幂的运算培优训练题

合集下载

专题13 幂的运算(含答案)

专题13 幂的运算(含答案)

专题13 幂的运算知识解读1.幂的运算法则的正向运用同底数幂的乘法:m a ·n a m n a +=(m ,n 为正整数);幂的乘方:()m n mn a a =(m ,n 为正整数); 积的乘方:()m m m ab a b =(m ,n 为正整数);同底数幂的除法:m a ÷n a m n a -=(a ≠0,m ,n 为正整数,m >n )2.幂的运算法则的逆向运用在解决一些问题时,常常根据题目需要,逆向运用幂的相关法则,以退为进,求得突破。

3.幂的运算法则的综合运用一个算式中往往含有多个幂的运算,此时需要理清运算顺序,再准确地运用运算法则计算.培优学案典例示范1.幂的运算法则的正向运用例1 计算:(1)22()(b )a b c a c -+--=________________; (2)23(9)3n n +⨯-⨯=________________;(3)2()()n na b b a ⎡⎤--⎣⎦=________________;【提示】(1)b -a -c =-(a -b +c );(2)-9=-23-;(3)22()()n n b a a b -=-. 【技巧点评】利用相反数或幂之间的关系,将非同底数的幂转化为同底数的幂,便于运用公式计算。

【跟踪训练1】计算:(1)3()x y -·2()y x -·5()y x -;(2)3()m a b ⎡⎤-⎣⎦·2()mb a ⎡⎤-⎣⎦.2.幂的运算法则的逆向运用例2(1)已知m a =4,n a =8,则3m n a ++=________; (2)若x =-2,y =12,则2x ·212()n n x y +=________;(3)若m 为正整数,且2m x =3,求32223()13()m m x x -的值; (4)比较大小:4442,3333,2225.【提示】(1)3m n a ++=m a ·n a ·3a ;(2)2x ·212()n n x y +=22n x +·22n y +=22()n xy +;(3)32223()13()m m x x -=643()13()m m x x -=23223()13()m m x x -;(4)4442=4111(2),3333=3111(3),2225=2111(5).【解答】【技巧点评】…幂的运算法则反过来: m n a +=m a ·n a ; ()mn m n a a =;()m m m a b ab =(m ,n 为正整数);m n a -=m a ÷n a (a ≠0,m ,n 为正整数,m >n ).要根据题目特点,灵活地正向或反向运用法则,巧妙解题。

初中幂的运算培优训练

初中幂的运算培优训练

1.在下列四个算式:()()()2232736,a a a a a --=--=-,()()()3633423,a a a a a a -÷=-÷-=-,正确的有( )A .1个B .2个C .3个D .4个2.计算25m ÷5m 的结果为 ( )(A) 5 (B)20 (C) 5m (D )20m3.已知2a =3,2b =6,2c =12,则 a. b. c 的关系为①b=a+1②c=a+2③a+c=2b ④b+c=2a+3,其中正确的个数有 ( )A.1个B.2个C. 3个D.4个4.下列各式计算正确的是 ( )(A)527()a a =.(B)22122x x-= (C)236326a a a ⨯= (D)826a a a ÷=。

5.下列计算正确的是( )A.(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a -1)(4a -1)=1-16a 2D.(x -2y)2=x 2-2xy+4y 26.下列5个算式中,错误的有( )①a 2b 3+a 2b 3=2a 4b 6 ②a 2b 3+a 2b 3=2a 2b 3 ③a 2b 3·a 2b 3=2a 2b 3④a 2b 3·a 2b 3=a 4b 6 ⑤2a 2b·3a 3b 2=6a 6b 2A.1个B.2个C.3个D.4个7..现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a8.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( ) A.(45n+m)元 B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 9..最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m;10.我国国土面积约为9600000平方千米,用科学记数法可表示为___________平方千米11.若x =2m +1,y =3+8m ,则用x 的代数式表示y 为12.1083与1442的大小关系是13.若()3915,m n a ba b =则m = 、n = ()[]52x --=14.如果等式()1122=-+a a ,则a 的值为 。

幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点

幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点

第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)1. 计算32m m ÷的结果是( )A. mB. m 2C. m 3D. m 5(2023春·江苏·七年级专题练习)2. 已知32816x x ⨯=,则x 的值为( )A. 2B. 3C. 4D. 5(2023春·江苏·七年级专题练习)3. 计算23m m ⋅的结果是( )A. 6mB. 5mC. 6mD. 5m(2023春·江苏·七年级专题练习)4. 计算()32a a - 的结果是( )A. 6aB. 6a -C. 5aD. 5a -(2022春·江苏常州·七年级常州市清潭中学校考期中)5. 下列计算正确的是( )A. 236a a a+= B. 236a a a ⨯=C. 826a a a ÷=D. ()437a a =(2023春·江苏·七年级专题练习)6. 计算:()323·a a -结果为( )A. 9a -B. 9aC. 8aD. 8a (2023春·江苏·七年级专题练习)7. 如果()21633n =,则n 的值为( )A. 3B. 4C. 8D. 14(2022春·江苏连云港·七年级统考期中)8. 目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是( )A. 41.210⨯ B. 41.210⨯﹣ C. 50.1210⨯ D. 50.1210⨯﹣(2023春·江苏·七年级专题练习)9. 下列运算正确的是( )A. 842x x x ÷= B. ()239xx =C. 437x x x ⋅= D. ()22222xy x y =(2022秋·江苏·七年级专题练习)10. 式子5555555555++++化简的结果是( )A. 25 B. 55 C. 65 D. 555+二、填空题(2022春·江苏泰州·七年级校考阶段练习)11. 把数字0.0000009用科学记数法表示为 _____.(2023春·江苏·七年级专题练习)12. 计算:()22y -= ___.(2021春·江苏泰州·七年级校考期中)13. 4月9日,以“打造城市硬核 塑造都市功能”为主题的2021泰州城市推介会在中国医药城会展交易中心举行,某出席企业研制的溶液型药物分子直径为0.00000008厘米,该数据用科学记数法表示为______厘米.(2021春·江苏南京·七年级南京钟英中学校考期中)14. 在()()22323xy x y =的运算过程中,依据是______.(2022秋·江苏·七年级校考阶段练习)15. 计算:9999188⎛⎫⨯-= ⎪⎝⎭_____________.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)16. 计算:(1)()102132363π-⎛⎫--⨯+- ⎪⎝⎭(2)()()333nnn a a a a +-⋅(2023春·江苏·七年级专题练习)17. 计算:()()()3443x x x x ⋅+-⋅---.(2021春·江苏苏州·七年级苏州草桥中学校考期中)18. 计算:3272(2)a a a a -⋅+÷.(2022春·江苏连云港·七年级校考期中)19. 计算: ()100100133⎛⎫⨯- ⎪⎝⎭.(2022春·江苏宿迁·七年级统考期中)20. 我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快.科学家们发现,光在空气中的传播速度约为8310m/s ⨯,而声音在空气中的传播速度约为300m /s .问:在空气中光的传播速度是声音的多少倍?(结果用科学记数法表示)【常考】一.选择题(共4小题)(2022春•江阴市校级月考)21. 计算(﹣0.25)2022×42021的结果是( )A. ﹣1B. 1C. 0.25D. 44020(2022春•吴江区期中)22. 计算()234a 的正确结果是( )A. 616a B. 516a C. 68a D. 916a (2022春•沛县月考)23. 下列运算正确的是( )A. 2242x x x += B. 236x x x ⋅=C. 236()x x = D. 22(2)4x x -=-(2021春•秦淮区期末)24. 下列计算正确的是( )A. 235a a a += B. 236a a a ⋅= C. ()326a a = D. 624a a a ÷=二.填空题(共8小题)(2022春•亭湖区校级期末)25. H9N2型禽流感病毒的病毒粒子的直径在0.00008毫米~0.00012毫米之间,数据0.00012用科学记数法可以表示为_____.(2022春•邗江区期末)26. 若x +y =3,则2x •2y 的值为_____.(2021春•惠山区校级期中)27. 已知2,4x y m m ==,则x y m +=_____.(2022春•浦口区校级月考)28. 计算:22(2)xy - =____________________.(2022春•泰兴市校级月考)29. 16=a 4=2b ,则代数式a+2b=__.(2022春•广陵区期末)30. 已知a m =3,a n =2,则a 2m ﹣n 的值为_____.(2021春•梁溪区期中)31. 已知2x =3,2y =5,则22x+y-1=_____.(2020春•丹阳市校级月考)32. 若0(1)1x -=,则x 满足条件__________.三.解答题(共8小题)(2021春•高新区校级月考)33. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春•建邺区校级期中)34. 如果c a b =,那么我们规定(),a b c =,例如:因为328=,所以()2,83=(1)根据上述规定,填空:()3,27= ,()4,1= ,()2,0.25= ;(2)记()()()3,5,3,6,3,30a b c ===.求证:a b c +=.(2021春•东台市月考)35. 若105x =,103y =,求2310x y +的值.(2022春•宝应县校级月考)36. (1)若10x =3,10y =2,求代数式103x +4y 的值.(2)已知:3m +2n ﹣6=0,求8m •4n 的值.(2022春•亭湖区校级月考)37. 阅读下列材料:若32a =,53b =,则,a b 的大小关系是a_____b.(填“<”或“>”)解:因为15355()232a a ===,15533()327b b ===,32>27,所以1515a b >,所以a b >解答下列问题:(1)上述求解过程中,逆用的幂的运算性质是:A.同底数幂的乘法 B.同底数幕的除法C.幂的乘方D.积的乘方(2)已知72x =,93y =,试比较x 与y 的大小.(2020秋•淇滨区校级月考)38. 已知2,3m n x x ==,求32m n x -的值.(2021春•高新区校级月考)39. 已知23,25x y ==.求:(1)2x y +的值;(2)32x 的值;(3)212x y +-的值.(2020•盐城二模)40. 计算:()0112π42-----【易错】一.选择题(共4小题)(2022春•吴江区校级期中)41. 新型冠状病毒呈圆形或者椭圆形,最大直径约0.00000014米,怕酒精,不耐高温,相信我们团结一心,必定早日战胜病毒.用科学记数法表示新冠病毒的直径是( )A. 61410⨯﹣ B. 71410⨯﹣ C. 61.410⨯﹣ D. 71.410⨯﹣(2022春•东海县期末)42. 算式35-可以表示为( )A. ()()()()()33333-⨯-⨯-⨯-⨯- B.1555⨯⨯C. ()()()()()33333-+-+-+-+- D. 555-⨯⨯(2022春•相城区期末)43. 下列运算中,正确的是( )A. 2221a a -= B. ()2222a a = C. 633a a a ÷= D. 428a a a ⋅=(2022春•工业园区校级期中)44. 下列运算正确的是( )A. 326a a a ⋅= B. 323a a a +=C. ()3339a a-=- D. ()236aa -=二.填空题(共7小题)(2022春•丹阳市期末)45. 每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.(2022春•宜兴市校级月考)46. (1)若2•4m •8m =221,则m =_____.(2)若3x ﹣5y ﹣1=0,则103x ÷105y =_______.(2022秋•通州区期中)47. 计算:()02-=__.(2021春•宝应县月考)48. 若()3n n -的值为1,则n 的值为__.当x __时,()0241x -=(2020春•高新区期中)49. 20182019133⎛⎫⨯-= ⎪⎝⎭________.(2022春•相城区校级期末)50. 若416m =,28n =,则22m n -=________.(2019春•滨湖区期中)51. 计算:()2020201940.25⨯-_______.三.解答题(共5小题)(2022春•盐都区月考)52. 若a m =a n (a >0且a ≠1,m ,n 是正整数),则m =n .你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!(1)如果2×8x ×16x =222,求x 的值;(2)已知9n +1﹣32n =72,求n 的值.(2022春•江阴市校级月考)53. 计算:()()2020********π-⎛⎫----+- ⎪⎝⎭.(2022春•泰兴市校级月考)54. 世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,体长仅0.021厘米,其质量也只有0.000005克.(1)用科学记数法表示上述两个数据.(2)一个鸡蛋的质量大约是50克,多少只卵蜂的质量和与这个鸡蛋的质量相等?(2020春•沭阳县期中)55. 已知:23a =,25b =,275c =.(1)求22a 的值;(2)求2c b a -+的值.(2022春•江都区月考)56. (1)已知a +3b =4,求3a ×27b 的值;(2)解关于x 的方程4321313155x x x +++⨯=.【压轴】一、单选题(2021春·江苏无锡·七年级宜兴市实验中学校考期中)57. 计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( )A.25033333⋅⋅⋅ 个B.26033333⋅⋅⋅ 个C.27033333⋅⋅⋅ 个D.28033333⋅⋅⋅ 个(2023春·七年级单元测试)58. 设m ,n 是正整数,且m n >,若9m 与9n 的末两位数字相同,则m n -的最小值为( )A. 9B. 10C. 11D. 12(2022春·江苏无锡·七年级校考阶段练习)59. 计算20206060(0.125)(2)-⨯的结果是( )A. 1B.1- C. 8 D. 8-(2022春·江苏·七年级专题练习)60. 观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2 ,若1002S =,用含S 的式子表示这组数据的和是( )A. 22S S -B. 22S S +C. 222S S -D. 2222S S --二、填空题(2022春·江苏扬州·七年级校考阶段练习)61. 已知23a =,26b =,212c =,现给出3个数a ,b ,c 之间的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④2b a =+.其中,正确的关系式是____(填序号).(2022春·江苏扬州·七年级校考期中)62. 已知5160x =,32160y =,则(1)(1)1(2022)x y ----=__________.(2022秋·江苏南通·七年级南通田家炳中学校考阶段练习)63. 计算:202320222021(0.125)24-⨯⨯=________.(2023春·七年级单元测试)64. 观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++ ,若502a =,则用含a 的代数式表示下列这组数50515299100222.....22++++的和_________.(2022春·江苏·七年级专题练习)65. 已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.三、解答题(2023春·江苏·七年级专题练习)66. 规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(5,25)=,(2,1)=,(3,19)=.(2)小明在研究这种运算时发现一个特征:(3n ,4n )=(3,4),并作出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n .所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法证明下面这个等式:(3,2)+(3,5)=(3,10).(2023春·江苏·七年级专题练习)67. 如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:d (10)=____ ,d (10-2)=______;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn)=d (m )-d (n );根据运算性质,填空:3()()d a d a =________.(a 为正数)(3)若d (2)=0.3010,分别计算d (4);d (5).(2023春·江苏·七年级专题练习)68. 阅读下列材料:按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,⋯为等比数列,其中11a =,公比为3q =.然后解决下列问题.(1)等比数列3,6,12,⋯的公比q 为 ,第4项是 .(2)如果已知一个等比数列的第一项(设为1)a 和公比(设为)q ,则根据定义我们可依次写出这个数列的每一项:1a ,1a q ,21a q ,31a q ,⋯.由此可得第n 项n a = (用1a 和q 的代数式表示).(3)若一等比数列的公比2q =,第2项是10,求它的第1项与第4项.(4)已知一等比数列的第3项为12,第6项为96,求这个等比数列的第10项.(2023春·七年级单元测试)69. 阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)(2023春·江苏·七年级专题练习)70. 阅读下列材料,并解决下面的问题:我们知道,加减运算是互逆运算,乘除运算也是互逆运算,其实乘方运算也有逆运算,如我们规定式子328=可以变形为25log 83log 252==,也可以变形为2525=.在式子328=中,3叫做以2为底8的对数,记为2log 8.一般地,若()010n a b a a b =≠>且,>,则n 叫做以a 为底b 的对数,记为()a log log a b b n 即,=且具有性质:()log log log log log log n n a a a a a a b n b a n M N M N ==+=⋅①;②;③,其中0a >且100.a M N ≠,>,>根据上面的规定,请解决下面问题:(1)计算:31010log 1_____log 25log 4=+=, _______(请直接写出结果);(2)已知3log 2x =,请你用含x 的代数式来表示y ,其中3log 72y =(请写出必要的过程).(2022春·江苏·七年级专题练习)71. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春·江苏宿迁·七年级统考阶段练习)72. (1)你发现了吗?2222()333=⨯,22211133()222322()333-==⨯=⨯,由上述计算,我们发现2223(___(32-;(2)请你通过计算,判断35()4与34(5-之间的关系;(3)我们可以发现:()m b a -____()m a b(0)ab ≠(4)利用以上的发现计算:3477()()155-⨯.(2022秋·江苏·七年级专题练习)73. 观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)【1题答案】【答案】A【解析】【分析】根据同底数幂的除法法则进行解答即可.【详解】解: 3232m m m m -÷==.故选:A .【点睛】此题主要考查了同底数幂的除法运算,底数不变,指数相减,正确掌握相关运算法则是解题关键.(2023春·江苏·七年级专题练习)【2题答案】【答案】B【解析】【详解】根据幂的乘方,可得同底数幂的乘法,根据同底数的幂相等,可得指数相等,可得答案.【解答】解:由题意,得34122222x x x ⋅==,412x =,解得3x =,故选:B .【点睛】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.(2023春·江苏·七年级专题练习)【3题答案】【答案】D【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】解:原式235m m +==,故选D .【点睛】本题考查了同底数幂的乘法,掌握m n m n a a a +⋅=是解题的关键.