地表水水质检测检 测 报 告

地表水水质检测检 测 报 告
地表水水质检测检 测 报 告

地表水水质检测检测报告

长县环站检字__(2019)第___号

项目名称: 地表水水质检测

报告日期: 2019年___月___日

检测类别: 环境质量监测

××县环境保护监测站

(加盖检验检测专用章)

报告编制说明

1. 报告无本站检验检测专用章、骑缝章、章无效。

2. 报告内容需填写齐全、清楚;涂改、无审核、签发者签字无效。

3. 委托方如对本报告有疑问,请向本站办公室查询,来函来电请注明报告编号。

如有异议,请于收到本报告之日起七日内向本站提出。

4. 由委托单位自行采集的样品,本站仅对送检样品检测数据负责,不对样品来

源负责。

5. 未经本站书面批准,不得部分复制本报告。

6. 本报告复印件未重新加盖公章无效。

7. 未经本站书面批准,本报告及数据不得用于商品广告。

××县环境保护监测站

地址:××县星沙板仓路___号

邮编:___

电话:

传真:

长县环站检字__(2019)第___号第__页共__页

检测报告

一、基础信息

二、检测方法及使用仪器

长县环站检字__(2019)第___号第__页共__页

(接上页)

长县环站检字__(2019)第___号第__页共__页

(接上页)

长县环站检字__(2019)第___号第__页共__页

国家地表水环境质量监测网采测分离管理办法

国家地表水环境质量监测网采测分离管理办法 一、总则 第一条为规范国家地表水环境质量监测网采测分离管理,确保地表水环境质量监测数据真实准确,依据《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,以及国务院印发的《生态环境监测网络建设方案》和中共中央办公厅、国务院办公厅印发的《关于深化环境监测改革提高环境监测数据质量的意见》等文件,制定本办法。 第二条本办法所称采测分离,是指国家地表水环境质量监测中,按照国家考核、国家监测的原则,将样品采集和检测分析交由不同单位承担,实现样品采集与检测分析分离、水质监测与考核对象分离的监测模式。 水质自动监测站建成前,地表水采测分离监测数据是分析评价水环境质量状况及变化趋势、考核评估水污染防治成效、支撑环境执法的重要依据;水质自动监测站建成并正式运行后,以自动监测数据为主,地表水采测分离监测数据是自动监测数据的重要质控手段,也是自动监测数据的重要补充。 第三条本办法适用于国家地表水环境质量监测网采测分离监测的管理。 各省(区、市)对本行政区域内省级地表水环境质量采测分离监测可参照执行。 二、职责分工 第四条生态环境部负责国家地表水环境质量监测网采测分离的统一管理,制定采测分离管理制度,组织开展监督检查。中国环境监测总站受生态环境部委托,负责采测分离的组织实施,以标准化、规范化和信息化为重点,制定采测分离实施计划和质量保证、质量控制方案,对监测的全过程质量控制体系负责。 第五条省级生态环境主管部门负责本行政区内国家地表水环境质量监测网采测分离的协调保障;按照统一规范要求,组织设立和维护国家地表水环境质量监测断面(点位)断面桩;负责组织水质变化原因分析,并及时处理水质异常

河流断面水质自动监测站方案(常规参数)20150707

水质自动监测站建设方案 编制单位:榆林兴源电子科技有限公司编制时间:2015年07月

目录 一、水质在线自动监测系统概述 (2) 二、水质在线自动监测系统设计依据 (3) 三、水质在线自动监测系统详述 (4) 3.1 采配水单元 (4) 3.2 预处理单元 (4) 3.3 清洗单元 (6) 3.4系统控制单元 (6) 3.5 数据采集、传输和远程监控 (9) 四、水质在线自动监测仪器 (10) 4.1 五参数分析仪(德国科泽 K100 W系列) (10) 4.2 高锰酸盐指数(德国科泽 K301 COD Mn A) (13) 4.3 氨氮分析仪 (德国科泽K301 NH4 A ) (16) 五、项目预算 (18)

一、水质在线自动监测系统概述 在线水质自动监测系统是以自动监测设备——在线水质分析仪为核心,结合现代的计算机(包括软件)技术、自控技术、网络通讯技术、流体取样术等先进技术手段高度集成的一套完整的自动分析系统。它可以有效地分析来水的各项水质参数,并对水样进行自动留样。同时可利用水质模型功能软件对水质变化趋势进行有效的预测预警,也可以根据实时水质参数之间的关联组合所表现的综合性质,为决策人员提供大量客观详实的有效数据和判断依据。 通常水质在线自动监测系统包括自动分析仪器、取样单元、配水单元、预处理单元、数据采集单元、通讯单元和控制单元;除此以外,还包括清洗除藻、纯水、供电、防雷等辅助单元。水样通过取样设备自动抽取到指定位置,由中控设备控制相应的管路和阀门对水样进行初步的预处理后再进行有针对性的分类处理,合理分配给相应的水质分析设备,分析设备采用符合国家统一颁布的标准方法对水样进行分析测量,并将测量得到的结果传输到数据采集设备,最后由数据采集设备统一发送到远程服务器。在现场,中控设备通常可以对各个系统进行简单的控制,并将测量结果实时显示在中控监视器上。在远程控制中心,一方面通过有功能强大的数据平台,可以把接收来自各站点的监控系统相关信息,汇总得到各种数据报表,并可对数据进行分析处理。先进的数据平台还能结合水质模型功能软件对水质数据进行分析评估以及预测、预警。 本项目监测以下7个常规参数:水温、PH、电导率、DO、浊度、高锰酸盐指数、氨氮。

