,∴CF ⊥DF 且CF=DF .点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级上册数学旋转几何综合易错题(Word版含答案)

九年级上册数学旋转⼏何综合易错题(Word版含答案)九年级上册数学旋转⼏何综合易错题(Word版含答案)⼀、初三数学旋转易错题压轴题(难)1.如图,四边形ABCD为正⽅形,△AEF为等腰直⾓三⾓形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成⽴?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转⼀周,当E,F,C三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成⽴,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成⽴.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明⽅法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正⽅形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直⾓三⾓形,∴DE=2DG.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直⾓三⾓形,∴DE =2DG .(3)①如图3﹣1中,当E ,F ,C 共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6,∴CG =12CF =3,∵∠DGC =90°,∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】2.在Rt △ACB 和Rt △AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE .(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发⽣变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成⽴,理由见解析【解析】【分析】(1)利⽤直⾓三⾓形斜边的中线等于斜边的⼀半,即可;(2)先判断△CBP≌△HPF,再利⽤直⾓三⾓形斜边的中线等于斜边的⼀半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后⽤⽐例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直⾓三⾓形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成⽴,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠∠=∠=∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=∠=∠=∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,⼜∵PM⊥AC,∴PC=PD,⼜∵PD=PE,∴PC=PE.【点睛】此题是⼏何变换综合题,主要考查了直⾓三⾓形斜边的中线等于斜边⼀半,全等三⾓形的性质和判定,相似三⾓形的性质和判定,作出辅助线是解本题的关键也是难点.3.如图,在矩形ABCD中,6AB cm=,8AD cm=,连接BD,将ABD△绕B点作顺时针⽅向旋转得到A B D'''△(B′与B重合),且点D'刚好落在BC的延长上,A D''与CD相交于点E.(1)求矩形ABCD与A B D'''△重叠部分(如图1中阴影部分A B CE'')的⾯积;(2)将A B D'''△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停⽌移动.设矩形ABCD与A B D '''(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三⾓形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x--+≤<=?-+≤≤;(3)存在,使得AA B''△成为等腰三⾓形的x的值有:0秒、32669-.【解析】【分析】(1)先⽤勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm2CD B D BC cm'=''-=,利⽤B D A∠'''的正切值求出CE的值,利⽤三⾓形的⾯积差即可求阴影部分的⾯积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列⽅程即可.【详解】解:(1)6AB cm=,8AD cm=,10BD cm∴=,根据旋转的性质可知10B D BD cm''==,2CD B D BC cm'=''-=,tanA B CEA D CD'''''∠==''',682CE ∴=, 32CE cm ∴=,()28634522222A B CE A B D CED S S S cm ''''''?∴==-?÷=-;(2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=??-=--+;②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=?-=-+.(3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,22∴-++= ? ??,解得:x =秒,(x =舍去);③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ?∴+=-++ ? ??解得:32x =秒.综上所述:使得AA B ''△成为等腰三⾓形的x 的值有:0秒、32秒、95.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运⽤分类讨论的思想⽅法全⾯的分析问题,思考问题是解决问题的关键.4.⼩明研究了这样⼀道⼏何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三⾓形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:拓展应⽤(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满⾜⼩明探究的问题中的边⾓关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,13【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继⽽∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直⾓三⾓形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所⽰:因为B′D=DC′,AD=DM,对⾓线相互平分,可得四边形AC′MB′是平⾏四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC 于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知⾓可得出△DCM是直⾓三⾓形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12DE=EM﹣DM3﹣33由已知DA3AE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC3,利⽤线段长度可求得∠CDF=60°利⽤全等三⾓形判定定理可证得△FCP≌△CFD(AAS),进⽽证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三⾓形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三⾓形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=∠=∠=??=∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所⽰:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平⾏四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=∠=∠,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所⽰:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12BC3∴tan∠CDF=CFCD633,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,在△FCP 和△CFD 中,CPF CDF PCF CFD CF CF ∠=∠??∠=∠??=?,∴△FCP ≌△CFD (AAS ),∴CD =PF ,∵CD ∥PF ,∴四边形CDPF 是矩形,∴∠CDP =90°,∴∠ADP =∠ADC ﹣∠CDP =60°,∴△ADP 是等边三⾓形,∴∠APD =60°,∵∠BPF =∠CPF =90°﹣30°=60°,∴∠BPC =120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满⾜⼩明探究的问题中的边⾓关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3,∴PQ =22DQ DP +=223(63)+=313.【点睛】本题考查了三⾓形的边旋转的问题,旋转前后边长不变,根据已知⾓度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.5.如图1,在正⽅形ABCD 中,点E 、F 分别在边BC ,CD 上,且BE=DF ,点P 是AF 的中点,点Q 是直线AC 与EF 的交点,连接PQ ,PD .(1)求证:AC 垂直平分EF ;(2)试判断△PDQ 的形状,并加以证明;(3)如图2,若将△CEF 绕着点C 旋转180°,其余条件不变,则(2)中的结论还成⽴吗?若成⽴,请加以证明;若不成⽴,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直⾓三⾓形;理由见解析(3)成⽴;理由见解析.【解析】试题分析:(1)由正⽅形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直⾓三⾓形,即可得出结论;(2)由直⾓三⾓形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直⾓三⾓形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周⾓定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正⽅形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直⾓三⾓形;理由如下:∵点P是AF的中点,∠ADF=90°,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直⾓三⾓形;(3)成⽴;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直⾓三⾓形.考点:四边形综合题.6.如图1,点O是正⽅形ABCD两对⾓线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE 为邻边作正⽅形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正⽅形ABCD固定,将正⽅形OEFG绕点O逆时针旋转α⾓(0°<α<360°)得到正⽅形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直⾓时,求α的度数;②若正⽅形ABCD的边长为1,在旋转过程中,求AF′长的最⼤值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最⼤值为2 22 +315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运⽤等量代换证明∠AHE=90°即可;α=150°;②当旋转到A、O、F′在⼀条直线上时,AF′的长最⼤,AF′=AO+OF′=22+2,此时α=315°.【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正⽅形ABCD 两对⾓线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =??∠=∠==?,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直⾓有两种情况: (Ⅰ)α由0°增⼤到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′,∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12,∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°°,即α=30°;(Ⅱ)α由90°增⼤到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°?30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在⼀条直线上时,AF′的长最⼤,∵正⽅形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正⽅形的性质、旋转变换的性质以及锐⾓三⾓函数的定义,掌握正⽅形的四条边相等、四个⾓相等,旋转变换的性质是解题的关键,注意特殊⾓的三⾓函数值的应⽤.7.如图,已知△ABC和△ADE都是等腰直⾓三⾓形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三⾓形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成⽴?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成⽴.理由见解析.【解析】【详解】分析:(1)、根据“直⾓三⾓形斜边上的中线等于斜边的⼀半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从⽽得出答案;(2)、延长DF⾄G使FG=DF,连接BG,CG,DC,⾸先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从⽽得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直⾓三⾓形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三⾓形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,⼜∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,⼜∵△ABC是等腰直⾓三⾓形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成⽴.理由如下:如图,延长DF⾄G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,⼜∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直⾓三⾓形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,⽽∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,⼜∵BG=ED,DE=DA,∴BG=AD,⼜∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直⾓三⾓形,⼜∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三⾓形和全等三⾓形的判定,及勾股定理的运⽤.要掌握等腰三⾓形和全等三⾓形的性质及其判定定理并会灵活应⽤是解题的关键.8.已知△ABC是边长为4的等边三⾓形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针⽅向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三⾓形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最⼩值?