2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析
湖南省邵阳市2019年中考数学真题试题(含解析)

一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414 C.D.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2 B.∠2=∠3 C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m37.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x 元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x<0)的图象经过线段OA的中点B,则k=.14.(3分)不等式组的解集是.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8分)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:=2是有理数;是无理数;故选:C.2.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.4.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.5.【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.【解答】解:的相反数是﹣;故答案为﹣;12.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣214.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.15.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;16.【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;17.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:418.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;20.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.21.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.22.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.23.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.24.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.25.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=26.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A、E、F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A、E、F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
2019年湖南省邵阳市新邵县中考数学模拟试题含答案(Word版)

2019年湖南省邵阳市新邵县中考数学模拟试题考试时间:100分钟满分:120分姓名:__________ 班级:__________考号:__________一、选择题(每小题四个选项中,只有一项最符合题意。
本大题共10个小题,每小题3分,共30分)1.无理数的整数部分是()A. 4B. 5C. 6D. 72.因式分解3y2﹣6y+3,结果正确的是()A. 3(y﹣1)2B. 3(y2﹣2y+1)C. (3y﹣3)2D.3.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为()A. 120°B. 100°C. 60°D. 20°4.下列图形“线段、角、等腰三角形、平行四边形、圆”,其中既是轴对称图形,又是中心对称图形的有()A. 2个B. 3个C. 4个D. 5个5.用显微镜测得一个H1N1病毒细胞的直径为0.00 000 000 129m,将0.00 000 000 129用科学计数法表示为( )A. 0.129×10-8B. 1.29×109C. 12.9×109D. 1.29×10-96.过点Q(0,4)的一次函数的图象与正比例函数y=kx的图象相交于点P(1,2),则这个一次函数图象的解析式是()A. y=2x+4B. y=-2x+4C. y=2x-4D. y=-2x-47.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,若AB=2,BC=4.则DC的长度为()A. 1B.C. 3D. 28.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A. x+1=2(x﹣2)B. x+3=2(x﹣1)C. x+1=2(x﹣3)D. x-1=+19.如图,四边形ABCD是⊙O的内接四边形,点E是DC延长线上一点,且CB=CE,连接BE,若∠E=40°,则∠A的度数为()A. 90°B. 100°C. 110°D. 80°10.下列说法中,正确的是()A. —个游戏中奖的概率是,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小二、填空题(本大题共8小题;共24分)11.互为相反数的两数在数轴上的两点间的距离为11,这两个数为________.12.已知关于x的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为________.13.若一个多边形的每个外角都是,则这个多边形是________边形.14.如图,▱ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣3),顶点C,D在双曲线y= 上,边AD交y轴于点E,且▱ABCD的面积是△ABE面积的8倍,则k=________.15.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有________名.16.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是________.17.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为________.18.如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y= (x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=________.三、解答题(本大题共8小题;共66分)19.计算题(1)计算:(﹣π)0﹣6tan30°+()﹣2+|1﹣|.(2)解不等式组,并写出它的所有整数解.20.先化简,再求值:(x-1)2+x(3-x),其中x= .21.如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.22.在学校组织的知识竞赛中,八(1)班比赛成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将八(1)班成绩整理并绘制成如下的统计图.请你根据以上提供的信息解答下列问题:(1)请根据统计图的信息求出成绩为C等级的人数。
2019年湖南省邵阳市中考数学试卷(答案解析版)

