药物化学药物的化学结构与药效的关系-1

合集下载

考研药物化学问答题附答案

考研药物化学问答题附答案

第一章1-26、为什么说“药物化学”是药学领域的带头学科?答:“药物化学”是一门历史悠久的经典科学,他的研究内容既包括着化学,又涉及生命学科,它既要研究化学药物的化学结构特征、与此相联系的理化性质、稳定性状,同时又要了解药物进入体内后的生物效应、毒副作用及药物进入体内的生物转化等化学-生物学内容。

最重要的是,“药物化学”是药学及其它学科的物质基础,只有药物化学发现或发明了新的具有生物活性的物质,才能进行药理、药动学及药剂学等的研究。

所以说,药物化学是药学领域中的带头学科。

1-27、药物的化学命名能否把英文化学名直译过来?为什么?答:不能。

因为英语基团的排列次序是按字母顺序排列的,而中文化学名母核前的基团次序应按立体化学中的次序规则进行命名,小的原子或基团在先,大的在后。

1-28、为什么说抗生素的发现是个划时代的成就?答:抗生素的价值是不可估量的,尤其是把这种全新的发现逐渐发展成为一种能够大规模生产的产品,能具有实用价值并开拓出抗生素类药物一套完善的体系研究生产方法,确实是一个划时代的成就。

1-29、简述现代新药开发与研究的内容。

答:从分子水平上揭示药物及具有生理活性物质的作用机制,阐明药物与受体的相互作用,探讨药物的化学结构与药效的关系,研究药物及生理活性物质在体内的吸收、转运、分布及代谢过程。

1-30、简述药物的分类。

答:药物可分为天然药物、半合成药物、合成药物及基因工程药物四大类,其中,天然药物又可分为植物药、抗生素和生化药物。

1-31、“优降糖”作为药物的商品名是否合宜?答:“优降糖”是药物格列本脲的俗名。

但该名称暗示了药物的降血糖疗效,会导致医生和患者的联想,不符合相关法规,故是不合宜的。

第二章2-46、巴比妥类药物的一般合成方法中,用卤烃取代丙二酸二乙酯的 氢时,当两个取代基大小不同时,一般应先引入大基团,还是小基团?为什么?答:当引入的两个烃基不同时,一般先引入较大的烃基到次甲基上。

13第十三章药物的构效关系与新药研究知识

13第十三章药物的构效关系与新药研究知识

(S)-(+)-异丙肾上腺素
药物与受体间相互作用对药效的影响
3.构象对活性的影响
构象对药物分子与受体相互作用时的互补性影响很大,不同构象的药
物分子,生物活性有着较大差异。受体的作用部位一般有高度立体选择 性,受体只能与药物多种构象中的一种结合。只有被受体识别并与受体 结合的构象,才能产生特定的药理作用。
有机药物中多数为弱酸或弱碱性,在体内pH
7.4环境中可 部分解离,其解离度由化合物的解离常数pKa和溶液介质的pH 决定,因此药物的酸碱性是影响药物活性的重要因素。
pKa的计算方法如下:
酸性药物: RCOOH + H2O 碱性药物: RNH2 + H2O
RCOORNH3+ +
+
H3O+ OH-
pKa=pH-log [RCOO ] [RCOOH]
相似之处,因此双酚A也有弱的雌激素作用,能引起女童早熟。
1.45nm
OH
1.45nm
OH H 3C C CH3
OH
HO
HO
HO
雌二醇
反式己烯雌酚
双酚A
药物与受体间相互作用对药效的影响
2.光学异构体对活性的影响
有些药物分子中存在一个或多个手性中心,就有光学异构体存
在,互为光学异构体的药物分子药理活性也有所不同
寻找新药或先导化合物的基本途径
3
通过观察药物的临床副作用或者老药新用及 Me-too结构改造 小剂量的阿司匹林用于治疗和预防脑血栓。
4
从药物代谢产物中寻找
Cl Cl N 酶 N N O 氯雷他定
地西泮→奥沙西泮 羟嗪→西替利嗪 氯雷他定→地氯雷他定
O
CH3