若存在,求出△BDE周长的最⼩值;若不存在,请说明理由.②求t为何值时,△DEB是直⾓三⾓形(直接写出结果即可).【答案】(1)见解析;(2)①见解析;②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三⾓形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最⼩,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三⾓形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三⾓形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针⽅向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三⾓形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三⾓形,由垂线段最短可知,当CD⊥AB时,△BDE的周长最⼩,此时,CD=,∴△BDE的最⼩周长=CD+4=;②存在,∵当点D与点B重合时,D,B,E不能构成三⾓形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三⾓形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,⼜由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,⽽∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从⽽∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,。
初中几何旋转经典例题

以下是几个初中几何旋转的经典例题:
菱形与旋转问题
在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化。
当点E在菱形ABCD内部或边上时,连接CE,BP 与CE的数量关系是BP=CE,CE与AD的位置关系是CE∥AD。
正方形中的三角形与旋转问题
将等腰Rt△BEF绕B点旋转至如图2的位置连接DE,M点为DE的中点,连接AM、MF,求MA 与MF的关系。
正方形中的线段与旋转问题
等边△ABC中,D、E分别是边AC、BC边上的点,CD=CE,以CE、CD为邻边作菱形CDFE,连BF,P为BF中点,连AP、EP。
将菱形CDFE绕点C旋转,确定线段AP与线段EP的关系,并证明你的结论。
若AC=3,DC=1,菱形CDFE在旋转过程中,直接写出线段AP的最大值和最小值。
中考数学旋转综合题汇编附详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)422)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°.再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=2,∠ACB=45°.∵CE=a=2∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴42442=∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242a=,∴ab=32.2.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论; ()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌()BDE AASBC DE a ∴==,BCD 1S BCDE 2=⋅, 2BCD 1S a 2∴=; ()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD 1SBC DE 2=⋅, 2BCD 1S a 2∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.3.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度.【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1【解析】【分析】(1)如图1中,只要证明PMN 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可.【详解】(1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE ,∴AD =BE ,∴PM =PN ,∵∠ACB =90°,∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC ,∴PM ⊥PN , ∴△PMN 的等腰直角三角形,∴2MN PM =, ∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H .∵△ABC 和△CDE 是等腰直角三角形,∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°,∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE ,∴∠ACD =∠ECB ,∴△ECB ≌△DCA ,∴BE =AD ,∠DAC =∠EBC ,∵∠AHB =180°﹣(∠HAB +∠ABH )=180°﹣(45°+∠HAC +∠ABH )=∠180°﹣(45°+∠HBC +∠ABH )=180°﹣90°=90°,∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°, ∴22222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=, ∴342BE BG GE =-=-,∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-= ∴342BE BG GE =+=,∴21712MN BE ==. 综上所述,MN 17﹣117.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.5.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.6.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.7.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.8.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.。
八年级经典分类旋转证明题

(2)如图24-2,若将原题中的“正方形”改为“菱形”,且∠M=∠B,其它条件不变,探索线段ME与线段MF的数量关系,并加以证明
(3)如图24-3,若将原题中的“正方形”改为“矩形”,且AB:BC=1:2,其它条件不变,探索线段ME与线段MF的数量关系,并说明理由.
(4)如图24-4,若将原题中的“正方形”改为平行四边形,且∠M=∠B,AB:BC=m,其它条件不变,求出ME:MF的值。(直接写出答案)?
PA=,PC=1,求∠APB的度数?
②A′O′+O′O=AO+BO.
③A′P′+P′P=PA+PB.
④PA+PB+PC>AO+BO+CO.
A.1个B.2个C.3个D.4个
中考连接
石景山)(1)如图1,四边形ABCD中,AB=CB,∠ABC=60°,∠ADC=120°,请你猜想线段DA、DC之和与线段BD的数量关系,并证明你的结论;
(2)如图2,四边形ABCD中,AB=CB,∠ABC=60°,若点P为四边形ABCD内一点,且∠APD=120°,请你猜想线段PA、PC、PD之和与线段BD的数量关系,并证明你的结论.
鼎晟教育旋转中的几何证明任老师
类型一
•利用旋转添加辅助线:•满足Βιβλιοθήκη 件:•(1)有两条相等线段
•(2)有公关端点
例1:如图,在正方形ABCD中,点E,F分别为DC,BC边上的动点,满足∠EAF=45°,
求证:EF=DE+BF
例2:在等边△ABC中,O为△ABC内一点,连接AO、BO、CO且AO=2,BO=1,CO=√3
类型四:倍长中线
例5:如图1,已知点D在AC上,△ADE和△ABC都是等腰直角三角形,点M为EC的中点.