2019年湖南省邵阳市中考数学试卷(答案解析版)2019年湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,属于无理数的是()A.3B.1.414C.√2D.√42.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10−11元D.0.57×1012元4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180∘D.∠1+∠4=180∘5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价数目3元 14本4元 11本5元 10本6元 15本下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.以下计算正确的是()A.(−2ll2)3=8l3l6B.3ll+2l=5llC.(−l2)⋅(−2l)3=−8l5D.2l(ll2−3l2)=2l2l2−6l37.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.l1=l2B.l1<l2C.l1>l2D.当l=5时,l1>l28.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△lll∽△l′l′l′B.点C、点O、点l′三点在同一直线上C.AO:ll′=1:2D.ll//l′l′9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F 处,线段DF与AB相交于点E,则∠BED等于()10.某出租车起步价所包含的路程为2km,超过2km的部分按每千米另收费。
2019年湖南省邵阳市中考数学试题(原卷+解析)

湖南省邵阳市2019年中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,属于无理数的是()A.13B.1.414 C.√D.√【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】解:=2是有理数;是无理数;故选:C.【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.故选:C.2.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10-11元D.0.57×1012元【分析】根据科学记数法的表示方法a×10n(1≤a<10)即可求解;【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°【分析】由三线八角以及平行线的性质可知,A,B,C成立的条件题目并没有提供,而D选项中邻补角的和为180°一定正确.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D进行判断(当然前面三个判断了可直接对D进行判断).【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为4,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.以下计算正确的是()A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)•(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m3【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键.7.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【分析】根据两函数图象平行k相同,以及向下平移减即可判断.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.8.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.10.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.二、填空题(本大题有8个小题,每小题3分,共24分)11.的相反数是____.【分析】根据相反数的意义,即可求解;【解答】解:的相反数是﹣;故答案为﹣;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.如图,在平面直角坐标系中,点A的坐标为(-4, 2),反比例函数的图象经过线段OA的中点B,则k=_____.【分析】已知A(﹣4,2),B是OA的中点,根据平行线等分线段定理可得点B的坐标,把B的坐标代入关系式可求k的值.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣2【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B坐标,代入求k的值是本题的基本方法.14.不等式组的解集是______.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)【分析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是____.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是____.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.18.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是_______.【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.计第:【分析】分别化简每一项,再进行运算即可;【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.先化简,再求值:【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=2,然后利用勾股定理计算这个圆锥的高h.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.22.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是_____;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据a(1﹣x)2=b增长率公式建立方程30(1+x)2=36.3,解方程即可.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.24.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】设OE=OB=2x,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.25.如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;的值;若不②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出PQCQ存在,请说明理由.【分析】(1)由切线性质和直径AC可得∠PAO=∠CDA=90°,由PB∥AD可得∠POD =∠CAD,即可得:△APO~△DCA;(2)①连接OD,由AD=OA=OD可得△OAD是等边三角形,由此可得∠POA=60°,∠P=30°;②作BQ⊥AC交⊙O于Q,可证ABQP为菱形,求可转化为求.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan ∠ACB =tan60°=【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.26.如图,二次函数y=- 13x 2+bx+c 的图象过原点,与x 轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线y 1=m ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(t >0).