药物化学构效关系

药物化学构效关系

药物化学构效关系1.局部麻醉药的构效关系:①亲脂性部分:可变范围较大,可为芳环或芳杂环,但以苯环的作用较强,是局麻药物的必需部位。

当酯类药物苯环的邻位或对位引入给电子集团,如氨基、烷氧基时,局麻作用均较未取代得苯甲酸衍生物强;对氨基苯甲酸酯类苯环的邻位上若再有其他取代基如氯、氨基、烷氧基时,由于位阻作用而延长了酯的水解,因此活性增强,作用时间延长。

②中间连接部分:由羰基部分和烷基部分共同组成。

羰基部分与麻醉药持效时间及作用强度有关,作用持续时间为:酮﹥酰胺﹥硫代酯﹥酯;麻醉作用强度:硫代酯﹥酯﹥酮﹥酰胺。

烷基部分碳原子数以2~3个为好,当烷基部分为—CH2CH2CH2—时,麻醉作用最强。

③亲水性部分:大多数为叔胺,易形成可溶性的盐类。

氮原子上取代基的碳原子总和以3~5时作用最强,也可为酯环胺,其中以哌啶的作用最强。

2. 苯二氮卓类药物的构效关系:① 1、2位拼入三氮唑环,使代谢稳定性增加,提高与受体的亲和力,活性显著增加;② 3位引入手性碳,分子构想更稳定,对受体亲和力增强;③ 4、5位引入恶唑环,增强稳定性;④7位有吸电子取代基时,药物活性明显增强,且吸电子性越强,活性增加越明显,NO2>Br>CF3>Cl;⑤ 5位苯环的2’位引入体积较小的吸电子基团如F、Cl,可使活性增强。

①镇静作用的强度和起效快慢,与药物的理化性质有关。

【酸性解离常数pKa】巴比妥酸和5位取代的巴比妥类有较强的酸性,在生理pH=7.4几乎全都电离成离子状态,不易透过血脑屏障,无镇静催眠作用;5,5-二取代的巴比妥类,酸性减弱,生理pH条件下不易电离,易进入脑中发挥作用,显效快,作用强。

【脂水分配系数】5位无取代基时,分子有一定极性,亲脂性强,不易透过血脑屏障,无镇静催眠作用;5位取代基碳原子总数在7~8之间作用最强,若亲脂性过强,作用下降甚至出现惊厥。

药物有最适当的的脂溶性,有利于药物透过细胞膜和血脑屏障,起效快,作用强。

药物的化学结构与药效的关系

药物的化学结构与药效的关系

药物的化学结构与药效的关系A型题(最佳选择题)(1题-20题)1.下列对生物电子等排原理叙述错误的是A以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效。

B以生物电子等排体的相互替换,对药物进行结构的改造,以降低药物的毒副作用。

C凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。

D生物电子等排体可以以任何形式相互替换,来提高药物的疗效,降低毒副作用。

E 在药物结构中可以通过基团的倒转、极性相似、范德华半径相似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。