初中几何旋转模型(综合)

八九年级全等与旋转模型归纳考察点1:手拉手模型手拉手模型,亦称为共顶点等腰型,一定会出现旋转型全等。
其衍生模型有等腰对补角模型和等腰旁等角模型模型回顾:一 . 绕点旋转1.如图,已知△ABC为等边三角形,D是BC下方一点,连AD. 若∠BDC=120°,求证:(1)∠ADB=∠ADC=60°(2)DA=DB+DC.2.如图,已知△ABC为等边三角形,D是BC下方一点,连AD. 若∠ADB=60°,求证:(1)∠ADC=60°(2)DA=DB+DC.3.如图,已知△ABC,AB=AC,∠ADB=∠ADC=60°,求证:(1)△ABC为等边三角形,(2)DA=DB+DC.考察点2:”脚拉脚”模型。
构造辅助线思路是先中线倍长,再证明旋转全等。
如图AB=AC ,CD=ED ,∠BAC +∠CDE =180°,若P 为BE 中点,求证:P DP A ⊥如图,∠A +∠C=180°,E ,F 分别在BC,CD 上,且AB=BE ,AD=DF ,M 为EF 中点,求证:DM ⊥BMBEF BEF=90G DF EG CG EG=CGABCD Rt ∆∠︒如图,正方形,等腰,。
为中点,连接,,求证:巩固练习如图,已知等边△ABC ,D 是BC 上任意一点,以AD 为边作等边△ADE ,连CE ,求证:(1)CD +CE =AC ,(2)CE 是△ABC 的外角平分线.如图,已知△ABC ,以AB 、AC 为边作正△ABD 和正△ACE ,CD 交BE 于O ,连OA ,求OEOD OCOB OA +++2的值.Rt ABC A=B=60ABC A 060)A'BC',B'C'BC E AC F AEF =______ααα∆∠︒∠︒︒<≤∆∆中,90,,将三角形绕逆时针旋转(到与交于,与交于,当为等腰三角形时,则ABC DEF AB=AC DE=DF BAC=EDF== 6060AB AD ααα∆∆∠∠︒≠=如图,和均为等腰三角形,,,(1)若,求证:AF=AE+AD(2)若,,求证:AF=AE+BC(1) 如图1,AB =AC , D 为BC 上一点,DA =DE ,∠BAC=∠ADE =90°,求∠BCE 的度数.(2) 如图2,AB=AC ,D 为BC 上一点,DA =DE ,∠BAC =∠ADE = α°(α<90),求证: AB // CE(3) 如图3,若△ABC 和△ADE 都是钝角三角形,那么(2)中结论是否变化 ?5,如图△ABC和△CDE均为等腰直角三角形,D为AB上一点,若∠ADE=15°,M为BE中点,,试求AC长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何旋转典型例题归类
1、P为正方形ABCD内的一点,并且PA= a, PB= 2a, PC= 3a,求正方形的边长?
解:
将厶BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ
因为△ BAP◎△ BCQ
所以AP = CQ , BP = BQ,/ ABP = Z CBQ,/ BPA =Z BQC
因为四边形DCBA是正方形
所以/ CBA = 90°
所以/ ABP + Z CBP = 90°
所以/ CBQ + Z CBP = 90°
即/ PBQ = 90°
所以△ BPQ是等腰直角三角形
所以PQ= V2*BP,Z BQP = 45
因为PA=a,PB=2a,PC=3a
所以PQ= 2V2a CQ = a
所以CP A2 = 9a A2,PQ A2 + CQ A2 = 8a A2 + a A2= 9a A2
所以CPA2 = PQA2 + CQA2
所以△ CPQ是直角三角形且/ CQA = 90°
所以/ BQC = 90°+ 45°= 135°
所以/ BPA =Z BQC = 135°
作BM丄PQ
则厶BPM是等腰直角三角形
所以PM = BM = PB/ V= 2a/ V= V2a
所以根据勾股定理得:
ABA2 = AMA2 + BMA2
=(V 2+ a)A2 + (V 2a)A2
=[5 + 2V 2]aA2
所以AB = [ V(+ 2V2)]a
三个已知距离为1、2、3的问题:
2、在正方形ABCD中有一点P,PA=2,PB=4,角APB=135度,求PC的长?