(2023春·江苏·七年级专题练习)【4题答案】【答案】D【解析】【分析】利用同底数幂的乘法的法则进行求解即可.【详解】解:()32a a - =32a +-=5a -.故选:D【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.(2022春·江苏常州·七年级常州市清潭中学校考期中)【5题答案】【答案】C【解析】【分析】依据合并同类项,同底数幂的乘除法法则、幂的乘方法则进行判断,即可得出结论.【详解】解:A .235a a a +=,故错误,不合题意;B .235a a a ⨯=,故错误,不合题意;C .826a a a ÷=,故正确,符合题意;D .()1432a a =,故错误,不合题意;故选:C .【点睛】本题主要考查了合并同类项,同底数幂的乘除法、幂的乘方,掌握幂的运算法则是解题的关键.(2023春·江苏·七年级专题练习)【6题答案】【答案】A【解析】【分析】利用幂的乘方的法则及同底数幂的除法的法则对式子进行运算即可.【详解】解:()323639··a a a a a -=-=-.故选:A .【点睛】本题主要考查了同底数幂的除法,幂的乘方;解答的关键是对相应的运算法则的掌握.(2023春·江苏·七年级专题练习)【7题答案】【答案】C【解析】【分析】把左边的数化成底数是3的幂的形式,然后利用利用相等关系,可得出关于n 的相等关系,解即可.【详解】解:∵()2233nn =,∴21633n =,∴216n =,∴8n =.故选:C .【点睛】本题考查了幂的乘方,掌握幂的乘方运算公式是关键.(2022春·江苏连云港·七年级统考期中)【8题答案】【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.00012 1.210.-=⨯故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2023春·江苏·七年级专题练习)【9题答案】【答案】C【解析】【分析】分别根据同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法则对各选项进行计算即可.【详解】解:A .原式4x =,故本选项错误,不合题意;B .原式6x =,故本选项错误,不合题意;C .原式7x =,故本选项正确,符合题意;D .原式224x y =,故本选项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法,解题的关键是掌握同底数幂的乘法(除法),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方,(2022秋·江苏·七年级专题练习)【10题答案】【答案】C【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:555555655555555++++=⨯=.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(2022春·江苏泰州·七年级校考阶段练习)【11题答案】【答案】7910-⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:70.0000009910-=´,故答案为:7910-⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.(2023春·江苏·七年级专题练习)【12题答案】【答案】4y 【解析】【分析】根据幂的乘方法则计算,即可求解.【详解】解:()422y y -=.故答案为:4y .【点睛】本题主要考查了幂的乘方,熟练掌握幂的乘方,底数不变,指数相乘是解题的关键.(2021春·江苏泰州·七年级校考期中)【13题答案】【答案】8810-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2021春·江苏南京·七年级南京钟英中学校考期中)【14题答案】【答案】积的乘方运算法则【解析】【分析】根据积的乘方法则∶把每一个因式分别乘方,再把所得的幂相乘可得答案.【详解】解∶在()()22323xy x y =的运算过程中,依据是积的乘方运算法则,故答案为∶积的乘方运算法则.【点睛】此题主要考查了单项式乘法和积的乘方,关键是掌握积的乘方计算法则.(2022秋·江苏·七年级校考阶段练习)【15题答案】【答案】-1【解析】【分析】根据积的乘方的逆用进行计算即可得.【详解】解:原式=9918(8⎡⎤⨯-⎢⎥⎣⎦=99(1)-=-1故答案为:-1.【点睛】本题考查了积的乘方的逆用,解题的关键是掌握积的乘方的逆用并正确计算.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)【16题答案】【答案】(1)14-(2)332n n a a +-【解析】【分析】(1)根据乘方运算,负指数幂的运算,非零数的零次幂运算法则即可求解;(2)根据幂的乘方,同底数幂的乘法运算法则即可求解.【小问1详解】解:()102132363π-⎛⎫--⨯+- ⎪⎝⎭9231=--⨯+14=-.【小问2详解】解:()()333n n n a a a a +-⋅333n n n a a a +=+-332n n a a +=-.【点睛】本题主要考查整式的混合运算,掌握同底数幂的乘法法则,幂的乘方,负指数幂的运算,非零数的零次幂的运算是解题的关键.(2023春·江苏·七年级专题练习)【17题答案】【答案】0【解析】【分析】根据同底数幂的乘法以及积的乘方计算法则进行求解即可【详解】()()()3443x x x x ⋅+-⋅---()()4343x x x x ⋅+=⋅---4343x x ++-=77x x =-0=.【点睛】本题主要考查了同底数幂的乘法和积的乘方,解题的关键在于能够熟练掌握相关计算法则进行求解.(2021春·江苏苏州·七年级苏州草桥中学校考期中)【18题答案】【答案】57a -【解析】【分析】先计算积的乘方运算,再计算同底数幂的乘法,同底数幂的除法运算,再合并同类项即可.【详解】解:3272(2)a a a a -⋅+÷3258a a a =-+558a a =-+57a =-.【点睛】本题考查的是积的乘方运算,同底数幂的乘法运算,除法运算,合并同类项,掌握以上基础运算的运算法则是解本题的关键.(2022春·江苏连云港·七年级校考期中)【19题答案】【答案】1【解析】【分析】逆用积的乘方公式即可求解.【详解】解:()100100133⎛⎫⨯- ⎪⎝⎭100133⎛⎫=-⨯ ⎪⎝⎭1=.【点睛】本题考查积的乘方,灵活运用积的乘方公式是解题关键.(2022春·江苏宿迁·七年级统考期中)【20题答案】【答案】6110⨯【解析】【分析】先根据同底数幂相除法则计算,再改写成科学记数法表示即可.【详解】解:根据题意得:8310300⨯=82310310⨯⨯ =610=6110⨯答:在空气中光的传播速度是声音的6110⨯倍【点睛】本题考查同底数幂相除,用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.【常考】一.选择题(共4小题)(2022春•江阴市校级月考)【21题答案】【答案】C【解析】【分析】根据积的乘方的逆运算法则计算即可.【详解】原式()2021202120212021111111144114444444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-=-⨯⨯-=-⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选:C .【点睛】本题考查积的乘方的逆运算,熟练掌握运算法则是解题的关键.(2022春•吴江区期中)【22题答案】【答案】A【解析】【分析】根据积的乘方运算法则来进行计算,再与选项进行比较求解.【详解】解:()2323264416a a a ⨯==.故选:A .【点睛】本题主要考查了积的乘方.积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.理解相关知识是解答关键.(2022春•沛县月考)【23题答案】【答案】C【解析】【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则进行计算即可.【详解】解:A 222.2x x x +=,故A 不符合题意;B.235x x x ⋅=,故B 不符合题意;C.236()x x =,故C 符合题意;D.22(2)4x x -=,故D 不符合题意;故选:C .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.(2021春•秦淮区期末)【24题答案】【答案】C【解析】【分析】根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则对每个选项进行分析,即可得出答案.【详解】解:∵235a a a +≠,∴选项A 不符合题意;∵232356a a a a a +⋅==≠,∴选项B 不符合题意;∵()326a a =,∴选项C 符合题意;∵624a a a ÷=,∴选项D 不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方,熟练掌握同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则是解决问题的关键.二.填空题(共8小题)(2022春•亭湖区校级期末)【25题答案】【答案】1.2×10﹣4.【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:数据0.00012用科学记数法可以表示为1.2×10﹣4.故答案为:1.2×10﹣4.【点睛】本题考查了科学记数法,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.(2022春•邗江区期末)【26题答案】【答案】8【解析】【分析】运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:∵x +y =3,∴2x •2y=2x +y=23=8故答案为8.【点睛】本题考查同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.(2021春•惠山区校级期中)【27题答案】【答案】8【解析】【分析】根据幂的运算法则即可求解.【详解】∵2,4x y m m ==∴x y m +=248x y m m =⨯⨯=故答案为:8.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.(2022春•浦口区校级月考)【28题答案】【答案】244x y 【解析】【分析】根据积的乘方运算以及幂的乘方运算法则求解即可.【详解】解:22(2)xy -()()22222x y =-⋅244x y =,故答案为:244x y .【点睛】本题考查整式运算,涉及到积的乘方运算以及幂的乘方运算,熟练掌握整式运算的法则是解决问题的关键.(2022春•泰兴市校级月考)【29题答案】【答案】10或6【解析】【分析】根据16=24,求出a,b的值,即可解答.【详解】解:∵16=24,16=a4=2b,∴a=±2,b=4,∴a+2b=2+8=10,或a+2b=﹣2+8=6,故答案为:10或6.【点睛】本题考查的知识点是幂的乘方与积的乘方,利用已知条件得出a、b的值是解此题的关键.(2022春•广陵区期末)【30题答案】【答案】4.5【解析】【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的逆运算方法,求出a2m-n的值为多少即可.【详解】详解:∵a m=3,∴a2m=32=9,∴a2m-n=292mnaa=4.5.故答案为4.5.【点睛】此题主要考查了同底数幂的除法的逆运算法则,以及幂的乘方的逆运算,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2021春•梁溪区期中)【31题答案】【答案】45 2【解析】【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2=452故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.(2020春•丹阳市校级月考)【32题答案】【答案】x ≠1.【解析】【分析】根据0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1求解即可.【详解】解:∵0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1,∴x-1≠0,∴x ≠1,故答案是:x ≠1.【点睛】本题考查了零次幂的性质,掌握零次幂的性质是关键.三.解答题(共8小题)(2021春•高新区校级月考)【33题答案】【答案】(1)1012 2.-(2)()41231.⨯-【解析】【分析】(1)根据已知材料的方法解答即可(2)先把式子化简成与题干中的式子一致的形式再解答.【详解】解:(1)令231002222S =+++⋯+①,将等式两边同时乘以2得到:23410122222S ②,=+++⋯+②-①得:10122S =-∴即2310010122222 2.+++⋯+=-(2)()4023404123643413333+++⋯+⨯=++++⋯+令()2340413333S =++++⋯+①,将等式两边同时乘以3得到:()2341343333S ②,=+++⋯+②-①得:()412431S =-()41S 231.=⨯-【点睛】此题重点考查学生对同底数幂的乘法的应用,能根据材料正确找到做题方法是解题关键.(2022春•建邺区校级期中)【34题答案】【答案】(1)3,0,2-(2)见解析【解析】【分析】(1)根据规定求解即可;(2)根据规定,得到35,36,330a b c ===,进而得到33356303a b a b c +⋅==⨯==,即可得证.【小问1详解】解∵3021327,41,20.254-====∴()3,273=,()4,10=,()2,0.252=-,故答案为:3,0,2-;【小问2详解】解:由题意,得:35,36,330a b c ===,∵33356303a b a b c +⋅==⨯==,∴a b c +=.【点睛】本题考查零指数幂,负整数指数幂,同底数幂的乘法.理解并掌握题干中的规定,熟练掌握相关运算法则,是解题的关键.(2021春•东台市月考)【35题答案】【答案】675【解析】【分析】根据同底数幂的乘法,可得要求的形式,根据幂的乘方,可得答案.【详解】解:因为10x=5,10y=3,所以102x+3y=102x⋅103y=(10x)2⋅(10y)3=52×33=25×27=675.故答案为675.【点睛】本题考查了幂的乘方以及同底数幂的乘法.(2022春•宝应县校级月考)【36题答案】【答案】(1)432;(2)64【解析】【分析】(1)利用同底数幂的乘法、幂的乘方运算法则将原式变形进行求解;(2)利用同底数幂的乘法运算法则将原式变形进行求解.【详解】(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.【点晴】考查了同底数幂的乘法运算以及幂的乘方运算,解题关键是熟记运算法则.(2022春•亭湖区校级月考)【37题答案】【答案】1、C,2、x<y【解析】【分析】(1)、根据幂的乘方法则将其化成同指数,然后进行比较大小得出答案;(2)、将x 和y 的指数化成相同,然后进行比较幂的大小从而得出底数的大小.【详解】(1)、C(2)、解∵x 63=(x 7)9=29=512,y 63=(y 9)7=37=2187,2187>512,∴x 63<y 63,∴x <y .(2020秋•淇滨区校级月考)【38题答案】【答案】89【解析】【分析】根据幂的乘方及同底数幂的除法的逆运算,进行运算即可.【详解】解: 32m n x -32m nx x =÷()()32m n x x =÷89=÷89=.【点睛】本题主要考查了幂的乘方及同底数幂的除法的逆运算,熟练掌握幂的乘方及同底数幂的除法的逆运算是解题的关键.(2021春•高新区校级月考)【39题答案】【答案】(1)15(2)27(3)22.5【解析】【分析】(1)根据同底数幂乘法的逆运算计算,即可求解;(2)根据幂的乘方的逆运算,即可求解;(3)根据同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算计算,即可求解.【小问1详解】解:2223515x y x y +=⋅=⨯=【小问2详解】解:()33322327x x ===【小问3详解】解:()2212222235222.5x y x y +-=÷⨯=⋅=÷【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算,熟练掌握相关运算法则是解题的关键.(2020•盐城二模)【40题答案】【答案】1-.【解析】【分析】先计算负整数指数幂、零指数幂运算,再计算有理数的减法即可.【详解】原式11122=--1=-.【点睛】本题考查了负整数指数幂、零指数幂运算、有理数的减法,熟记各运算法则是解题关键.【易错】一.选择题(共4小题)(2022春•吴江区校级期中)【41题答案】【答案】D【解析】【分析】根据科学记数法的表示方法求解即可.【详解】解:70.00000014 1.410-=⨯.故选:D .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.(2022春•东海县期末)【42题答案】。