2.下列对前药原理的作用叙述错误的是A 前药原理可以改善药物在体内的吸收;B 前药原理可以缩短药物在体内的作用时间;C前药原理可以提高药物的稳定性;D前药原理可以消除药物的苦味;E前药原理可以改善药物的溶解度;3.药物分子中引入烃基、卤素原子、硫醚键等,可使药物的A 脂溶性降低;B 脂溶性增高;C 脂溶性不变;D 水溶性增高;E 水溶性不变;4.药物分子中引入羟基、羧基、脂氨基等,可使药物的A 水溶性降低;B 脂溶性增高;C 脂溶性不变;D 水溶性增高;E 水溶性不变;5.一般来说,酸性药物在体内随介质p H增大A解离度增大,体内吸收率降低;B解离度增大,体内吸收率升高;C解离度减小,体内吸收率降低;D解离度减小,体内吸收率升高;E解离度不变,体内吸收率不变;6.一般来说,碱性药物在体内随介质p H增大A解离度增大,体内吸收率降低;B解离度增大,体内吸收率升高;C解离度减小,体内吸收率降低;D解离度减小,体内吸收率升高;E解离度不变,体内吸收率不变;7.药物的基本结构是指A具有相同药理作用的药物的化学结构;B 具有相同化学结构的药物;C 具有相同药理作用的药物的化学结构中相同部分;D 具有相同理化性质的药物的化学结构中相同部分;E 具有相同化学组成药物的化学结构;8.在药物的基本结构中引入烃基对药物的性质影响叙述错误的是A 可以改变药物的溶解度;B 可以改变药物的解离度;C 可以改变药物的分配系数;D 可以改变药物分子结构中的空间位阻;E 可以增加位阻从而降低药物的稳定性;9.在药物的基本结构中引入羟基对药物的性质影响叙述错误的是A 可以增加药物的水溶性;B 可以增强药物与受体的结合力;C 取代在脂肪链上,使药物的活性和毒性均下降;D取代在芳环上,使药物的活性和毒性均下降;E可以改变药物生物活性;10.在药物的基本结构中引入羧基对药物的性质影响叙述错误的是A 可以增加药物的水溶性;B 可以增强药物的解离度;C 使药物的活性下降;D羧酸成酯后,可以增加脂溶性,易被抗体吸收;E羧酸成酯后生物活性有很大区别;11.下列对立体结构对药效的影响的叙述错误的是A 原子间的距离;B 分子的几何异构;C 分子的旋光异构;D 分子的构象异构;E 分子的同分异构;12.药物分子结构中两个特定原子之间的距离与受体的空间距离在下列哪种条件下,其作用最强A 相似或为其倍数;B 小于受体的空间距离;C 大于受体的空间距离1.2倍;D大于受体的空间距离1.5倍;E大于受体的空间距离1.7倍;13.药物几何异构对药效的影响中一般表现为反式结构比順式结构A 生物活性小;B 生物活性大;C 生物活性相等;D与受体的互补性较差;E与受体的活性基团结合较差;14.具有手性的药物可存在光学异构体,多数药物的光学异构体A体内吸收和分布相同;B 体内代谢和排泄相同;C 药理作用相同;D 化学性质相同;E物理性质相同;15.氢键对药物的理化性质也有重大影响,如药物与溶剂形成氢键时A可增加水溶解度; B 可促使透过生物膜;C 可增加脂溶性;D 可降低水溶性;E 可降低药物极性。

药物化学构效关系

药物化学构效关系

局部麻醉药构sheng效关系1.分类芳酸酯类、酰胺类、氨基醚类、氨基酮类、其他类2.构效关系亲酯部分中间链亲水部分⑴亲脂部分:芳烃或芳杂环,这一部分修饰对理化性质变化大,但苯环作用较强。

苯环上引入给电子取代基,麻醉作用增强,而吸电子取代基则作用减弱。

⑵中间部分:此部分决定药物稳定性,和局麻作用持续时间有关⑶亲水部分:常为仲胺和叔胺,仲胺刺激性较大;烃基链3~4个碳原子作用最强,杂环以哌啶环作用最强巴比妥类药构效关系(1)、分子中5位上应有两个取代基。

(2)、5位上的两个取代基的总碳数以4—8为最好(3)、5位上的两个取代基的总碳数以4—8为最好. (4)、在酰亚胺氮原于上引入甲基,可降低酸性和增加脂溶性。

(5)、将C2上的氧原子以硫原子代替,则脂溶性增加,起效快,作用时间短。

苯二氮卓类药物的构效关系(1)1,3-二氢-5-苯基-2H-1,4-苯二氮卓-2-酮是此类药物基本结构;(2)环A7位引入吸电子取代基活性增加(3)环B为七元亚胺-内酰胺结构是产生药理作用的必要结构(4)5位苯环上的取代基时产生药效的重要结构之一,(5)1,2位的酰胺键和4,5位的亚胺键在酸性条件下易水解开环.吩噻嗪类药构效关系R1 部分必须由三个成直链的碳原子组成,若为支链,与多巴胺受体B 部分立体上不匹配,抗精神病活性明显下降,抗组胺作用增强。