地表水环境质量现状监测

地表水环境质量现状监测方案 广州中科检测技术服务有限公司 一、地表水环境质量现状监测 1、监测断面设置 在该项目污水纳污河道A河设置5个监测断面,分别为该项目污水排口A与B河交叉处、排污口、排口下游1000米、排口下游2000米、排口与C河。 2、监测项目 监测项目为:水温、pH、SS、石油类、总磷、COD、BOD5、DO、NH3-N、硫化物、TN,共11项。 3、采样时间、频率及分析方法 监测分析方法按《地表水及污水监测技术规范》(HJ/T91- 2002)中有关规定进行。 二、地下水水质现状监测 1、监测点设置 布设3个监测点,厂区范围内一个点,及厂区附近两个点。 2、监测项目 地下水监测项目为:pH、高锰酸盐指数、氨氮、氯化物、硫酸盐、硝酸盐氮、亚硝酸盐氮、总大肠菌群、铅、铬、镉、汞、砷,共13项。 监测分析方法按《地表水及地下水监测技术规范》中有

关规定进行。 三、大气环境现状监测 1、监测点布设 拟建厂址上风向、下风向及保护目标区域布设4个测点,主要考虑评价区范围内的主要居民敏感点,在敏感点处要布点监测。 大气监测布点一览表 2、监测项目 监测项目为NO2(小时值和日均值)、SO2(小时值和日均值)、PM10(日均值)、氨气、非甲烷总烃、臭气浓度、乙二醇、环氧丙烷、环氧乙烷、三乙胺、甲苯、甲醇、二苯醚(小时值),同时记录风向、风速、气温、气压等气象参数。

3、监测频率及时间 小时浓度每天四次;日均浓度按国家标准和导则要求采样七天; 4、监测方法 污染物分析方法按《环境空气质量标准》(GB3095-1996)规定方法进行。 四、声环境质量现状监测 在场界四周布设4个监测点(厂界四周各一个),连续监测两天,昼夜各一次。测量方法按《声环境质量标准》(GB/3096-2008)进行。 五、土壤环境质量现状监测 监测布点:在场界内及周边共布设2个监测点; 监测因子:pH、铜、铅、锌、铬、镍、汞、镉、砷; 监测频率:采样一次。 六、底泥环境质量现状监测 监测布点:在排口位置布设1个监测点; 监测因子:pH、铜、铅、锌、铬、镍、汞、镉、砷; 监测频率:采样一次。

地表水水质检测

地表水水质检测 中国科学院广州化学研究所分析测试中心 卿工---189—3394--6343 中科检测作为中国科学院独立的第三方检测技术服务机构,其中生态环境事业 业的优势,可为政府相关部门、企事业单位提供全流程技术服务,多年来,中科检测为生产、科研、贸易、政府管理、诉讼、技术引进、商务仲裁等活动提供了大量优质的分析测试技术和客观公正的评估鉴别服务,为企业科技创新提供了强有力的分析测试共性技术支撑。 服务内容: ●土壤环境调查、污染场地风险评估; ●污染场地治理与修复效果监测评估; ●重点企业隐患排查 ●地表水水质检测 ●环境风险评估 ●建设项目竣工环境保护验收 ●企业清洁生产审核验收 ●在产企业土壤与地下水监测 ●突发环境事件风险评估 ●LDAR(挥发性有机物泄漏检测与修复) ● VOCs减排及监测一站式解决方案 ●固体废物鉴定、管理与综合利用全过程解决方案 ●危险废物鉴定、管理与综合利用全过程解决方案 ●工业固废综合利用评价与鉴定 ●生态环境损害评估与鉴定 ●地表水水质检测 ●环境健康安全与评价 ●有机污染物及重金属监测分析