过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A,B的坐标,进而可得出点C,D的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)由(2)可得出点A,B,C,D的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E,F的坐标,由AQ∥EF且以A、E、F、Q四点为顶点的四边形为平行四边形可得出AQ=EF,分0<t≤4,4<t≤7,7<t≤8三种情况找出AQ,EF的长,由AQ=EF可得出关于t的一元二次方程,解之取其合适的值即可得出结论.解:(1)将(0,0),(8,0)代入y=- 1 3 x2+bx+c,得:∴该二次函数的解析式为y=- 1x2+ 8x.将a(2,4),c(6,0)代入y=kx+a,得∴直线ac的解析式为y=-x+6.1 2 4 1 2733③当7<t≤8时,AQ=t-4,EF=-t+4-(-1 t2+4 t+4)= 1 t2-7t,性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.。
【精选3份合集】湖南省邵阳市2019年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P 点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.解析:C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.2.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定解析:C【解析】 分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入2(6) 2.6y a x =-+,得:36a+2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x=9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x=18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.3.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +9解析:D试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x 2-6x+9=(x-3)2.故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.4.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3解析:D【解析】【分析】 求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】Q 把11(,)3A y ,2(3,)B y 代入反比例函数1y x = ,得:13y =,213y =, 11(,3),(3,)33A B ∴, Q 在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A,B的坐标代入得:13 31 33k bk b⎧=+⎪⎪⎨⎪=+⎪⎩,解得:101,3k b=-=,1215x->∴直线AB的解析式是103y x=-+,当0y=时,103x=,即10(,0)3P,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.5.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B.C.D.解析:B【解析】试题解析:选项,,A C D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.6.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个解析:B【解析】【详解】 解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.7.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm 解析:B【解析】(1)如图1,当点C 在点A 和点B 之间时,∵点M 是AB 的中点,点N 是BC 的中点,AB=8cm ,BC=2cm , ∴MB=12AB=4cm ,BN=12BC=1cm , ∴MN=MB -BN=3cm ;(2)如图2,当点C 在点B 的右侧时,。
(真题)湖南省邵阳市2019年中考数学试题有答案(Word版)

邵阳市2019年初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20°B.60°C.70°D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1)B.x(1-x2)C.x(x+1)(x-1) D.x(1+x)(1-x)4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是A.80°B.120°C.100°D.90°7.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明年(个月)后短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2 +3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4). 结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若A E =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.项目 选手服装 普通话 主题 演讲 技巧 李明 85 70 80 85 张华9075758023.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000 kg材料所用的时间与B型机器人搬运800 kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800 kg,则至少购进A型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)25.如图(十五)所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图(十六)所示,连接GM,EN.①若OE=3,OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市2019年初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的) 1 2 3 4 5 6 7 8 9 10 二、填空题(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC ∽△AFD ,△EAB ∽△AFD ,△EFC ∽△EAB . 13.x =0 14.40° 15.16000 16.x =2 17. 3 18.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分 =2-2+2 ……………………………………………………………………7分 =2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分 21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x =800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC, 所以AC =AD sin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分) 解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC .∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分 (2)①∵△OGE 绕点O 顺时针旋转得到△OMN , ∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OG OE =OMON .∴△OGM ∽△OEN .∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分)解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2, 将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分 (2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD .A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0), 可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分(3)S △ABC =12 AC ·BO =12×3×4=6.①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC .设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y =-2x +4,其中0≤x ≤2, 所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4)=13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2.tan ∠MAN =MN AN =22=1.……………5分当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN ,所以MN =13BC =253.因为S △ABC =12BC ·AN =12×25·AN =6,所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN . 设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA , 所以BN BG =MNAG ,即17-t 75=MN 65, 求得MN =617-6t7,所以S △AMN =12AN ·MN =12t ·617-6t7=2,化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分注:解答题用其它方法解答参照给分.第11页共11页。
【数学】2019年湖南省邵阳市中考真题(解析版)
湖南省邵阳市2019年中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,属于无理数的是()A.13B.1.414C.√2D.√4【答案】C【解析】=2是有理数;是无理数;故选:C.2.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【答案】C【解析】A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10-11元D.0.57×1012元【答案】A【解析】5700亿元=570000000000元=5.7×1011元;故选:A.4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠1=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°【解析】∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【答案】A【解析】A.该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B.第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C.这组数据的众数为4,所以C选项错误;D.这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.以下计算正确的是()A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)•(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m3【答案】D【解析】(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【答案】B【解析】∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′【答案】C【解析】∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【答案】B【解析】∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()【答案】D【解析】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.的相反数是____.【答案】﹣【解析】的相反数是﹣;故答案为﹣.12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.【答案】【解析】画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.如图,在平面直角坐标系中,点A的坐标为(-4,2),反比例函数的图象经过线段OA的中点B,则k=_____.【答案】-2【解析】如图:∵AC∥BD,B是OA的中点,∴OD=DC,同理OF=EF,∵A(﹣4,2),∴AC=2,OC=4,∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2,故答案为:﹣2.14.不等式组的解集是______.【答案】﹣2≤x<﹣1【解析】解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.15.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)【答案】AB=AC或∠ADC=∠AEB或∠ABE=∠ACD【解析】∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.16.关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是____.【答案】0【解析】一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0.17.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是____.【答案】4【解析】∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:4.18.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是_______.【答案】(﹣2,﹣2)【解析】作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.计第:解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1.20.先化简,再求值:解:原式=(﹣)÷=•=,当m=﹣2时,原式==.21.