顺式吩噻嗪类药物与多巴胺的优势构象能部分重叠,活性高(当侧链与氯取代的苯环同侧时,成为顺式构象)。

丁酰苯类药物的构效关系(1)丁酰苯基为必需的基本骨架(2)侧链末端连一碱性叔胺(3)苯环的对位一般具有氟取代(4)侧链湠基于碱基之间以三个碳原子最好镇痛药的一般特征(1)分子中具有一个平坦的芳香结构(2)有一个碱性中心能在生理PH条件下大部分电离为阳离子(3)含有哌啶或类似于哌啶的空间结构吗啡的构效关系(半合成类镇痛药)叔胺是镇痛活性的关键基团,氮原子引入不同的取代基可使μ 受体激动剂转变为拮抗剂。

抗菌药物结构与作用的关系

抗菌药物结构与作用的关系

取代活性降低
O
R NH
H
H
三个手性中心
S
是活性必需的
ON
OH H
O
羧基是保持活性的必需基 团,简单酯化可失活,但 有时也可做成前药
四元环及五元环的 骈合是活性必需的
此二个甲基不 是活性必需的
变为硫代酸或酰胺可不 失活,还原成醇失活
三、药物结构与作用关系-头孢菌素类 头孢菌素类 1、天然头孢菌素
2、半合成头孢菌素
三、药物结构与作用关系-头孢菌素类
O
O +
NH3
H N
H
H
S5
76
4
O
O
8
N
1
2
3
O OH
头孢菌素 C的结构特点
O CH3 O
头孢菌素C
母核由β-内酰胺环和氢化噻嗪环骈合而成。
稳定性 “四元环骈六元环”稠合体系环张力比青霉素小
比青霉素更稳定
由于抗菌活性远低于其半合成头孢菌素,所以在临床 上几乎没有应用
三、药物结构与作用关系-头孢菌素类
各代头孢菌素特点
一代 对G+作用强大,对β-内酰胺酶不稳定,较易产生耐药性
二代
对G+作用与一代相似,对β-内酰胺酶稳定性强于一代, 对G-有抗菌活性
三代 对G+作用弱于一代,对G-作用强大,对β-内酰胺酶稳定
四代
对G+和G-作用强大,对β-内酰胺酶稳定
三、药物结构与作用关系-头孢菌素类
D-丙氨酰-D-丙氨酸
青霉素
HH
RCOHN
S CH3
O
N
CH3 COOH
三、药物结构与作用关系-青霉素类
革兰阳性菌细胞壁肽聚糖

药学专业知识--药物的结构与药物作用

药学专业知识--药物的结构与药物作用

药学专业知识--药物的结构与药物作用第一节药物理化性质与药物活性大纲要求一、药物的溶解度、分配系数和渗透性对药效的影响1.药物的脂水分配系数及其影响因素(★★★★)2.药物溶解性、渗透性及生物药剂学分类(★★★)3.药物活性与药物的脂水分配系数关系(★★★★★)二、药物的酸碱性、解离度、pKa对药效的影响1.药物解离常数(pKa)、体液介质pH与药物在胃和肠道中的吸收关系(★★★★★)2.药物的酸碱性、解离度与中枢作用(★★★★)◆药物需要一定的亲水性药物的转运扩散决定药物需要一定的亲水性。

◆药物需要一定的亲脂性药物在通过各种生物膜决定药物需要一定的亲脂性。

总结:药物的吸收、分布、排泄过程是水相和脂相间多次分配实现的,因此任何药物都应该具有一定的亲脂性和亲水性,换句话就是要有适当的脂水分配系数。

一、药物的溶解度、分配系数和渗透性对药效的影响(一)药物的脂水分配系数及其影响因素1.药物脂水分配系数:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比,用P来表示。