幂的运算性质练习题

幂的运算性质练习题

幂的运算性质练习题
一、简答题:
1. 请定义幂的运算性质是什么?
2. 幂的运算性质中有哪些基本规则?
二、计算题:
1. 计算下列算式的结果:
a) 2^3
b) 5^2
c) (-3)^4
2. 计算下列算式的结果,将结果写成幂的形式:
a) 2 * 2 * 2 * 2 * 2
b) 10 * 10
c) (-4) * (-4) * (-4) * (-4)
3. 求下列幂的值:
a) 3^0
b) 6^1
c) 7^-2
4. 求下列算式的结果:
a) (2^3) * (2^4)
b) (5^2) * (5^3)
c) (8^3) / (8^2)
5. 化简下列幂的运算:
a) (2^5)^3
b) (4^3)^2
c) (10^2) / (10^(-3))
6. 下列幂的形式中,哪些幂的值为零?哪些幂的值为1?
a) 0^4
b) 3^0
c) 5^1
三、解答题:
1. 证明幂的运算性质中的乘法法则:a^m * a^n = a^(m+n)
2. 证明幂的运算性质中的除法法则:a^m / a^n = a^(m-n)
3. 证明幂的运算性质中的指数法则:(a^m)^n = a^(m*n)
4. 根据幂的运算性质,计算下列算式的结果:
a) (2^3)^2
b) (4^2) / (4^(-1))
c) [(2^3) * (3^2)] / [(2^2) * (3^3)]
以上为幂的运算性质的练习题,希望能帮助你巩固和理解幂的运算规则。