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A 为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.22.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是_____;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.23.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3,解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.24.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.25.如图1,已知⊙O外一点P向⊙O作切线P A,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;的值;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出PQCQ若不存在,请说明理由.(1)证明:如图1,∵P A切⊙O于点A,AC是⊙O的直径,∴∠P AO=∠CDA=90°,∵CD⊥PB,∴∠CEP=90°,∴∠CEP=∠CDA,∴PB∥AD,∴∠POA=∠CAO,∴△APO~△DCA.(2)如图2,连接OD,①∵AD=AO,OD=AO,∴△OAD是等边三角形,∴∠OAD=60°,∵PB∥AD,∴∠POA=∠OAD=60°,∵∠P AO=90°,∴∠P=90°﹣∠POA=90°﹣60°=30°.②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠P AO=90°,∴∠BOC=∠POA=60°,∵OB=OC,∴∠ACB=60°,∴∠BQC=∠BAC=30°,∵BQ⊥AC,∴CQ=BC,∵BC=OB=OA,∴△CBQ≌△OBA(AAS),∴BQ=AB,∵∠OBA=∠OP A=30°,∴AB=AP,∴BQ=AP,∵P A⊥AC,∴BQ∥AP,∴四边形ABQP是平行四边形,∵AB=AP,∴四边形ABQP是菱形,∴PQ=AB,∴==tan∠ACB=tan60°=.x2+bx+c的图象过原点,与x轴的另一个交点为(8,0). 26.如图,二次函数y=-13(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.解:(1)将(0,0),(8,0)代入y=- 1 3 x2+bx+c,得:∴该二次函数的解析式为y=- 13x2+ 83x.(2)当y=m时,- 13x2+ 83x =m,解得:x1=4-√16−3m,x2=4+√16−3m,∴点a的坐标为(4-√16−3m,m),点b的坐标为(4+√16−3m,m),∴点d的坐标为(4-√16−3m,0),点c的坐标为(4+√16−3m,0).∵矩形abcd为正方形,∴4+√16−3m-(4-√16−3m)=m,解得:m1=-16(舍去),m2=4.∴当矩形abcd为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将a(2,4),c(6,0)代入y=kx+a,得∴直线ac 的解析式为y =-x +6.当x =2+t 时,y =- 1 3x 2+83x =-1 3t 2+ 4 3t +4,y =-x +6=-t +4,∴点e 的坐标为(2+t ,- 13t 2+ 4 3t +4),点f 的坐标为(2+t ,-t +4). ∵以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且AQ ∥EF ,∴AQ =EF ,分三种情况考虑:①当0<t ≤4时,如图1所示,AQ =t ,EF =-1 3t 2+ 4 3t +4-(-t +4)=-1 3t 2+ 73t , ∴t =-1 3t 2+ 73t , 解得:t 1=0(舍去),t 2=4;②当4<t ≤7时,如图2所示,AQ =t -4,EF =- 1 3t 2+ 4 3t +4-(-t +4)=- 1 3t 2+ 73t , ∴t -4=- 1 3t 2+73t , 解得:t 3=-2(舍去),t 4=6;③当7<t ≤8时,AQ =t -4,EF =-t +4-(-1 3t 2+4 3t +4)= 1 3t 2-73t , ∴t -4=1 3t 2-73t ,解得:t 5=5-√13 (舍去),t 6=5+√13(舍去).综上所述:当以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形时,t 的值为4或6.。
2019年湖南省邵阳市中考数学试卷及答案解析
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414C.D.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m37.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x <0)的图象经过线段OA的中点B,则k=.14.(3分)不等式组的解集是.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8分)如图1,已知⊙O外一点P向⊙O作切线P A,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414C.D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】解:=2是有理数;是无理数;故选:C.【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元【分析】根据科学记数法的表示方法a×10n(1≤a<10)即可求解;【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°【分析】由三线八角以及平行线的性质可知,A,B,C成立的条件题目并没有提供,而D选项中邻补角的和为180°一定正确.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D进行判断(当然前面三个判断了可直接对D进行判断).【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A 选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为4,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].也考查了中位数和众数.6.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m3【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键.7.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【分析】根据两函数图象平行k相同,以及向下平移减即可判断.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.8.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是﹣.【分析】根据相反数的意义,即可求解;【解答】解:的相反数是﹣;故答案为﹣;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x <0)的图象经过线段OA的中点B,则k=﹣2.【分析】已知A(﹣4,2),B是OA的中点,根据平行线等分线段定理可得点B的坐标,把B的坐标代入关系式可求k的值.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣2【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B坐标,代入求k的值是本题的基本方法.14.(3分)不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.