C org表示药物在生物非水相或正辛醇中的浓度C w表示药物在水中的浓度P值越大,脂溶性越大,常用其对数lgP来表示2.影响药物脂水分配系数的因素(1)引入极性较大的官能团,亲水性增大。

如:-OH、-COOH、-NH2等(2)引入非极性官能团,亲脂性增大。

如:较大的烃基、卤素原子、脂环等(3)官能团形成氢键的能力和官能团的离子化程度较大时,药物的水溶性会增大。

(二)药物溶解性、渗透性及生物药剂学分类依据:药物溶解性和肠壁渗透性的不同组合1.第Ⅰ类是高水溶解性、高渗透性的两亲性分子药物,其体内吸收取决于胃排空速率,如普萘洛尔、依那普利、地尔硫(艹卓)等。

2.第Ⅱ类是低水溶解性、高渗透性的亲脂性分子药物,其体内吸收取决于溶解速率,如双氯芬酸、卡马西平、匹罗昔康等。

3.第Ⅲ类是高水溶解性、低渗透性的水溶性分子药物,其体内吸收受渗透效率影响,如雷尼替丁、纳多洛尔、阿替洛尔等。

药物化学中的化学结构与作用机制

药物化学中的化学结构与作用机制

药物化学中的化学结构与作用机制药物化学是一门研究药物分子结构及其与生物体相互作用的学科,也是现代医学的重要分支之一。

药物的疗效及毒性主要取决于其分子结构,因此探究药物的化学结构及其作用机制对于药物研发、评价以及治疗实践都具有重要意义。

1. 药物分子结构药物分子结构可以从分子式、分子量、化学名称入手,进一步探究它们的化学键和功能基团,而这些都与药物的作用机制密切相关。

分子式指出药物由那些元素以及它们之间的原子数量组成,分子量则指药物分子中所有原子质量之和。

化学名称则可以表达出药物的特性和结构,例如苯丙胺、阿司匹林等等。

化学键是药物分子中起着连接不同原子的重要作用的化学键,通常包括共价键、离子键和氢键等。

常见的药物分子中,存在着不同的键型,这些化学键的特点与药物的药效、代谢、毒性等紧密相关。

在药物分子中,还存在许多功能基团,它们特定的化学性质与药效息息相关,例如羟基、氨基、酮、酯等。

它们的存在决定了药物与生物体之间的作用机制,故对于药物分子的研究需要通过对功能基团的分析来确定其作用效应。

2. 药物分子与生物体作用机制药物分子需要通过生物膜,进入生物体内,再与蛋白质、核酸、糖等靶分子结合,发挥治疗作用。

药物分子与靶分子结合的方式一般可以分为两类:共价键结合和非共价键结合。

共价键结合是指药物分子与靶分子之间的共价键结合,这种结合方式一般较为牢固,对于药物的治疗效应也比较稳定。

药物如一些化疗药物、抗生素等就是采用了这种结合方式实现对癌细胞和微生物的杀伤作用。

非共价键结合是指药物分子与靶分子之间的非共价键结合,这种结合方式较为灵活,具有一定的可逆性。

这种结合方式主要包括疏水作用、氢键作用、范德华力等。

许多药物如受体拮抗剂、蛋白酶抑制剂等药物,通过与靶分子的非共价键相互作用来发挥治疗作用。

总之,药物化学中的化学结构与作用机制是药物研发、评价以及治疗实践中不可缺少的部分,只有深入掌握药物的化学特征,才能有效地设计、研发、使用药物,为临床治疗提供保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章药物的化学结构与药效的关系本章提示:大多数药物的作用依赖于药物分子的化学结构,因此药物的药效和药物的理化性质,如疏水性、酸碱性、药物的解离度等有关;与药物结构的立体构型、空间构型、电子云密度等有关。