请根据题目要求进行计算和解答。

幂的运算练习题及答案

幂的运算练习题及答案

幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。

在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。

1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。

幂的运算压轴题精选30道(必考点分类集训)(人教版)(解析版)-2024-2025学年八年级数学上册

幂的运算压轴题精选30道(必考点分类集训)(人教版)(解析版)-2024-2025学年八年级数学上册

幂的运算压轴题精选30道(必考点分类集训)1.(2024秋•杨浦区校级月考)已知a2m=3,a3n=5,则2a6m﹣4= 50 ,a4m﹣6n= 925 .【分析】利用幂的乘方法则,同底数幂除法法则将各式变形后代入数值计算即可.【解答】解:∵a2m=3,a3n=5,∴2a6m﹣4=2(a2m)3﹣4=2×33﹣4=2×27﹣4=50;a4m﹣6n=a4m÷a6n=(a2m)2÷(a3n)2=32÷52=9÷25=9 25;故答案为:50;9 25.2.(2024秋•长宁区校级期中)若x a=3,x2a﹣3b=9125,则x b的值为 5 .【分析】根据同底数幂的除法法则、幂的乘方与积的乘方法则进行解题即可.【解答】解:∵x a=3,∴x2a﹣3b=x2a÷x3b=(x a)2÷(x b)3=32÷(x b)3=9 125,∴(x b)3=125,∴x b=5.故答案为:5.3.(2024秋•朝阳区期中)若x+2y﹣3=0,则2x﹣2•4y的值为 2 .【分析】先将代数式化成同底数幂的乘法的形式,再进行计算即可.【解答】解:∵x+2y﹣3=0,∴x+2y=3,∴2x﹣2•4y=2x﹣2•22y=2x+2y﹣2=23﹣2=2,故答案为:2.4.(2024秋•徐汇区校级期中)比较大小:2m+n+1 ≤ 4m+4n.【分析】令2m=a,2n=b,则2m+n+1=2×2m×2n=2ab,4m+4n=(2m)2+(2n)2=a2+b2,再作差比较大小.【解答】解:令2m=a,2n=b,则有:2m+n+1=2×2m×2n=2ab,4m+4n=(2m)2+(2n)2=a2+b2,∵a2+b2﹣2ab=(a﹣b)2≥0,仅当a=b,即m=n时取等号,∴2m+n+1﹣4m+4n≤0,∴2m+n+1≤4m+4n.故答案为:≤.5.(2024秋•徐汇区校级期中)已知4x=2y﹣1,3y+1=27x﹣2,则x﹣y= ﹣9 .【分析】根据幂的乘方法则化为底数相同的式子,根据指数相等求出x和y的值,即可求出答案.【解答】解:∵4x=2y﹣1,3y+1=27x﹣2,∴22x=2y﹣1,3y+1=33x﹣6,∴2x=y﹣1,y+1=3x﹣6,∴x=8,y=17,∴x﹣y=8﹣17=﹣9.故答案为:﹣9.6.(2024秋•普陀区期中)如果2a÷4b×8=2,那么16b÷4a= 16 .【分析】根据同底数幂的除法法则以及幂的乘方运算法则解答即可.【解答】解:∵2a÷4b×8=2a﹣2b+3=2,∴a﹣2b+3=1,即a﹣2b=﹣2,∴﹣(a﹣2b)=2b﹣a=2,∴16b÷4a=42b÷4a=42b﹣a=42=16.故答案为:16.7.(2023秋•松北区期末)已知32×9m×27=321,求m= 8 .【分析】根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:32×9m×27=321,即32×32m×33=321,∴32+2m+3=321,∴2+2m+3=21,解得m=8.故答案为:88.(2024春•句容市期中)若22n+3+4n+1=192,则n的值为 2 .【分析】利用同底数幂的乘法的法则及幂的乘方的法则进行运算即可.【解答】解:∵22n+3+4n+1=192,∴22n+3+22n+2=192,∴2×22n+2+22n+2=192,∴3×22n+2=192,∴22n+2=64,∴2n+2=6,∴n=2.故答案为:2.9.(2024秋•浦东新区校级月考)若100a=20,1000b=50,则a+32b+32的值是 3 .【分析】先把100和1000写成底数是10的幂,然后把两个等式相乘,求出2a+3b的值,从而求出a+3 2b的值,然后直接代入进行计算即可.【解答】解:∵100a=20,1000b=50,∴(102)a=20,(103)b=50,102a=20,103b=50,∴102a•103b=20×50=1000=103,102a+3b=103,2a+3b=3,∴a+32b=32,∴a+32b+32=32+32=3,故答案为:3.10.(2024春•峄城区校级月考)已知a﹣c=1,c﹣b=4,则2a+b﹣2c= 18 .【分析】直接利用已知将原式变形进而得出答案.【解答】解:∵a﹣c=1,c﹣b=4,∴b﹣c=﹣4,∴2a+b―2c=2a―c⋅2b―c=21×2―4=2―3=1 8.故答案为:1 8.11.(2024春•西安校级月考)若2a﹣3b+c﹣2=0,则16a÷64b×4c= 16 .【分析】先求出2a﹣3b+c=2,再把原式变形为42a÷43b×4c,进一步得到42a﹣3b+c,据此代值计算即可.【解答】解:∵2a﹣3b+c﹣2=0,∴2a﹣3b+c=2,∴16a÷64b×4c=(42)a÷(43)b×4c=42a÷43b×4c=42a﹣3b+c=42=16,故答案为:16.12.(2024春•东台市月考)已知2x+2•3x+2=36x﹣3,则x= 8 .【分析】利用幂的乘方及积的乘方法则将原式变形后得到关于x的一元一次方程,解得x的值即可.【解答】解:∵2x+2•3x+2=36x﹣3,∴(2×3)x+2=(62)x﹣3,即6x+2=62x﹣6,则x+2=2x﹣6,解得:x=8,故答案为:8.13.(2024春•泰州期末)已知2x﹣3y+6=0,则代数式4x+1•82﹣y的值为 4 .【分析】将所求式化为以2为底数的幂的形式,再利用同底数幂的乘法法则,并整体代入可解答.【解答】解:∵2x﹣3y+6=0,∴2x﹣3y=﹣6,∴4x+1•82﹣y=22(x+1)•23(2﹣y)=22x+2•26﹣3y=22x﹣3y+8=2﹣6+8=22=4.故答案为:4.14.(2024春•秦都区校级月考)已知2m=a,3m=b,24m=c,那么a,b,c之间满足的等量关系是 c=a3b .【分析】根据幂的乘方与积的乘方将24m写成3m•(2m)3,再代入计算即可.【解答】解:∵24m=(3×8)m=3m•8m=3m•(2m)3,而2m=a,3m=b,24m=c,∴c=a3b,故答案为:c=a3b.15.(2023秋•衡南县期末)若9a•27b÷81c=9,则2a+3b﹣4c的值为 2 .【分析】利用幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对已知条件进行整理,从而可求解.【解答】解:9a•27b÷81c=9,32a•33b÷34c=32,32a+3b﹣4c=32,∴2a+3b﹣4c=2,故答案为:2.16.(2023秋•沐川县期末)若2a﹣3b+c﹣2=0,则16a÷82b×4c= 16 .【分析】由已知条件可得2a﹣3b+c=2,将原式利用同底数幂乘法与除法公式,幂的乘方公式变形后进行计算即可.【解答】解:∵2a﹣3b+c﹣2=0,∴2a﹣3b+c=2,∴16a÷82b×4c=(42)a÷(82)b×4c=42a÷43b×4c=42a﹣3b+c=42=16,故答案为:16.17.(2024春•长丰县期中)已知2x﹣5y+4=0,则4x+1•321﹣y的值是 8 .【分析】由已知得到2x﹣5y=﹣4,再将4x+1•321﹣y变形为22x﹣5y+7,然后代入计算即可.【解答】解:∵2x﹣5y+4=0,∴2x﹣5y=﹣4,∴4x+1•321﹣y=(22)x+1•(25)1﹣y=22x+2•25﹣5y=22x﹣5y+7=2﹣4+7=23=8,故答案为:8.18.(2024春•宿豫区校级期中)若a=255,b=344,c=433,则将a、b、c按从小到大排列是 a<c<b .【分析】首先利用幂的性质将原式都变为指数相同的数,进而比较底数即可.【解答】解:∵a=255=(25)11=3211,b=344=8111,c=433=(43)11=6411,∴a<c<b.故答案为:a<c<b.19.(2024秋•越秀区校级期中)已知4m×8n=32,2m÷4n=12,则mn= 1 .【分析】已知等式利用幂的乘方与积的乘方运算法则,同底数幂的乘除法则计算,得到关于m与n的方程,组成方程组,求出方程组的解得m与n的值,即可求出值.