●环境有毒有害物质模型分析与评估 ●地球物理勘探 ●协助责任单位完成其他相关备案程序。 相关法规、规范、政策、文件: (1)《大气污染物无组织排放监测技术导则》(HJ/T55-2000); (2)《建筑设计防火规范》(GB 50016—2014)。 (3)《环境空气质量标准》(GB3095-2012); (4)《地表水环境质量标准》(GB3838-2002); (5)《声环境质量标准》(GB3096-2008); (6)《污水综合排放标准》(GB8978-1996); (7)《工业企业厂界噪声排放标准》(GB 12348-2008); 地表水水质工作内容: 依据地表水水域环境功能和保护目标,按功能高低依次划分为五类:Ⅰ类:主要适用于源头水、国家自然保护区; Ⅱ类:主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水生生物栖息地、鱼虾类产卵场、仔稚幼鱼的索饵场等; Ⅲ类:主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、洄游通道、水产养殖区等渔业水域及游泳区; Ⅳ类:主要适用于一般工业用水区及人体非直接接触的娱乐用水区; Ⅴ类:主要适用于农业用水区及一般景观要求水域。 对应地表水上述五类水域功能,将地表水环境质量标准基本项目标准分为五类,不同功能类别分别执行相应类别的标准值。水域功能类别高的标准值严于水域功能类别低的标准值。同一水域兼有多类使用功能的,执行最高功能类别对应的标准值。实现水域功能与达标功能类别标准为同一含义。 河流水质检测 必测项目:水温、pH、悬浮物、总硬度、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、挥发酚、氰化物、氟化物、硫酸盐、氯化物、六价铬、总汞、总砷、镉、铅、铜、大肠菌群。

地表水水质自动监测系统简介

地表水水质自动监测系统简介 随着水质自动监测技术的不断改进,地表水水质自动监测系统在我国地表水监测中得到了广泛的应用,并取得了较大的进展。地表水水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统,可统计、处理监测数据;打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料以备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动回复功能;远程故障诊断,便于理性维修和应急故障处理等功能。 实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。 1、地表水水质自动监测系统的选址: 地表水水质自动监测系统所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。 2、地表水水质自动监测系统建设需考虑: 必须保证电力供应、通讯畅通、自来水供应。 站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。 周围环境的交通便利。 站点建设费用较大,在选址是考虑长期使用性。 3、地表水水质自动监测系统基本功能: 仪器基本参数和监测数据的贮存、断电保护和自动恢复 时间设置功能、设定监测频次。

地表水水质监测的方案

地表水水质监测方案 一.明确监测目的 (1)对校园内教学区、生活区、实验区、食堂商业区、校园景观的用水及水质进行监测,掌握校园水质情况。 (2)进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各中指标与污染物的测定方法。 (3)学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。 二.基础资料的收集 广州大学图书馆至生化楼实验区域的水域进行监测,该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下: 1.地形地貌 广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带,地形总的特征是东北高,西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300m 一下,地形高差250m左右,坡度15°~35°,水系呈树枝状,切割强烈。西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7m,其中分布零星的残丘和苔地。 2.气象 广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,北部21.4℃,中部21.7℃,南部21.9℃。最热是7~8月,平均气温28.0℃~ 28.7℃,绝对最高气温是38.7℃。年平均降雨量172517mm,相对集中在4 ~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量160315mm。 3.水文 珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011Km2,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位位0.72m,平均低潮水位为-0.88m,涨潮最大朝差2.56m,落潮最大潮差3.00m。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,宽约4.5m,水深约1.5m,流经生化实验楼和工程实验楼,水质受到这两次污染源的影响。监测河段在学校的位置示意图如下:

地表水水质自动监测系统集成项目招标要求

地表水水质自动监测系统集成项目招标要求 评分标准 1、在测量池、沉沙池、过滤装置等关键配水环节有较好的技术方案加3分; 2、有水质自动监测系统集成相关软件著作权的每项加1分,最多加2分; 3、有水质自动监测系统集成相关专利的,每项发明专利加3分,实用新型专利加2分,最多加5分; 一、系统总体要求 1、应适应项目的实际情况,针对每个站点,提供合理、完整的方案。整体方案和技术应符合国家地表水监测相关要求。应根据不同的水站提供满足水站室外采水要求的设计方案。 2、提供的方案要求系统性能稳定,监测数据可靠,代表性强,运行费用低,维护工作量小。系统应具有一定的先进性、安全性和扩展性。 3、应提供原装、全新的、符合国家及用户提出的有关质量标准的设备,其性能应达到或优于参考指标表中所列技术指标。 4、系统的自动化程度高,可实现全范围的远程监控以及诊断,响应及时、控制准确、预警可靠;日常运维实现信息化管理。