此外还与药物与生物分子的作用强弱有关。

第一节影响药物药效的因素和药效团药物从给药到产生药效是一个非常复杂的过程,包括吸收、分布、代谢、组织结合,以及在作用部位产生作用等等。

在这一过程中影响药物产生药效的主要因素有两个方面:1.药物到达作用部位的浓度。

对于静脉注射给药时,由于药物直接进入血液,不存在药物被吸收的问题。

而对于其它途径给药时都有经给药部位吸收进入血液的问题。

进入血液后的药物,随着血液流经各器官或组织,使药物分布于器官或组织之间,这需要药物穿透细胞膜等生物膜,最后到达作用部位。

而药物只有到达作用部位,才能产生药效。

在这一系列的过程中,药物的理化性质产生主要的影响。

此外药物随血液流经肝脏时会产生代谢,改变药物的结构和疗效,流经肾脏时产生排泄,减少了药物在体内的数量。

这些也与药物结构中的取代基的化学反应性有一定的联系。

2.药物与受体的作用。

药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。

药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式,如化学的方式通过共价键结合形成不可逆复合物,或以物理的方式,通过离子键、氢键、离子偶极、范德华力和疏水性等结合形成可逆的复合物。

这二个影响因素都与药物的化学结构有密切的关系,是药物结构-药效关系(构-效关系)研究的主要内容。

但对于药物的作用方式来讲,又有两种不同类型。

一类是药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少,如全身麻醉药,尽管这些药物的化学结构类型有多种,但其麻醉作用与药物的脂水分配系数有关,这类药物称为结构非特异性药物;另一类药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效,这类药物称为结构特异性药物。

而大多数药物属于结构特异性药物。

结构特异性药物中,能被受体所识别和结合的三维结构要素的组合又称为药效团。

这样受体必须首先要识别所趋近的分子是否具有结合所需的性质,然后与其结合。

药效团又可分为两种类型:一类具有相同药理作用的类似物,它们具有某种基本结构;另一类则可能是一组化学结构完全不同的分子,但可以与同一受体以相同的机理键合,产生同样的药理作用。

受体与药物的结合实际上是与药物结构中药效团的结合,这与药物结构上官能团的静电性、疏水性及基团的大小有关。

第二节药物理化性质和药效的关系在药物作用的过程中,药物的理化性质对药物的吸收、转运都产生重要的影响,而且对于结构非特异性药物,药物的理化性质直接影响药物的活性。

药物的理化性质主要有药物的溶解度、分配系数和解离度。

一、 药物的溶解度和分配系数对药效的影响在人体中,大部分的环境是水相环境,体液、血液和细胞浆液都是水溶液,药物要转运扩散至血液或体液,需要溶解在水中,要求药物有一定的水溶性(又称为亲水性)。

而药物在通过各种生物膜包括细胞膜时,这些膜是由磷脂所组成的,又需要其具有一定的脂溶性(称为亲脂性)。

由此可以看出药物亲水性或亲脂性的过高或过低都对药效产生不利的影响。

在药学研究中,评价药物亲水性或亲脂性大小的标准是药物的脂水分配系数用P 来表示,其定义为:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。