(不添加任何字母和辅助线)【分析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是(﹣2,﹣2).【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°【分析】分别化简每一项,再进行运算即可;【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=2,然后利用勾股定理计算这个圆锥的高h.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是50;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【分析】(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论;(2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可;(3)利用科技制作社团所占的百分比乘以360°即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据a(1﹣x)2=b增长率公式建立方程30(1+x)2=36.3,解方程即可.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】设OE=OB=2x,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.25.(8分)如图1,已知⊙O外一点P向⊙O作切线P A,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.【分析】(1)由切线性质和直径AC可得∠P AO=∠CDA=90°,由PB∥AD可得∠POD =∠CAD,即可得:△APO~△DCA;(2)①连接OD,由AD=OA=OD可得△OAD是等边三角形,由此可得∠POA=60°,∠P=30°;②作BQ⊥AC交⊙O于Q,可证ABQP为菱形,求可转化为求.【解答】解:(1)证明:如图1,∵P A切⊙O于点A,AC是⊙O的直径,∴∠P AO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠P AO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠P AO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OP A=30°∴AB=AP∴BQ=AP∵P A⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A,B的坐标,进而可得出点C,D的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)由(2)可得出点A,B,C,D的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E,F的坐标,由AQ∥EF且以A、E、F、Q四点为顶点的四边形为平行四边形可得出AQ=EF,分0<t≤4,4<t≤7,7<t≤8三种情况找出AQ,EF的长,由AQ=EF可得出关于t的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A、E、F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;。
2019年湖南省邵阳市中考数学试卷以及解析版
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是( )A .13B .1.414C D2.(3分)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是( ) A .115.710⨯元B .105710⨯元C .115.710-⨯元D .120.5710⨯元4.(3分)如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .2l ∠=∠B .23∠=∠C .24180∠+∠=︒D .14180∠+∠=︒5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B .在该班级所售图书价格组成的一组数据中,中位数是4C .在该班级所售图书价格组成的一纽数据中,众数是15D .在该班级所售图书价格组成的一组数据中,方差是2 6.(3分)以下计算正确的是( ) A .2336(2)8ab a b -= B .325ab b ab +=C .235()(2)8x x x --=-D .222232(3)26m mn m m n m -=-7.(3分)一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >8.(3分)如图,以点O 为位似中心,把ABC ∆放大为原图形的2倍得到△A B C ''',以下说法中错误的是( )A .ABC ∆∽△ABC '''B .点C 、点O 、点C '三点在同一直线上 C .:1:2AO AA '=D .//AB A B ''9.(3分)如图,在Rt ABC ∆中,90BAC ∠=︒,36B ∠=︒,AD 是斜边BC 上的中线,将ACD ∆沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则BED ∠等于( )A .120︒B .108︒C .72︒D .36︒10.(3分)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩二、填空题(本大题有8个小题,每小题3分,共24分) 11.(3分)20192020的相反数是 . 12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是 .13.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,2)-,反比例函数(0)k y x x=<的图象经过线段OA 的中点B ,则k = .14.(3分)不等式组43113x x +<⎧⎪-⎨⎪⎩…的解集是 .15.(3分)如图,已知AD AE =,请你添加一个条件,使得ADC AEB ∆≅∆,你添加的条件是 .(不添加任何字母和辅助线)16.(3分)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 .17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是 .18.(3分)如图,将等边AOB ∆放在平面直角坐标系中,点A 的坐标为(4,0),点B 在第一象限,将等边AOB ∆绕点O 顺时针旋转180︒得到△A OB '',则点B '的坐标是 .三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(811()|2|cos603-+-︒20.(8分)先化简,再求值:2121(1)222m m m m ++-÷++,其中2m . 21.(8分)如图,在等腰ABC ∆中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F . (1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB OE=,=;支架BC与水平线AD垂直.40AC cm =,另一支架AB与水平线夹角65∠=︒,求OB的长度(结果BAD∠=︒,190DE cm30ADE精确到1cm;温馨提示:sin650.91︒≈︒≈,cos650.42︒≈,tan65 2.14)25.(8分)如图1,已知O外一点P向O作切线PA,点A为切点,连接PO并延长交O 于点B,连接AO并延长交O于点C,过点C作CD PB⊥,分别交PB于点E,交O于点D,连接AD.(1)求证:~∆∆;APO DCA(2)如图2,当AD AO=时①求P∠的度数;②连接AB ,在O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.26.