的各项参数,系统具有良好的扩展性。 6、现场和监控中心数据传输应符合相关环保部门规定的自动监测监控数据传输规约。 二、水质自动监测系统集成技术要求 1、设计目标 1.1、应适应项目的实际情况,提供合理、完整的方案。整体方案和技术应符合国家地表水监测相关要求。 1.2、提供的方案要求系统性能稳定,运行费用低,维护工作量小,维护方便,易局部更换。 1.3、提供所需要的辅助设备,包括UPS不间断供电电源、三级防雷等。 1.4、系统应具有抗电磁干扰能力,同时需配备稳定的电力供应系统。 1.5、系统工艺流程简捷,组成精简,力求使系统设备的投资尽量合理。 1.6、管线布置通畅合理,管材选择确保系统能长期有效运行。 1.7、系统的自动化程度高,可实现远程监控;管路、沉沙池、五参数池、采样杯等应具备有效的自动清洗功能并易于手工拆洗。 1.8、系统中关键部件应使用优质知名产品。

水质自动监测系统综述

水环境质量自动监测技术的发展(2004-4-23) 水质污染自动监测系统(WPMS)是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、 自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测体系。 WPMS可尽早发现水质的异常变化,为防止下游水质污染迅速做出预警预报,及时追踪污染源,从而为管理决策服 务。 1 国内外现状 1.1 国外发展概述 水质自动监测在国外起步较早。1959年美国开始对俄亥俄河进行水质自动监测;1960年纽约州环保局开始 着手对本州的水系建立自动监测系统;1966年安装了第一个水质监测自动电化学监测器;1973年全国水质监测 系统分为12个自动监测网,每个自动监测网由4—15个自动监测站组成;1975年在全国各州共有13000个监测 站建成为水质自动监测网。在这些流域和各州(地区)分布设置的监测网中,由150个站组成联邦水质监测站网 ——即国家水质监测网(NWMS)。 日本1967年开始考虑在公共水域设立水质自动监测器;1971年以后,由环境厅支持,开始在东京、大阪等 地建立水质自动监测系统;到1992年3月,已在34个都道府县和政令市设置了169个水质自动监测站。除此之外 ,建设省在全国一级河流的主要水域也设置了130个水质自动监测站。 英国泰晤士河是世界上水环境污染史最长的河流,至19世纪末河道鱼虾绝迹。1974年成立泰晤士水务管理

局(TWA),取代了原来200多管水机构。为了加强水环境监测,1975年建成泰晤士河流域自动水环境监测系统。 该系统由一个数据处理中心(监控中心站)和250个子站组成。 欧美及日本等国在20世纪70年代已有便携式水质监测仪出售,但属于瞬时测定仪。连续多参数水质测定仪 是在80年代才开始使用的。在监测设备方面,广泛应用现代尖端的微电子技术、嵌入式微控制器技术,并做到 智能化的数据采集、分析和运算,水质监测完全实现了自动化。目前,世界上已建成的WPMS类型较多,既有全 自动联机系统,也有半自动脱机系统,例如澳大利亚GREENSPAN公司,德国GIMAT 公司,美国的ISOC、HYDROLAB 等公司,日本日立制作所和卡斯米国际株式会社等都生产有技术成熟的在线水质自动监测系统,但大部分是以监 测水质污染的综合指标为基础的,包括水温、混浊度、pH值、电导率、溶解氧、化学需氧量、生化需氧量、总需 氧量和总有机碳等。 单项污染物浓度自动监测系统还处于研究试验阶段,挪威科技大学(NTNU)开发出了重金属连续远程监控 技术。该技术使用以牙汞合剂为电极材料的阳极脉冲溶出伏安法,监测重金属含量,测定灵敏度可达到ppb(μg /L)级。美国SENTEX公司研制出了挥发性有机物(VOCs)连续监测系统,附有报警功能,它利用吹扫捕集-气 相色谱法自动监测大气、水及土壤中VOCs,测定灵敏度可达到ppb(μg/L)级。 总的来看,在现有水污染连续自动监测系统中,水质污染监测项目尚有限,尤其是单项污染物浓度监测项目 还是比较少,例如重金属、有毒有机物项目的自动监测仪器较缺乏。现有单项污染物浓度检测仪器在性能方面还