由于生物非水相中药物的浓度难以测定,通常使用正辛醇中药物的浓度来代替。

C org 表示药物在生物非水相或正辛醇中的浓度;C w 表示药物在水中的浓度。

P 值越大,则药物的脂溶性越高,为了客观反映脂水分配系数的影响,常用其对数logP 来表示。

药物分子结构的改变对药物脂水分配系数的影响比较大。

药物的水溶性与分子的极性和所含的极性基团有关;与药物形成氢键的能力有关;与药物的晶格能有关。

相反若药物结构中含有较大的烃基、卤素原子、脂环等非极性结构,导致药物的脂溶性增大。

例如:当分子中引入极性较大的羟基时,药物的水溶性加大,脂水分配系数下降5~150倍,以羟基替换甲基时下降2~170倍。

而引入一个卤素原子,亲脂性会增高,脂水分配系数约增加4~20倍,引入硫原子、烃基或将羟基换成烷氧基,药物的脂溶性也会增大。

各类药物因其作用不同,对脂溶性有不同的要求。

如:作用于中枢神经系统的药物,需通过血脑屏障,应具有较大的脂溶性。

吸入性的全身麻醉药属于结构非特异性药物,其麻醉活性只与药物的脂水分配系数有关,最适logP 在2左右。

二、药物的解离度对药效的影响有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型)或非解离的形式(分子型)同时存在在体液中。

通常药物以非解离的形式被吸收,通过生物膜,进入细胞后,在膜内的水介质中解离成解离形式而起作用。

由于体内不同部位,pH 的情况不同,会影响药物的解离程度,使解离形式和未解离形式药物的比例发生变化,这种比例的变化与药物的解离常数(pKa )和体液介质的pH 有关,可通过下式进行计算:酸性药物: pH pKa ]A []HA [log-=-碱性药物:pKa pH ]HB []B [log-=+根据药物的解离常数(pKa )可以决定药物在胃和肠道中的吸收情况,同时还可以计算出药物在胃液和肠液中离子型和分子型的比率。

弱酸性药物如水杨酸和巴比妥类药物在酸性的胃液中几乎不解离,呈分子型,易在胃中吸收。

弱碱性药物如奎宁(Quinine )和麻黄碱(Ephedrine)在胃中几乎全部呈解离形式,很难吸收;而在肠道中,由于pH 值比较高,容易被吸收。

碱性极弱的咖啡因和茶碱,在酸性介质中解离也很少,在胃中易被吸收,完全离子化的季铵盐类和磺酸类,脂溶性差,消化道吸收也差。

改变药物的化学结构,有时会对弱酸或弱碱性药物的解离常数产生较大的影响,从而影响生物活性。

例如:巴比妥酸在其5位没有取代基,pKa值约4.12,在生理pH7.4时,有99%以上呈离子型,不能通过血脑屏障进入中枢神经系统而起作用。

而当将其5位双取代以后,pKa值达到7.0-8.5之间,在生理pH下,苯巴比妥(Phenobarbital)约有50%左右以分子形式存在,可进入中枢神经系统而起作用。

三、药物结构的官能团对药物理化性质的影响药物结构中不同的官能团的改变可使整个分子的理化性质、电荷密度等发生变化,进而改变或影响药物与受体的结合、影响药物在体内的吸收和转运最终影响药物的药效,有时会产生毒副作用。

1.烃基药物分子中引入烃基,可改变溶解度、离解度、分配系数,还可增加位阻,从而增加稳定性。

如睾酮(Testoserone)在体内易被代谢氧化,口服无效,如在该结构的17位引入甲基获得甲基睾酮(Methyltestosterone),因位阻增加,不易代谢而口服有效。

R睾酮R=H 甲基睾酮R=CH32.卤素卤素是很强的吸电子基,可影响分子间的电荷分布和脂溶性及药物作用时间。

如氟奋乃静(Flufenazine) 的安定作用比奋乃静(Perphenazine)强4~5倍。

3.羟基和巯基引入羟基可增强与受体的结合力,增加水溶性,改变生物活性。

羟基取代在脂肪链上,常使活性和毒性下降。

羟基取代在芳环上时,有利于和受体的碱性基团结合,使活性和毒性均增强。

当羟基酰化成酯或烃化成醚,其活性多降低。

巯基形成氢键的能力比羟基低,引入巯基时,脂溶性比相应的醇高,更易于吸收。

巯基有较强的还原能力,转变成二硫化物;巯基有较强的亲核性,可与α、β-不饱和酮发生加成反应,还可与重金属作用生成不溶性的硫醇盐,故可作为解毒药,如二巯丙醇(Dimercaprol)。