解:
将厶ABP旋转到△ BCM,连接PM
显然BP= BM = 4, CM = PA= 2,Z ABP =Z CBM,/ BMC =Z APB = 135°
所以/ PBM = Z ABC = 90°
所以△ PBM是等腰直角三角形
所以PM = V2*PB= 4V2 / PBM = 45°
所以/ PMC = 135°—45°= 90°
所以三角形是直角三角形
根据勾股定理得:PC A2 = PM A2 + CM A2 = 36
所以PC= 6
3、有正方形ABCD,E是其内一点,且E到B,C,D距离之比为3: 2: 1,求角CED= ?
解:
将厶CDE绕C点旋转90°使CD与CB重合,E点旋转后到F点,连接EF
因为△ CDE◎△ CBF
所以DE = BF, CE = CF,Z DCE = Z BCF,/ CED = Z CFB
因为四边形ABCD是正方形
所以/ BCD = 90°
所以/ DCE + Z BCE = 90°
所以/ BCF + Z BCE = 90°
即/ ECF = 90°
所以△ CEF是等腰直角三角形
所以EF= V2*CE,Z CFE = 45
因为BE : CE : DE = 3 : 2 : 1
所以可设BE = 3K , CE = 2K, DE = K
所以EF= 2V2K, BF = K
所以BE A2 = 902 , EF A2 + BF A2 = 802 + K A2 = 9K A2
所以BEA2 = EFA2 + BFA2
所以△ BEF是直角三角形且/ BFD = 90°
所以/ CFB = 90°+ 45°= 135°
所以/ CED = Z CFB = 135°
这是一道典型的利用旋转变换进行解答的几何问题,与等边三角形中此类问题是同种问题4、如图,P是正方形ABCD内的一点,PA=1,PB=2,PC=3,求/ APB的度数。
解:
将厶BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ
因为△ BAP◎△ BCQ
所以AP = CQ , BP = BQ,/ ABP = Z CBQ,/ BPA =Z BQC
因为四边形DCBA是正方形
所以/ CBA = 90°
所以/ ABP + Z CBP = 90°
所以/ CBQ + Z CBP = 90°
即/ PBQ = 90°
所以△ BPQ是等腰直角三角形
所以PQ= V2*BP,Z BQP = 45
因为PA=1, PB=2, PC=3
所以PQ= 2V2 CQ = 1
所以CPA2 = 9, PQA2 + CQA2 = 8+ K = 9
所以CPA2 = PQA2 + CQA2
所以△ CPQ是直角三角形且/ CQA = 90°
所以/ BQC = 90°+ 45°= 135°
所以/ BPA =/ BQC = 135°
5、p为正方形ABCD内任意一点。
PA=1.PB=5.PC=7.则正方形的边长为?
解:
将厶BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ 因为△ BAP◎△ BCQ
所以AP = CQ , BP = BQ,/ ABP = Z CBQ,/ BPA =Z BQC
因为四边形DCBA是正方形
所以/ CBA = 90°
所以/ ABP + Z CBP = 90°
所以/ CBQ + Z CBP = 90°
即/ PBQ = 90°
所以△ BPQ是等腰直角三角形
所以PQ= V2*BP,Z BQP = 45°
因为PA=1, PB=5, PC=7
所以PQ= 5V2 CQ = 1
所以CP A2 = 49, PQ A2=50,CQ A2 = 1
所以PQA2= PCA2 + CQA2
所以△ CPQ是直角三角形且/ PCQ = 90°
所以/ PBQ+Z PCQ = 180°
所以P、B、Q、C四点共圆
所以/ PCB = Z BQP = 45°
所以CP是/ BCD的平分线
因为四边形ABCD是正方形
所以CA平分/ BCD
所以A、P、C在同一直线上
所以AC = PA+ PC= 8
所以AB = AC/V2= 4V2
即正方形的边长是4V2。