环境监测中地表水监测现状及进展

环境监测中地表水监测现状及进展 发表时间:2016-12-28T14:29:16.303Z 来源:《基层建设》2016年29期作者:刘基华[导读] 摘要:随着我国经济的快速发展以及科学技术水平的不断进步,包括工业在内的很多产业都得到了快速的发展。 南通化学环境监测站有限公司江苏省南通市 226000 摘要:随着我国经济的快速发展以及科学技术水平的不断进步,包括工业在内的很多产业都得到了快速的发展。虽然推动了经济和人民生活水平的发展,但是也给我国的环境带来了严重的污染,其中地表水资源的状况正在逐日恶化。对地表水环境进行监测,可以为制定预防污染方案提供参考依据,有助于制定水质监测标准。文章分析了环境检测中地表水监测的现状及进展,提出推进地表水监测发展的有 效策略。 关键词:地表水监测;现状;进展;对策 1.前言 随着经济和科学技术的快速发展,我国的工业水平也得到了很大的提高。在工业发展的同时,环境污染问题也随之而来,其中地表水的污染情况正在逐日加重,地表水环境质量与人们的实际生活及生产有着密切的联系,如不对地表水的污染情况进行有效改善,必将严重影响着人们的健康水平。在水资源管理中,水环境监测是其重要组成部分,通过监测水环境的污染物,评估其中的污染原因,以便为防止污染提供技术支持。由于我国目前的地表水环境的污染越来越严重,所以在这个背景下必须加大监测任务,完善监测技术,加强对地表水的监测力度,为保护水资源以及预防水污染提供有力保障。 2.地表水监测的内容及意义 不同时期的地表水监测内容也不同,每一个月的1号到10号是我国地表水监测的主要时间,不同的监测对象应该运用不同的监测方法。比如监测河流时,其pH值、COD、氨氮、汞含量、铅含量、石油类及水温等是监测河流的主要内容,而监测水库、湖泊时,要在监测河流内容的基础上再对水位、透明度、总磷及总氮等进行监测[1]。 地表水监测的意义主要有两大点:第一,加强提高地表水监测的技术,能有效完善我国的环境监测体系,在我国环境监测中,地表水监测是其一项重要内容,积极探究地表水监测存在的问题并对其改进,有效提升监测技术和水平,从而促进和完善我国环境监测体系的发展;第二,对地表水进行监测,可以在一定程度上减少水体污染,加大民众的用水安全,在我们的工作生活中,水是必不可少的,如果水体遭受到污染,将会严重影响到人们的工作和生活,甚至会导致多种疾病的发生,我国是一个以发展工业带动经济增长的发展中国家,环境因此遭到了极大的污染,水体污染成为了一个比较严重的问题,另外,伴随着人们生活水平的提高,居民对于水资源的需求逐渐加大,而污水处理厂的数量根本满足不了人们的需求,所以,监测我国的地表水可以有利于减少水体污染,保障人们的用水安全。 3.环境监测中地表水监测的现状 3.1监测的技术与设备有待改进 我国现有的监测技术和设备,与发达国家相比,明显是处于相对落后的地位,所应用的技术和设备不够先进,在充分应用现代化监测技术这个方面存在着一定的不足和缺陷,使得对一些地表水污染物的类型以及污染情况的把握不够精准,因此,在监测的技术与设备这个方面还有待改进。 3.2地表水社会监测从业人员队伍不足且专业化程度不高 自从我国重视环境监测以来,也伴随着许多专业技术人才投身进入地表水监测行业当中,江苏省甚至全国范围内放开监测市场,让更多的社会环境机构参与到环境监测这项长期的战斗当中,通过不同途径的培训和交流,逐渐形成了一个系统的社会环保保护网,为日益加重的地表水污染状况做出自己的一份力量,然而目前我国现在的监测队伍明显不足,且队伍人员由于缺乏实践等原因,个人的能力与专业水平还是存在有一定的偏差,专业化程度还有待逐步提高。 3.3水环境监测分析方法不完善导致的处理能力较低 最近几年,我国一些社会环境监测机构存在着许多环境监测质量的问题,原因大都是因为社会监测机构的从业人员对水环境监测方法的认知程度不够导致监测分析数据不合理,严重影响了监测分析数据的可靠性,大大减少了地表水环境监测的质量,在很大程度上浪费了人力和财力[2]。目前,我国还没有对水体中的所有污染因子制定分析方法,只能借助不同行业的分析方法,从而达不到环境管理的要求。另外,地表水环境的工作量在不断的增加着,我国的监测能力以及信息处理能力处于较低的水平,不利于提升监测数据的针对性和有效性。 4.完善和推进地表水环境监测水平质量的措施 4.1加大资金投入,引进先进设施设备 结合实际地表水监测的情况,不管是技术还是设备,都与发达国家相差甚远,我们应该正视这种差距,加大投入资金,引进先进的设施设备,提高地表水监测的科学技术水平,使用先进地表水自动监测设施设备监测污量,做到手动监测和自动监测相结合,更精准的监测污染物种以及污染程度,提高监测质量和效果。同时,先进的设施设备还可以针对不同的水域采用不同的检查方法,大大提高了监测的准确性和工作效率。 4.2加大对监测人员的培训,提高专业化程度 建立健全管理制度,提高监测队伍的整体素质,加大对监测人员的培训工作,提高其专业化程度。对工作人员的有效培训与提升环境监测行业有着密切的联系,不管是从理念上还是从实际上都应该加强对监测人员的培训。可以通过开展定期的教育培训、制定竞争上岗制度、引入高校专业人才实施有效交流等等方式来实现对监测人员的培训,提高专业化程度。 4.3提高数据准确度,增强信息处理能力 对地表水监测的过程和环节,应进行严格的监督和控制,加强质控环节,进行地表水采集和分析的工作时,要科学分析待测物质,对一些影响监测效果的成分并采取处理措施,及时排除干扰因素,将已排除干扰因素的待测物品浓缩到仪器的监测范围内,增强分析的精准度。做好采样以及对样品的运输和保存等工作,对地表水采集样品时,应选取没有被污染的水资源,科学进行分析[3]。加大监测的信息化投入,提高监测的信息化水平,加大程度满足监测任务的需求,提高检测数据的准确度,增强信息处理能力。 5.结束语