巯基还可与一些酶的吡啶环生成复合物,可显著影响代谢。

4.醚和硫醚醚类化合物由于醚中的氧原子有孤对电子,能吸引质子,具有亲水性,碳原子具有亲脂性,使醚类化合物在脂-水交界处定向排布,易于通过生物膜。

硫醚与醚类化合物的不同点是前者可氧化成亚砜或砜,它们的极性强于硫醚,同受体结合的能力以及作用强度因此有很大的不同。

5.磺酸、羧酸、酯磺酸基的引入,使化合物的水溶性和解离度增加,不易通过生物膜,导致生物活性减弱,毒性降低。

但仅有磺酸基的化合物一般无生物活性。

羧酸水溶性及解离度均比磺酸小,羧酸成盐可增加水溶性。

解离度小的羧酸可与受体的碱性基团结合,因而对增加活性有利。

羧酸成酯可增大脂溶性,易被吸收。

酯基易与受体的正电部分结合,其生物活性也较强。

羧酸成酯的生物活性与羧酸有很大区别。

酯类化合物进入体内后,易在体内酶的作用下发生水解反应生成羧酸,有时利用这一性质,将羧酸制成酯的前药,降低药物的酸性,减少对胃肠道的刺激性。

6.酰胺作为构成受体或酶的蛋白质和多肽结构中含有大量的酰胺键,因此酰胺类药物易与生物大分子形成氢键,增强与受体的结合能力。

7.胺类胺类药物的氮原子上含有未共用电子对,一方面显示碱性,易与核酸或蛋白质的酸性基团成盐;另一方面含有未共用电子对氮原子又是较好的氢键接受体,能与多种受体结合,表现出多样的生物活性。

一般伯胺的活性较高,仲胺次之,叔胺最低。

季铵易电离成稳定的铵离子,作用较强,但水溶性大,不易通过生物膜和血脑屏障,以致口服吸收不好,也无中枢作用。

第三节 药物的电子云密度分布和药效的关系受体和酶都是以蛋白质为主要成分的生物大分子,蛋白质分子从组成上来讲是由各种氨基酸经肽键结合而成,在整个蛋白质的链上存在各种极性基团造成电子云密度的分布不均匀,有些区域的电子云密度较高,形成负电荷或部分负电荷;有的区域电子云密度比较低,即带有正电荷或部分正电荷。

如果药物分子中的电子云密度分布正好和受体或酶的特定受体相适应时,由于电荷产生的静电引力,有利于药物分子与受体或酶结合,形成比较稳定的药物-受体或药物-酶的复合物,例如苯甲酸酯类局部麻醉药,在其结构中,苯环上取代基可通过共轭诱导对酯羰基上的电子云的密度分布产生影响。

单纯的苯甲酸乙酯,其结构中没有任何取代基,其羰基的极性仅仅来自C-O 原子的电负性,加上该酯羰基和苯环产生共轭,羰基的极性比较小。

当苯甲酸酯中苯环的对位引入供电子基团氨基时,如普鲁卡因(Procaine),该对位氨基上的电子云通过共轭诱导效应,增加了酯羰基的极性,使药物与受体结合更牢,作用时间延长。

若是在苯甲酸酯的苯环对位引入吸电子基团硝基时,如对硝基苯甲酸乙酯,由于硝基的吸电子效应,导致羰基的电子云流向苯环,使极性降低,故对硝基苯甲酸酯与受体的结合能力比母体化合物弱、麻醉作用降低。

C O OC 2H 5H 2H 52H 5C OOC 2H 5O 苯甲酸乙酯普鲁卡因对硝基苯甲酸乙酯第四节 药物立体结构和药效的关系药物所作用的受体、酶、离子通道等生物大分子,都是蛋白质,有一定的三维空间结构,在药物和受体相互作用时,两者之间原子或基团的空间互补程度对药效产生重要的影响,来自药物立体结构对药效的影响主要有:药物结构中官能团间的距离,药物结构中取代基的空间排列,以及药物的手性中心。

相关文档
最新文档