【解答】解:∵4m×8n=(22)m×(23)n=22m×23n=22m+3n=32=25,2m÷4n=2m÷(22)n=2m÷22n=2m―2n=12=2―1,∴2m+3n=5,m﹣2n=﹣1,解得m=1,n=1,∴mn=1,故答案为:1.20.(2024春•鼓楼区期中)(1)若25+25=2a,37+37+37=3b,则a+b= 14 .(2)若2m×3n=(4×27)7,求m,n.(3)若2p=m,m q=n,n r=32,求pqr.【分析】(1)根据乘方的意义,把加法运算写成乘法运算,再按照同底数幂相乘法则进行计算,从而求出a,b,再求出a+b即可;(2)把4和27分别写成底数是2和3的幂,然后根据积的乘方和幂的乘方法则进行计算,求出m,n 即可;(3)根据已知条件,利用幂的乘方法则进行计算,从而求出答案即可.【解答】解:(1)∵25+25=25×2=26=2a,37+37+37=37×3=38=3b,∴a=6,b=8,∴a+b=6+8=14,故答案为:14;(2)∵2m×3n=(4×27)7=(22×33)7=22×7×33×7=214×321,∴m=14,n=21;(3)∵2p=m,m q=n,n r=32,∴(2p)q=n,[(2p)q]r=32,∴2pqr=25,∴pqr=5.21.(2024秋•秦安县校级月考)已知16m=4×22n﹣2,27n=9×3m+3,求(m﹣n)2013的值.【分析】根据幂的乘方和积的乘方逆用运算法则分别求出m、n的值,然后代入求解即可.【解答】解:∵16m=(24)m=24m,4×22n﹣2=22×22n﹣2=22n,∴4m=2n,27n=(33)n=33n,9×3m+3=32×3m+3=3m+5,∴3n=m+5,∴4m=2n3n=m+5,即4m―2n=0 3n―m=5,解得:m=1 n=2,∴(m﹣n)2013=(1﹣2)2013=(﹣1)2013=﹣1.22.(2024秋•浦东新区校级月考)已知(9m+1)2=316,32n+1+9n=324,求m+n的值.【分析】先把底数9写成底数是3的幂,然后利用幂的乘方法则进行计算,列出关于m,n的方程,解方程求出m,n,再代入m+n进行计算即可.【解答】解:∵(9m+1)2=316,32n+1+9n=324,[(32)m+1]2=316,3×32n+32n=324,(32m+2)2=316,4×32n=32434m+4=316,32n=81=34,∴4m+4=16,2n=4,解得:m=3,n=2,∴m+n=3+2=5.23.(2024春•莱西市校级月考)(1)已知x3n=3,求(﹣2x2n)3+4(x2)3n的值.(2)已知4a﹣3b+7=0,求32×92a+1÷27b的值.【分析】(1)根据积的乘方运算法则进行运算,然后再进行变形,整体代入求值即可;(2)先根据4a﹣3b+7=0得出4a﹣3b=﹣7,再将32×92a+1÷27b变形,然后整体代入求值即可.【解答】解:(1)(﹣2x2n)3+4(x2)3n=﹣8x6n+4x6n=﹣4x6n=﹣4(x3n)2,把x3n=3代入得:原式=﹣4×32=﹣36.(2)∵4a﹣3b+7=0,∴4a﹣3b=﹣7,∴32×92a+1÷27b=32×(32)2a+1÷(33)b=32×34a+2÷33b=34a﹣3b+4=3﹣7+4=3﹣3=1 33=1 27.24.(2024秋•仓山区期中)已知3a=m,9b=n,27c=m2n,a,b,c为正整数,求证:2a+2b=3c.【分析】先根据已知条件和幂的乘方法则,求出32a,32b,33c,再根据同底数幂相乘法则证明结论即可.【解答】证明:∵3a=m,9b=n,27c=m2n,∴(3a)2=32a=m2,(32)b=32b=n,(33)c=33c=m2n,∴32a•32b=m2n=33c,∴32a+2b=33c,∴2a+2b=3c.25.(2024秋•蒸湘区校级月考)计算:(1)若a+3b+2z﹣3=0,求3a×27b×9z的值;(2)若22x=3,求(23x+1)2﹣24x的值.【分析】(1)首先根据题可知a+3b+2z=3,再将3a×27b×9z整理为3a+3b+2z,然后代入求值即可;(2)根据幂的乘方运算法则和幂的乘方运算的逆用将原式整理为4×(22x)3﹣(22x)2,然后代入求值即可.【解答】解:(1)由题意得a+3b+2z=3,∴3a×27b×9z=3a×33b×32z=3a+3b+2z=33=27;(2)已知22x=3,则(23x+1)2﹣24x=26x+2﹣24x=4×(22x)3﹣(22x)2=4×33﹣32=108﹣9=99.26.(2024秋•雁峰区校级月考)(1)a m=2,a n=3,求a2m+n的值;(2)若16m=4×22n﹣2,27n=9×3m+3,求(m﹣n)2025.【分析】(1)化简a2m+n=(a m)2×a n,再将已知代入即可;(2)由24m=22n,33n=3m+5,可得n=2m,3n=m+5,求出m、n的值即可求解.【解答】解:(1)∵a m=2,a n=3,∴原式=a2m×a n=(a m)2×a n=22×3=4×3=12;(2)∵16m=4×22n﹣2,∴24m=22×22n﹣2=22n,∴n=2m,∵27n=9×3m+3,∴33n=3m+5,∴3n=m+5,∴6m=m+5,∴m=1,∴n=2,∴原式=(1﹣2)2025=﹣1.27.(2024秋•商水县月考)若a m=a n(m,n是正整数,a>0且a≠1),则m=n.利用上面的结论,解答下面的问题.(1)若2×8x×16x=222,求x的值.(2)若(27x)2=312,求x的值.(3)已知p=57,q=75,用含p,q的式子表示3535.【分析】(1)利用幂的乘方以及同底数幂相乘的运算法则变形为2×8x×16x=2×23x×24x=21+3x+4x=222,结合题意得出1+3x+4x=22,计算即可得解;(2)利用幂的乘方法则变形为(27x)2=36x=312,结合题意得出6x=12,计算即可得解;(3)根据幂的乘方与积的乘方法则化为含有57和75的式子,即可得解.【解答】解:(1)∵2×8x×16x=2×(23)x×(24)x=2×23x×24x=21+3x+4x=222,∴1+3x+4x=22,∴x=3;(2)∵(27x)2=[(33)x]2=(33x)2=36x=312,∴6x=12,∴x=2;(3)∵p=57,q=75,∴3535=(357)5=[(5×7)7]557)5×(77)5=(57)5×(75)7=p5q7.28.(2023秋•金乡县期末)在幂的运算中规定:若a x=a y(a>0且a≠1,x、y是正整数),则x=y.利用上面结论解答下列问题:(1)若9x=36,求x的值;(2)若3x+2﹣3x+1=18,求x的值;(3)若m=2x+1,n=4x+2x,用含m的代数式表示n.【分析】(1)利用幂的乘方的法则进行运算即可;(2)利用同底数幂的乘法的法则进行运算即可;(3)利用幂的乘方的法则进行运算即可.【解答】解:(1)∵9x=36,∴32x=36,∴2x=6,解得:x=3;(2)∵3x+2﹣3x+1=18,∴3x+1×3﹣3x+1=18,2×3x+1=2×32,∴x+1=2,解得:x=1;(3)∵m=2x+1,n=4x+2x,∴n=(2x)2+2x=2x(2x+1)=m2x=m(m﹣1)=m2﹣m.29.(2024春•工业园区校级月考)若a m=a n(a>0且a≠1,m,n是正整数),则m=n,利用上面结论解决下面的问题:(1)如果4x×8x=25,求x的值;(2)如果3x×2x+1+2x×3x+1=180,求x的值.【分析】(1)根据4=22,8=23将4x×8x=25转化为22x×23x=25,则2x+3x=5,即可求解;(2)将3x×2x+1+2x×3x+1=3x×2x×5=3x×2x×5,得出6x=62,即可求解.【解答】解:(1)∵4=22,8=23,∴4x×8x=(22)x+(23)x=22x×23x=25,∴2x+3x=5,解得:x=1;(2)∵3x×2x+1+2x×3x+1=180,∴3x×2x×2+2x×3x×3=180,∴3x2x(2+3)=22×32×5,∴3x×2x×5=32×22×5,即6x×5=62×5,∴6x=62∴x=2.30.(2024春•宁明县期中)若a m=a n(a>0且a≠1,m,n都是正整数),则m=n.利用上述结论解决下列问题:(1)若27×9n+1×32n﹣1=316,求n的值;(2)若22x+2•22x+1=32,求x的值.【分析】(1)利用幂的乘方运算法则以及同底数幂的乘法法则进行运算即可;(2)利用幂的乘方的法则及同底数幂的乘法的法则进行运算即可.【解答】解:(1)∵27×9n+1×32n﹣1=316,∴33×(32)n+1×32n﹣1=316,即33×32n+2×32n﹣1=316,∴33+2n+2+2n﹣1=316,∴3+2n+2+2n﹣1=16,解得n=3;(2)∵22x+2•22x+1=22x+2+2x+1=32=25,∴2x+2+2x+1=5,解得x=1 2.。