地表水水质监测方案1

地表水水质监测方案 —大学城广州大学校园内水质监测 一.明确监测目的 (1)对校园内教学区、生活区、实验区、食堂商业区、校园景观的用水及水质进行监测,掌握校园水质情况。 (2)进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各中指标与污染物的测定方法。 (3)学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。 二.基础资料的收集 广州大学图书馆至生化楼实验区域的水域进行监测,该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下: 1.地形地貌 广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带,地形总的特征是东北高,西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300m 一下,地形高差250m左右,坡度15°~35°,水系呈树枝状,切割强烈。西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7m,其中分布零星的残丘和苔地。 2.气象 广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,北部21.4℃,中部21.7℃,南部21.9℃。最热是7~8月,平均气温28.0℃~ 28.7℃,绝对最高气温是38.7℃。年平均降雨量172517mm,相对集中在4 ~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量160315mm。 3.水文 珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011Km2,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位位0.72m,平均低潮水位为-0.88m,涨潮最大朝差2.56m,落潮最大潮差3.00m。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,宽约4.5m,水深约1.5m,流经生化实验楼和工程实验楼,水质受到这两次污染源的影响。监测河段在学校的位置示意图如下:

水质在线监测仪器发展现状(DOC)

水质在线监测仪器发展现状 水质在线监测仪器作为水质在线自动监测系统的核心,运用现代传感器技术、自动测量技术、自动控制技术等,采用化学法、电化学法、光谱法等分析方法,能对水质参数进行实时连续在线测量和分析。水质在线监测仪器主要监测对象有:化学需氧量(COD)、氨氮、总氮、总有机碳(TOC)、总磷、锑、砷、铜、汞、铬、金属离子、pH值、电导率、浊度、溶解氧等。 1 COD在线监测仪器发展现状 化学需氧量(COD)是指水体中易被强氧化剂氧化的还原性物质所消耗的氧化剂的量,以氧的mg/L来表示,反映了水体中受还原性物质污染的程度,这个指标是为了了解水中的污染物将要消耗多少氧。 1.1 COD在线监测仪器的技术原理 目前COD在线监测仪器的主要技术原理有6种: 1)重铬酸盐法-光度比色法; 2)重铬酸盐法-库仑滴定法; 3)重铬酸盐法-氧化还原滴定法; 4)电化学氧化法-氢氧基及臭氧(混合氧化剂)氧化法; 5)电化学氧化法-臭氧氧化法; 6)紫外吸收法(UV法)。 为便于比较,可将以上6种技术原理归为三类:重铬酸盐法、电化学氧化法和紫外吸收法(UV法)。 1.1.1 重铬酸盐法 1)重铬酸盐法根据测得数值的方法不同分为光度比色法、库仑滴定法、氧化还原滴定法。通常在一定的温度下,在强酸溶液中用一定量的重铬酸钾氧化水样中还原性物质,经过高温消解后,Cr6+被水中还原性物质还原为Cr3+。再使用分光光度计、库仑滴定、氧化还原等方法测得数值,利用该数值与试样中氧化还原物质浓度的关系进行定量分析。

2)该类是国家推荐使用的方法,有测量准确、测量范围广、技术成熟等优点。 3)但该类仪器也存在以下问题:①测量时间相对较长,一旦水质突变,有可能无法及时监测;②通常采用加温或加压的办法提高消解速度,增加了设备的复杂性,易故障;③产生强腐蚀性、含有毒的重金属离子废液,易腐蚀管路,同时会产生二次污染。 1.1.2 电化学氧化法 1)电化学氧化法根据所使用的氧化剂不同分为氢氧基及臭氧(混合氧化剂)氧化法和臭氧氧化法。电化学氧化法采用三电极设计,包括工作电极、辅助电极和参比电极。工作电极(即阳极):该电极头表面镀PbO2,接电源正极,发生的是氧化还原反应。在一定的工作电压下,溶液中的OH-在PbO2的表面放电产生OH 基,具有很强的氧化性。辅助电极(即阴极):该电极也是铂电极,接电源负极,发生的是还原反应。信号电流通过阴、阳两极。参比电极:该电极独立于信号电流以外,自身电位稳定,作为工作电极的电位参照,当水样与电解液定量进入测量池时,有机物被工作电极表面所产生的OH基所氧化,而氧化过程所消耗的电流大小与水样的COD值的大小成线性关系。只要将氧化所消耗的电流信号通过检测、放大与处理就可知与水样浓度相对的COD值。 2)电化学氧化法测量时间较短,运行可靠,OH基通常能将有机物100%氧化,不存在选择性问题,测量范围较广,适用于各种场合的废水。采用该原理的在线监测仪器结构相对简单,由于是链式反应,基本上不消耗电解液。 3)电化学氧化法不属于国标或推荐方法,在应用时,需要将其分析结果与国标方法进行比对试验并进行适当的校正。同时电化学氧化法的在线监测仪器需要添加温度补偿。 1.1.3 紫外吸收法(UV法) 1)UV是Ultraviolet Ray(紫外线)的简称,UV计是应用紫外线吸光度原理,用双波长吸光度测定法测量水中的有机污染物浓度的一种自动在线监测仪器。由于各种有机物对254nm的紫外光大多有吸收,通过测定污水对UV254的吸收程度得到UV吸收值,在通过UV值与COD之间的线性关系式就可以自动换算出所测水样的COD值。同时UV计利用波长为550nm的参比光可以自动校正浊度、电源的波动、元器件老化等因素对测量结果的干扰,从而提高测量精度。 2)UV法不用试剂,不用取样,对样品条件没有任何限制,不需要样品的预处理,因此结构简单,故障率低。适用于市政污水宏观监测、水质变化比较稳定的环境,对水中的一大类芳香族有机物和带双键有机物尤为灵敏,对苯类、苯环