幂的运算大题提升训练

幂的运算大题提升训练

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【北师大版】专题1.8幂的运算大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.【分析】各小题直接利用同底数幂的乘法运算法则计算,再合并同类项得出答案.【解答】解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.2.计算:(1)(﹣x)4•(﹣x)6;(2)﹣a3•a;(3)(﹣m)2•m3;(4)﹣x•x2•x3.【分析】各小题直接利用同底数幂的除法运算法则计算得出答案.【解答】解:(1)(﹣x)4•(﹣x)6=x4•x6=x10;(2)﹣a3•a=﹣a4;(3)(﹣m)2•m3=m2•m3=m5;(4)﹣x•x2•x3=﹣x1+2+3=﹣x6.3.计算:(1)a3•(﹣a)5•a12;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数);(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数);(4)(x﹣y)5•(y﹣x)3•(x﹣y).【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(1)a3•(﹣a)5•a12=﹣a20;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数)=y6n+2;(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数)=﹣23n+3;(4)(x﹣y)5•(y﹣x)3•(x﹣y)=﹣(x﹣y)5•(x﹣y)3•(x﹣y)=﹣(x﹣y)9.4.计算:(1)(p﹣q)5•(q﹣p)2;(2)(s﹣t)m•(s﹣t)m+n•(t﹣s)(m、n是正整数);(3)x n•x n+1+x2n•x(n是正整数).【分析】(1)(2)根据同底数幂的乘法法则解答即可.(3)先根据同底数幂的乘法法则化简,再合并同类项即可.【解答】解:(1)原式=(p﹣q)5•(p﹣q)2=(p﹣q)7;(2)原式=﹣(s﹣t)m+m+n+1=﹣(s﹣t)2m+n+1;(3)原式=x2n+1+x2n+1=2x2n+1.5.计算:(1)(x2y)3;(2)(﹣m3n)2;(3)(﹣2a2b3)4.【分析】根据幂的乘方与积的乘方法则计算便可.【解答】解:(1)(x2y)3=x2×3y3=x6y3;(2)(﹣m3n)2=+m3×2n2=m6n2;(3)(﹣2a2b3)4=+16a2×4b3×4=16a8b12.6.(2022秋•西陵区校级期中)计算:(1)a•a2•a3﹣a6;(2)m•m7﹣(2m4)2.【分析】(1)根据整式的加减运算以及乘法运算即可求出答案.(2)根据整式的加减运算、乘法运算以及积的乘方运算即可求出答案.【解答】解:(1)原式=a6﹣a6=0.(2)原式=m8﹣4m8=﹣3m8.7.幂的运算(1)(﹣2ab)3.(2)(x2y3)4+(﹣2x4y)2y10.【分析】(1)积的乘方,等于每个因式乘方的积,据此计算即可;(2)先根据积的乘方以及同底数幂的乘法法则化简,再合并同类项即可.【解答】解:(1)(﹣2ab)3=(﹣2)3a3b3=﹣8a3b3;(2)(x2y3)4+(﹣2x4y)2y10=x8y12+4x8y2•y10=x8y12+4x8y12=5x8y12.8.用简便方法计算:(1)(−43)2018×(﹣0.75)2019;(2)2018n×(24036)n+1.【分析】(1)根据把每一个因式分别乘方,再把所得的幂相乘解答即可;(2)根据把每一个因式分别乘方,再把所得的幂相乘解答即可.【解答】解:(1)(−43)2018×(−0.75)2019={−43×(−34)]2018×(−34)=−3 4;(2)2018n×(24036)n+1=2018n×(12018)n+1=(2018×12018)n×12018=1 2018.9.计算:(1)23×22+2×24;(2)x5•x3﹣x4•x4+x7•x+x2•x6;(3)(﹣x)9•x5•(﹣x)5•(﹣x)3.【分析】(1)(2)根据同底数幂的乘法法则计算,同底数幂相乘,底数不变,指数相加;(3)根据积的乘方运算法则以及同底数幂的乘法法则计算,积的乘方,等于每个因式乘方的积.【解答】解:(1)原式=25+25=2×25=26=64;(2)原式=x8﹣x8+x8+x8=2x8;(3)原式=﹣x9•x5•(﹣x5)•(﹣x3)=﹣x9•x5•x5•x3=﹣x22.10.计算:(1)(﹣a)2•a3;(2)x n•x n+1+x2n•x(n是正整数);(3)﹣a2•a4+(a2)3.【分析】(1)根据幂的乘方和同底数幂的乘法可以解答本题;(2)根据同底数幂的乘法和合并同类项即可解答本题;(3)根据幂的乘方和同底数幂的乘法可以解答本题.【解答】解:(1)(﹣a)2•a3=a2•a3=a5;(2)x n•x n+1+x2n•x(n是正整数)=x2n+1+x2n+1=2x2n+1;(3)﹣a2•a4+(a2)3=﹣a6+a6=0.11.(2022春•会宁县期末)根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.【分析】(1)先根据同底数幂乘法的逆运算将a3m+2n变形为a3m•a2n,根据已知条件,再分别将a3m=(a m)3,a2n=(a n)2,最后代入计算即可;(2)将已知等式的左边化为3的幂的形式,则对应指数相等,可列关于m的方程,解出即可.【解答】解:(1)a3m+2n=(a m)3•(a n)2=23×52=200;(2)∵3×9m×27m=321,∴3×32m×33m=321,31+5m=321,∴1+5m=21,m=4.12.(2022秋•江北区校级期中)(1)若10x=3,10y=2,求代数式103x+4y的值.(2)已知:3m+2n﹣6=0,求8m•4n的值.【分析】(1)直接利用同底数幂的乘法运算法则将原式变形求出答案;(2)直接利用同底数幂的乘法运算法则将原式变形求出答案.【解答】解:(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.13.(2021春•龙岗区校级月考)已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.【分析】(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.【解答】解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.14.(2021春•高州市期中)(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x14.【分析】(1)由a3m+2n=a3m•a2n=(a m)3•(a n)2,即可求得答案;(2)由x14=(x3)3•x5,即可求得答案.【解答】解:(1)∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=72;(2)∵x3=m,x5=n,∴x14=(x3)3•x5=m3n.15.(2020秋•海珠区校级期中)计算题:(1)若a2=5,b4=10,求(ab2)2;(2)已知a m=4,a n=4,求a m+n的值.【分析】(1)直接利用积的乘方运算法则将原式变形进而得出答案;(2)直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)∵a2=5,b4=10,∴(ab2)2=a2•b4=5×10=50;(2)∵a m=4,a n=4,∴a m+n=a m•a n=4×4=16.16.(2020秋•大石桥市期中)完成下列各题.(1)已知(9a)2=38,求a的值;(2)已知a m=3,a n=4,求a2m+n的值为多少.【分析】(1)结合幂的乘方与积的乘方的概念和运算法则进行求解即可;(2)根据同底数幂的乘法法则进行计算即可.【解答】解:(1)∵(9a)2=38,∴(32a)2=38,∴4a=8,a=2;(2)∵a m=3,a n=4,∴a2m+n=a2m•a n=(a m)2•a n=32•4=36.17.(2020春•高新区期中)(1)已知4x=2x+3,求x的值;(2)若a2n=3,b n=14,求(﹣ab)2n.【分析】根据幂的乘方与积的乘方运算法则解答即可.【解答】解:(1)∵4x=22x=2x+3,∴2x=x+3,∴x=3;(2)∵a2n=3,b n=1 4,∴(﹣ab)2n=(ab)2n=a2n•b2n=a2n•(b n)2=3×(14)2=3×116=316.18.(2022春•金湖县校级月考)已知a x=3,a y=2,分别求:①a x+y的值;②a3x﹣2y的值.【分析】①根据同底数幂的乘法底数不变指数相加,可得答案;②根据同底数幂的除法,可得要求的形式,再根据幂的乘方,可得答案.【解答】解:①a x+y=a x×a y==3×2=6;②a3x﹣2y=a3x÷a2y=(a x)3÷(a y)2=33÷22=27 4.19.(2022•天津模拟)(1)已知a m=2,a n=3,求①a m+n的值;②a3m﹣2n的值(2)已知2×8x×16=223,求x的值.【分析】(1)根据同底数幂的乘法法则和除法法则求解即可;(2)把各个数字化为以2为底数的形式,按照同底数幂的乘法法则,求解即可.【解答】解:(1)①a m+n=a m•a n=2×3=6;②a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2=23÷32=8 9;(2)∵2×8x×16=223∴2×(23)x×24=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.20.(2020•贵阳模拟)小松学习了“同底数幂的除法”后做这样一道题:若(2x﹣1)2x+1=1,求x的值.小松解答过程如下:解:∵1的任何次幂为1,∴2x﹣1=1,即x=1,故(2x﹣1)2x+1=13=1,∴x=1.老师说小松考虑问题不全面,聪明的你能帮助小松解决这个问题吗?请把他的解答补充完整.【分析】分别利用零指数幂的性质和有理数的乘方运算分别讨论得出答案.【解答】解:(2x﹣1)2x+1=1,分三种情况:①当2x﹣1=1时,x=1,此时(2x﹣1)2x+1=13=1,符合题意;②当2x+1=0,x=−1 2,此时(2x﹣1)2x+1=(﹣2)0=1,符合题意;③当x=0时,原式=(﹣1)1=﹣1,不合题意.综上所述:x=1或x=−1 2.21.(2022春•南海区校级月考)已知a m=2,a n=5、求下列各式的值:(1)a m+n;(2)(2a m)2;(3)a3m﹣2n.【分析】(1)根据同底数幂的乘法法则即可求解;(2)根据幂的乘方与积的乘方法则即可求解;(3)根据同底数幂的除法法则即可求解.【解答】解:(1)∵a m=2,a n=5,∴a m+n=a m•a n=2×5=10;(2)∵a m=2,∴(2a m)2=4×(a m)2=4×22=4×4=16;(3)∵a m=2,a n=5,∴a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2=23÷52=8÷25=8 25.22.(2021秋•巴林左旗期末)(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.【分析】(1)把代数式化为同底数幂的除法,再进行计算即可;(2)先求出a3x与a2y的值,再进行计算即可;(3)先把题中(x2)2n化为(x2n)2,再把x2n=4代入进行计算即可.【解答】解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=−8 9;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.23.(2022秋•永春县期中)(1)若2x=3,2y=5,则2x+y= 15 .(2)已知a x=5,a x+y=25,求a x+a y的值.(2)已知x2a+b•x3a﹣b•x a=x12,求﹣a100+2101的值.【分析】(1)根据同底数幂的乘法法则解决此题.(2)根据同底数幂的乘法法则解决此题.(3)根据同底数幂的乘法法则解决此题.【解答】解:(1)∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.(2)∵a x=5,∴a x+y=a x•a y=5a y=25.∴a y=5.∴a x+a y=5+5=10.(3)∵x2a+b•x3a﹣b•x a=x12,∴x6a=x12.∴6a=12.∴a=2.∴﹣a100+2101=﹣2100+2101=﹣2100+2×2100=2100.24.(2022春•泰山区校级月考)计算下列各式:(1)(﹣x)3•(﹣x)2﹣m3•m2•(﹣m)3;(2)已知2x=3,2y=4,求2x+y的值.【分析】(1)根据同底数幂计算法则进行计算即可;(2)先将2x+y转化为2x•2y,然后将2x=3,2y=4代入即可得出答案.【解答】解:(1)原式=﹣x3•x2﹣m5•(﹣m3)=﹣x5+m8;(2)∵2x=3,2y=4,∴2x+y=2x•2y=3×4=12.25.(2022春•贾汪区校级月考)规定a*b=3a×3b,求:(1)求1*2;(2)若2*(x+1)=81,求x的值.【分析】(1)根据所规定的运算进行作答即可;(2)根据所规定的运算进行作答即可.【解答】解:(1)∵a*b=3a×3b,∴1*2=31×32=3×9=27;(2)∵2*(x+1)=81,∴32×3x+1=34,则2+x+1=4,解得:x=1.26.(2021秋•曲阜市期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)= 3 ,(﹣2,4)= 2 ,(﹣2,1)= 0 ;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56).【分析】(1)根据新定义运算结合有理数乘方运算法则进行分析求解;(2)根据新定义运算,结合同底数幂的乘法运算法则进行分析计算.【解答】解:(1)∵53=125,(﹣2)2=4,(﹣2)0=1,∴(5,125)=3,(﹣2,4)=2,(﹣2,1)=0,故答案为:3、2、0;(2)设(4,7)=x,(4,8)=y,∴4x=7,4y=8,∴4x•4y=7×8=56,∵4x•4y=4x+y,∴4x+y=56,∴(4,56)=x+y,即(4,7)+(4,8)=(4,56).∴等式成立.27.(2022秋•海淀区校级期中)在学习平方根的过程中,同学们总结出:在a x=N中,已知底数a和指数x,求幂N的运算是乘方运算;已知幂N和指数x,求底数a的运算是开方运算,小明提出一个问题:“如果已知底数a 和幂N ,求指数x 是否也对应着一种运算呢?”老师首先肯定了小明善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小明课后借助网络查到了对数的定义:如果N =a x (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数(log arithm ),记作:x =log a N ,其中,a 叫做对数的底数,N 叫做真数.小明根据对数的定义,尝试进行了下列探究:(1)∵21=2,∴log 22=1;∵22=4,∴log 24=2;∵23=8,∴log 28=3;∵24=16,∴log 216= 4 ;计算:log 232= 5 ;(2)计算后小明观察(1)中各个对数的真数和对数的值,发现一些对数之间有关系,例如:log 24+log 28= log 232 ;(用对数表示结果)(3)于是他猜想:log a M +log a N = log a MN (a >0且a ≠1,M >0,N >0),请你将小明的探究过程补充完整,并证明他的猜想.(4)根据之前的探究,直接写出log a M ﹣log a N = M N .【分析】(1)根据对数与乘方之间的关系求解可得结论;(2)利用对数的定义求解可得结论;(3)根据所得结论进行推导可得结论;(4)根据之前的探究,可得log a M ﹣log a N =M N.【解答】解:(1)∵24=16,∴log 216=4;∵25=32,∴log 232=5;故答案为:4,5;(2)log 24+log 28=2+3=5=log 232,故答案为:log 232;(3)log a M +log a N =log a MN ,验证:设log a M =x ,log a N =y ,则a x =M ,a y =N ,∴a x ▪a y =a x +y =MN ,∴lo g a a x +y =log a MN =x +y ,∴log a MN =log a M +log a N ,故答案为:log a MN ;(4)根据之前的探究,可得log a M﹣log a N=M N .故答案为:M N .28.(2022秋•鲤城区校级期中)我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)= 125 ;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).【分析】(1)①根据新的运算,再将相应的值代入运算即可;②根据新的运算,再将相应的值代入运算即可;(2)结合新的运算,利用同底数幂的乘法的法则进行运算即可.【解答】解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=5×5×5=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f (a +a )=f (a )•f (a )=3×3=31+1=32,f (3a )=f (a +a +a )=f (a )•f (a )•f (a )=3×3×3=31+1+1=33,…,f (10a )=310,∴f (a )•f (2a )•f (3a )•…•f (10a )=3×32×33×…×310=31+2+3+…+10=355.29.(2022春•定远县校级期末)对数的定义:一般地,若a x =N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:x =log a N ,比如指数式24=16可转化为4=log 216,对数式2=log 525互转化为52=25.我们根据对数的定义可得对数的一个性质:log a (M •N )=log a M +log a N (a >0,a ≠1,M >0,N >0)解决以下问题:(1)将指数43=64转化为对数式 3=log 464 ;(2)试说明lo g a M N=lo g a M−lo g a N (a >0,a ≠1,M >0,N >0);(3)拓展运用:计算log 32+log 36﹣log 34= 1 .【分析】(1)根据对数的定义转化即可;(2)设设log a M =m ,log a N =n ,转化成指数式M =a m ,N =a n ,根据同底数幂除法的运算法则可得M N=a m ÷a n =a m ﹣n ,再转化成对数形式即可;(3)根据对数的定义计算即可.【解答】解:(1)指数43=64转化为对数式3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m÷a n=a m﹣n,∴m﹣n=lo g a M N∴lo g a MN=log a M﹣log a N;(3)log32+log36﹣log34=log32×6÷4=log33=1.故答案为:1.30.(2022春•兴化市校级月考)定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m =D(n).(1)根据D数的定义,填空:D(2)= 1 ,D(16)= 4 .(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D(qp)=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(30),D(2512)的值(用含a、b、c的代数式表示).【分析】本题属于阅读题,根据给出的定义进行运算或化简.【解答】解:(1)∵21=2,∴D(2)=1,∵24=16,∴D(16)=4,故答案为:1,4;(2)①∵D(a)=1,∴D(a3)=D(a•a•a)=D(a)+D(a)+D(a)=3;②∵D(2)=1,D(3)=2a﹣b,D(5)=a+c,∴D(30)=D(2×3×5)=D(2)+D(3)+D(5)=1+2a﹣b+a+c=3a﹣b+c+1,∴D(25 12)=D(25)﹣D(12)=2D(5)﹣2D(2)﹣D(3)=2(a+c)﹣2×1﹣(2a﹣b)=b+2c﹣2.。

八年级数学上册 幂的运算培优训练

八年级数学上册  幂的运算培优训练

幂的运算培优训练一、同底数幂的乘法及其推广例1、计算:(1)x·(-x2)·(-x)2·(-x3)·(-x)3 (2)(a-b)2·(b-a)3【变式】规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.二、幂的乘方与积的乘方(1)计算:(-m3)2•m5(2)计算:-82018×(-0.125)2018(3)已知a m=6,a n=2,求a2m+3n的值.【变式】若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.三、同底数幂的除法例3:(1)a 6÷a 2;(2)(-a )5÷(-a )2(3)(x -y )10÷(y -x )5÷(x -y );【变式】若33×9m +4÷272m -1的值为729,求m 的值.例4: 2-1-(-23)-2+(32)0【拓展应用】(1)若3x =4,3y =6,求92x -y +27x -y 的值.(2)若26=a 2=4b ,求a +b 值.(3)比较大小:2333和4222.【能力提升】1. 下列计算正确的是( )A .a •a 2=a 3B .a +a 2=a 3C .a 3•a 3=a 9D .a 3+a 3=a 62. 计算(53)2017×(-0.6)2018的结果是( )A .-53B .53C .-0.6D .0.63.若2(3x -6)-2+(x -3)o 有意义,则x 的取值范围是( )A .x >3;B .x <2 ;C .x ≠3或x ≠2;D .x ≠3且x ≠2.4. 若a m =5,a n =6,则a m +n = .5. 计算:(-0.25)2019×42018= .6. 汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为___________________7. 已知(a m )n =a 6,(a m )2÷a n =a 3(1)求mn 和2m -n 的值;(2)求4m 2+n 2的值.8. 化简求值:(2x -y )13÷[(2x -y )3]2÷[(y -2x )2]3,其中x =2,y =-1.9. 已知常数a 、b 满足3a •3b =27,且(5a )2•(5b )2÷(125a )b =1,求a 2+b 2的值.10. 已知5a =2b =10,求1a +1b 的值.幂的运算【能力提升】答案:1. 下列计算正确的是( )A .a •a 2=a 3B .a +a 2=a 3C .a 3•a 3=a 9D .a 3+a 3=a 6 解:A .a •a 2=a 3,此选项正确;B .a 与a 2不是同类项,不能合并,此选项错误;C .a 3•a 3=a 6,此选项错误;D .a 3+a 3=2a 3,此选项错误;故选:A .2. 计算(53)2017×(-0.6)2018的结果是( )A .-53B .53C .-0.6D .0.6 解:(53)2017×(-0.6)2018=(53)2017×(-35)2018=(53)2017×(35)2017×35=35=0.6.故选:D .3.若2(3x -6)-2+(x -3)o 有意义,则x 的取值范围是() A .x >3; B .x <2 ; C .x ≠3或x ≠2;D .x ≠3且x ≠2.解:同时满足3x -6≠0,x -3≠0故选:D .4. 若a m =5,a n =6,则a m +n = .解:∵a m =5,a n =6,∴a m +n =a m •a n =5×6=30.5. 计算:(-0.25)2019×42018= .解:(-0.25)2019×42018=(-0.25)2018×42018×(-0.25)=(-0.25×4)2018×(-0.25)=-0.25.6. 汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为___________________解:0.013=1.3×10-2.7. 已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m-n的值;(2)求4m2+n2的值.解:(1)∵(a m)n=a6,(a m)2÷a n=a3,∴a mn=a6,a2m-n=a3,则mn=6,2m-n=3;(2)当mn=6、2m-n=3时,4m2+n2=(2m-n)2+4mn=32+4×6=9+24=33.8. 化简求值:(2x-y)13÷[(2x-y)3]2÷[(y-2x)2]3,其中x=2,y=-1.解:原式=(2x-y)13÷(2x-y)6÷ (y-2x)6=(2x-y)13÷(2x-y)6÷ (2x-y)6=2x-y当x=2,y=-1时,原式=5.9. 已知常数a、b满足3a•3b=27,且(5a)2•(5b)2÷(125a)b=1,求a2+b2的值.解:∵3a•3b=27,∴3a+b=33,∴a+b=3,∵(5a)2•(5b)2÷(125a)b=52a+2b÷53ab=1,∴2a+2b=3ab,∴2(a+b)=3ab=6,∴ab=2,∴a2+b2=(a+b)2-2ab=32-4=5.10. 已知5a=2b=10,求1a+1b的值.解:∵5a=2b=10,∴(5a)b=10b,(2b)a=10a,∴5ab=10b,2ab=10a,∴5ab•2ab=10b•10a,∴10ab=10a+b,∴ab=a+b,∴1a+1b=a+bab=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算提高练习题
例题:
例1. 已知453)5(31nnxxx,求x的值.

例2. 若1+2+3+…+n=a,求代数式
))(())()(123221nnnnnxyyxyxyxyx

(

值.

例3. 已知2x+5y-3=0,求yx324•的值.
例4. 已知472510225•••nm,求m、n.
例5. 已知yxyxxaaaa求,25,5的值.
例6. 若nmnnmxxx求,2,162的值.
例7. 已知,710,510,310cba试把105写成底数是10的幂的形式.
例8. 比较下列一组数的大小.
614131
92781,,
例9. 如果的值求12),0(0200420052aaaaa.
例10.已知723921nn,求n的值.

例11、计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2)

12、若x=3an,y=﹣,当a=2,n=3时,求anx﹣ay的值.
13、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.

14、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)
5
15、若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.
练习:
1、计算(﹣2)100+(﹣2)99所得的结果是( )
A、﹣299 B、﹣2 C、299 D、2
2、当m是正整数时,下列等式成立的有( )
(1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(﹣am)2(4)a2m=(﹣a2)m.
A、4个 B、3个 C、2个 D、1个
3、下列运算正确的是( )
A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3

C、 D、(x﹣y)3=x3﹣y3
4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相
反数的是( )
A、an与bn B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1
5、下列等式中正确的个数是( )
①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.
A、0个 B、1个 C、2个 D、3个

6.计算:2332)()(aa= .
7.若52m,62n,则nm22= .

6.若的值求nmmnbabba2,)(1593.

9.
10.
11.

12.
11.计算:

12.若3521221))(bababannnm(,则求m+n的值.
13.用简便方法计算:

14.下列等式中正确的个数是( )
(1)、已知32x+1·4x=1512-9x·4x+1,求x的值。
(2)、已知33x+5-27x+1=648,求x的值。
(3)、若 ,求(ab)2n的值。

12、若a、b、c都是正数,且a2=2,b3=3,c4=4,比较a、b、c的大小。

13、已知 ,比较X与Y的大小。
14、已知(x-y)·(x-y)3·(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)
的值.

计算: (1) (2)、 2-22-23-24-25-26-27-28-29+2
10
(-a-b)5(a+b)6 (2)(a-b)(a+b)(a-b)2(b-a)3(a+b)
(3) [-(-23)3]6+[-(-83)2]3 (4)24422()()aaa

1
,32nnab

11111
248162
n


99
9990
9911

,99XY
(5)233342)(aaaaa (6) (a-b)2m-1·(b-a)2m·(a-b)
2m+1

相关文档
最新文档