地表水水质标准

地表水水质标准

您的位置:首页>>法律法规>>标准 地表水环境质量标准 (GB 3838-2002) GB 3838-2002 代替GB 3838-88 GHZB 1-1999 批准日期2002-04-26 实施日期2002-06-01 目次 前言 1 范围 2 引用标准 3 水域功能和标准分类 4 标准值 5 水质评价 6 水质监测 7 标准的实施与监督 表1 地表水环境质量标准基本项目标准限制 表2 集中式生活饮用水地表水源地补充项目标准限制 表3 集中式生活饮用水地表水源地特定项目标准限制 表4 地表水环境质量标准基本项目分析方法 表5 集中式生活饮用水地表水源地补充项目分析方法 表6 集中式生活饮用水地表水源地特定项目分析方法 前言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,防治水污染,保护地表水水质,保障良好的生态系统,制定本标准。 本标准将标准项目分为:地表水环境质量标准基本项目、集中式生活饮用水地表水源地补充项目和集中式生活饮用水地表水源地特定项目。地表水环境质量标准基本项目适用于全国江河、湖泊、运河、渠道、水库等具有使用功能的地表水水域;集中式生活引用水地表水源地补充项目和特定项目适用于集中式生活饮用水地表水源地一级保护区和二级保护区。集中式生活引用水地表水源地特定项目由县级以上人民政府环境保护行政主管部门根据本地区地表水水质特点和环境管理的需要进行选择,集中式生活引用水地表水源地补充项目和选择确定的特定项目作为基本项目的补充指标。 本标准项目共计109项,其中地表水环境质量标准基本项目24项,集中式生活饮用水地表水源地补充项目5项,集中式生活饮用水地表水源地特定项目80项。 与GHZB 1—1999相比,本标准在地表水环境质量标准基本项目中增加了总氮一项指标,删除了基本要求和亚硝酸盐、非离子氨及凯氏氮三项指标,将硫酸盐、氯化物、硝酸盐、铁、锰调整为集中式生活引用水地表水源地补充项目,修订了pH、溶解氧、氨氮、总磷、高锰酸盐指数、铅、粪大肠菌群等七个项目的标准值,增加了集中式生活饮用水地表水源地特定项目40项。本标准删除了湖泊水库特定项目标准值。 县级以上人民政府环境保护行政主管部门及相关部门根据职责分工,按本标准对地表水各类水域进行监督管理。 于近海水域相连的地表水河口水域根据水环境功能按本标准相应类别标准值进行管理,近海水功能区水域根据使用功能按《海水水质标准》相应类别标准值进行管理。批准划定的单一渔业水域按《渔业水质标准》进行管理;处理后的城市污水及与城市污水水质相近的工业废水用于农田灌溉用水的水质按《农田灌溉水质标准》进行管理。 《地面水环境标准》(GB 3838—83)为首次发布,1988年为第一次修订,1999年为第二次修订,本次为第三次修订。本标准自2002年6月1日起实施,《地面水环境标准》(GB 3838—83)和《地表水环境标准》(GHZB—1999)同时废止。 本标准由国家环境保护总局科技标准司提出并归口。 本标准由中国环境科学研究院负责修订。 本标准由国家环境保护总局2002年4月26日批准。 本标准由国家环境保护总局负责解释。

地表水水质自动监测系统介绍

地表水水质自动监测系统介绍 一、地表水水质自动监测系统意义及现状 实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个;(2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 二、地表水质自动监测站仪器配置与运行方式

水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心。 为充分发挥已建成的100个国家地表水质自动监测站的实时监视 和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。

地表水水质自动监测站

近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况。 水站的选址: 水质自动监测站所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。 站房建设需考虑的因素有: 1 必须保证电力供应、通讯畅通、自来水供应。 2 站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。 3 周围环境的交通便利。 4 站点建设费用较大,在选址是考虑长期使用性。 监测因子: 水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮等 水站分类: 1 分心小屋式水质自动监测站 分析小屋式水质自动监测站,站房材质多为彩钢板或不锈钢板,表现做喷塑或烤漆处理,具备完善的供水、供电、防雷、接地、密封、保暖、网络通讯以及视频监控功能,仪表多采用壁挂方式安装,适用于用占地面积有限、地理情况复杂、项目建设周期较短、有移址或调整监测点位需求的水站建设。 监测指标: 水温、PH、溶解氧、电导率、浊度、COD、BOD、TOC、DOC、硝酸盐、亚硝酸盐、H2S、TSS、UV254、NO2-N、BTX、色度、指纹图和光谱报警、氨氮、叶绿素a、蓝绿藻、磷酸盐、盐度、氯化物、氟化物等 配备仪器: 分析小屋式全光谱水质自动监测法内部结构图 系统特点:

1.管路设计精细、科学 2.测量池、预处理均为专利设计 3.建议应用全光谱测量技术 4.维护量小、运行稳定 5.占地小,施工周期短,可移址 6.适宜于高温、低温环境下水站运行要求 7.实时在线,即插即测 8.无需试剂,无二次污染 9.自动清洗,降低维护 10..一套系统,多种参数 11.全光谱指纹图,智能报警 12.安装便捷,适应各种应用条件 13.3D指纹图能够分析紫外及可见光的吸收全光谱,从而能额外提供水质变化的整体信息 14.设备运行及记录管理、质量控制,实时数据有效性和事件甄别及预报警。 2 集装箱式水质自动监测站 集装箱式水质自动监测站,是基于标准化集装箱进行集成成安装的一套完整的水质在线监测系统,将监测系统所有组成单元安装于标准的集装箱内,形成一种规格化、标准化的集成模式,便于系统的快速生产、现场快速安装调试,并在需要时可方便起吊、移址。 监测指标: 水温、PH、溶解氧、电导率、浊度、COD、BOD、TOC、DOC、硝酸盐、亚硝酸盐、H2S、TSS、UV254、NO2-N、BTX、色度、指纹图和光谱报警、氨氮、总磷、总氮、高锰酸盐指数、重金属、叶绿素a、蓝绿藻、磷酸盐、盐度、氯化物、氟化物等 “西安世园会”水质安全保障项目浐河水质自动监测站浐河水质自动监测站采样平台 配备仪器: 集装箱式传统分析方法水质自动监测站

水质在线监测系统

水质在线监测系统,通过建立无人值守实时监控的水质自动监测站,可以及时获得连续在线的水质监测数据( 常规五参数、COD、氨氮、重金属、生物毒性等),利用现代信息技术进行数据采集并将有关水质数据传送至环保信息中心,实现环保信息中心对自动监测站的远程监控,有利于全面、科学、真实地反映各监测点的水质情况,及时、准确地掌握水质状况和动态变化趋势。水质在线监测系统由水质在线分析仪、采样系统、辅助参数监测系统等组成。 其中水质在线分析仪是基于紫外全光谱技术的连续在线式水中有机物浓度分析仪,在水质的在线监测方面与传统的COD化学法和现有的紫外单/双波长法相比均具有非常明显的技术优势,同时给用户的使用带来了明显的经济效益,具体表现如下: 与传统的COD化学法在线监测设备想比,在技术上具有结构简单、可靠性高、响应速度快(1秒钟一个数据)实时性高、不存在二次污染等特点,从经济效益上讲水质在线分析仪具有运行费用低、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。 与现有的紫外单/双波长法(利用污水在254nm处的吸光度与污水中COD之间的线性关系测定COD浓度)相比具有测试准确度高、检测范围宽、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。这是因为单波长法仅能对有机污染物组分较为单一的污水或者污水中所含有机污染物组分相对固定的污水进行COD的测定,而对于污染物组分复杂多变的样品由于吸光度与COD之间的相关性较差直接导致测试结果的误差增大。紫外全谱扫描技术则通过污水的紫外光谱数据与有机污染物浓度之间所建立的数学模型来预测水中有机污染物的浓度,由于模型本身的外推能力会使测试准确度随着用户的使用时间增长而愈来愈高。在检测范围上采用专利型在线稀释装置,可以满足在不更换或调整比色皿的

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m 左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,有着树枝状般的水系。

2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人类活动主导的,其生态系统也极大地收到人类活动的影响,已非自然状态下的生态系统,具有其自身独特的特点。

相关文档
最新文档