(10分)如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m =,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值; (3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0)t >.过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】2是无理数; 故选:C .【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键. 2.(3分)【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A .俯视图与主视图都是正方形,故选项A 不合题意;B .俯视图与主视图都是正方形,故选项B 不合题意;C .俯视图是圆,左视图是三角形;故选项C 符合题意;D .俯视图与主视图都是圆,故选项D 不合题意;故选:C .【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型. 3.(3分)【分析】根据科学记数法的表示方法10(110)n a a ⨯<…即可求解; 【解答】解:5700亿元570000000000=元115.710=⨯元; 故选:A .【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键. 4.(3分)【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180︒一定正确.【解答】解:1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12//l l 时,而1∠与4∠是邻补角,故D 正确.故选:D .【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大. 5.(3分)【分析】把所有数据相加可对A 进行判断;利用中位数和众数的定义对B 、C 进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D 进行判断(当然前面三个判断了可直接对D 进行判断).【解答】解:A 、该班级所售图书的总收入为314411*********⨯+⨯+⨯+⨯=,所以A 选项正确;B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;C 、这组数据的众数为4,所以C 选项错误;D 、这组数据的平均数为2264.5250x ==,所以这组数据的方差222221[14(3 4.52)11(4 4.52)10(5 4.52)15(6 4.52)] 1.450S =-+-+-+-≈,所以D 选项错误. 故选:A .【点评】本题考查方差的定义:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-.也考查了中位数和众数.6.(3分)【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解; 【解答】解:2336(2)8ab a b -=-,A 错误; 32ab b +不能合并同类项,B 错误;235()(2)8x x x --=,C 错误; 故选:D .【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键. 7.(3分)【分析】根据两函数图象平行k 相同,以及向下平移减即可判断. 【解答】解:将直线1l 向下平移若干个单位后得直线2l ,∴直线1//l 直线2l ,12k k ∴=,直线1l 向下平移若干个单位后得直线2l , 12b b ∴>,∴当5x =时,12y y >,故选:B .【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系. 8.(3分)【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:以点O 为位似中心,把ABC ∆放大为原图形的2倍得到△A B C ''', ABC ∴∆∽△A B C ''',点C 、点O 、点C '三点在同一直线上,//AB A B '', :1:2AO OA '=,故选项C 错误,符合题意.故选:C .【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键. 9.(3分)【分析】根据三角形内角和定理求出9054C B ∠=︒-∠=︒.由直角三角形斜边上的中线的性质得出AD BD CD ==,利用等腰三角形的性质求出36BAD B ∠=∠=︒,54DAC C ∠=∠=︒,利用三角形内角和定理求出18072ADC DAC C ∠=︒-∠-∠=︒.再根据折叠的性质得出72ADF ADC ∠=∠=︒,然后根据三角形外角的性质得出108BED BAD ADF ∠=∠+∠=︒.【解答】解:在Rt ABC ∆中,90BAC ∠=︒,36B ∠=︒, 9054C B ∴∠=︒-∠=︒.AD 是斜边BC 上的中线,AD BD CD ∴==,36BAD B ∴∠=∠=︒,54DAC C ∠=∠=︒, 18072ADC DAC C ∴∠=︒-∠-∠=︒.将ACD∆沿AD对折,使点C落在点F处,72ADF ADC∴∠=∠=︒,3672108BED BAD ADF∴∠=∠+∠=︒+︒=︒.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.10.(3分)【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为(72)16(132)28x yx y+-=⎧⎨+-=⎩,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)20192020的相反数是20192020-.【分析】根据相反数的意义,即可求解;【解答】解:20192020的相反数是20192020-;故答案为2019 2020 -;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是16.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为21126=, 故答案为:16. 【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,2)-,反比例函数(0)k y x x=<的图象经过线段OA 的中点B ,则k = 2- .【分析】已知(4,2)A -,B 是OA 的中点,根据平行线等分线段定理可得点B 的坐标,把B 的坐标代入关系式可求k 的值. 【解答】解:如图://AC BD ,B 是OA 的中点,OD DC ∴=同理OF EF = (4,2)A - 2AC ∴=,4OC =2OD CD ∴==,1BD OF EF ===,(2,1)B ∴-代入ky x=得: 212k ∴=-⨯=-故答案为:2-【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B 坐标,代入求k 的值是本题的基本方法.14.(3分)不等式组43113x x +<⎧⎪-⎨⎪⎩…的解集是 21x -<-… .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式43x +<,得:1x <-, 解不等式113x-…,得:2x -…, 则不等式组的解集为21x -<-…, 故答案为:21x -<-….【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 15.(3分)如图,已知AD AE =,请你添加一个条件,使得ADC AEB ∆≅∆,你添加的条件是 AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠ .(不添加任何字母和辅助线)【分析】根据图形可知证明ADC AEB ∆≅∆已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等. 【解答】解:A A ∠=∠,AD AE =,∴可以添加AB AC =,此时满足SAS ;添加条件ADC AEB ∠=∠,此时满足ASA ; 添加条件ABE ACD ∠=∠,此时满足AAS ,故答案为AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.(3分)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 0 .【分析】根据一元二次方程根的存在性,利用判别式△0>求解即可; 【解答】解:一元二次方程220x x m --=有两个不相等的实数根,∴△440m =+>,1m ∴>-;故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是 4 .【分析】应用勾股定理和正方形的面积公式可求解. 【解答】解:勾6a =,弦10c =,∴股8=, ∴小正方形的边长862=-=, ∴小正方形的面积224==故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想. 18.(3分)如图,将等边AOB ∆放在平面直角坐标系中,点A 的坐标为(4,0),点B 在第一象限,将等边AOB ∆绕点O 顺时针旋转180︒得到△A OB '',则点B '的坐标是 (2,-- .【分析】作BH y ⊥轴于H ,如图,利用等边三角形的性质得到2OH AH ==,60BOA ∠=︒,再计算出BH ,从而得到B 点坐标为(2,,然后根据关于原点对称的点的坐标特征求出点B '的坐标.【解答】解:作BH y ⊥轴于H ,如图, OAB ∆为等边三角形, 2OH AH ∴==,60BOA ∠=︒,BH ∴==B ∴点坐标为(2,,等边AOB ∆绕点O 顺时针旋转180︒得到△A OB '',∴点B '的坐标是(2,--.故答案为(2,--.【点评】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30︒,45︒,60︒,90︒,180︒.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(811()|2|cos603-+-︒【分析】分别化简每一项,再进行运算即可;【解答】111()|2|cos60332132-+-︒=-+⨯=;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.(8分)先化简,再求值:2121(1)222m m m m ++-÷++,其中2m . 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得. 【解答】解:原式221(1)()222(1)m m m m m ++=-÷+++ 1221m m m +=++22m =+,当2m =时,原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 21.(8分)如图,在等腰ABC ∆中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F . (1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .【分析】(1)利用等腰三角形的性质得到AD BC ⊥,BD CD =,则可计算出BD =,然后利用扇形的面积公式,利用由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积ABC EAF S S ∆=-扇形进行计算;(2)设圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到12062180r ππ=,解得2r =,然后利用勾股定理计算这个圆锥的高h .【解答】解:在等腰ABC ∆中,120BAC ∠=︒, 30B ∴∠=︒,AD 是BAC ∠的角平分线,AD BC ∴⊥,BD CD =,BD ∴==2BC BD ∴==∴由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积2112066122360ABC EAFS S ππ∆⋅⋅=-=⨯⨯=扇形; (2)设圆锥的底面圆的半径为r , 根据题意得12062180r ππ=,解得2r =,这个圆锥的高h =【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式. 22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是 50 ;(2)请你补全条形统计图,并在图上标明具体数据; (3)求参与科技制作社团所在扇形的圆心角度数; (4)请你估计全校有多少学生报名参加篮球社团活动.【分析】(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论; (2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可; (3)利用科技制作社团所占的百分比乘以360︒即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论. 【解答】解:(1)本次抽样调查的样本容量是55010%=, 故答案为:50;(2)参与篮球社的人数5020%10=⨯=人, 参与国学社的人数为5051012815----=人, 补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为1236086.450︒⨯=︒; (4)300020%600⨯=名,答:全校有600学生报名参加篮球社团活动.【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小. 23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据2(1)a x b -=增长率公式建立方程230(1)36.3x +=,解方程即可. 【解答】解:设平均增长率为x ,根据题意列方程得230(1)36.3x +=解得10.1x =,2 2.1x =-(舍)答:我国外贸进出口总值得年平均增长率为10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且OB OE =;支架BC 与水平线AD 垂直.40AC cm =,30ADE ∠=︒,190DE cm =,另一支架AB 与水平线夹角65BAD ∠=︒,求OB 的长度(结果精确到1cm ;温馨提示:sin650.91︒≈,cos650.42︒≈,tan65 2.14)︒≈【分析】设2OE OB x ==,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设2OE OB x ==, 1902OD DE OE x ∴=+=+, 30ADE ∠=︒, 1952OC OD x ∴==+,95295BC OC OB x x x ∴=-=+-=-, tan BCBAD AC∠=, 952.1440x-∴=, 解得:9x ≈, 218OB x ∴==.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.25.(8分)如图1,已知O 外一点P 向O 作切线PA ,点A 为切点,连接PO 并延长交O 于点B ,连接AO 并延长交O 于点C ,过点C 作CD PB ⊥,分别交PB 于点E ,交O 于点D ,连接AD .(1)求证:~APO DCA ∆∆; (2)如图2,当AD AO =时 ①求P ∠的度数;②连接AB ,在O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.【分析】(1)由切线性质和直径AC 可得90PAO CDA ∠=∠=︒,由//PB AD 可得P OD CA D ∠=∠,即可得:~APO DCA ∆∆;(2)①连接OD ,由AD OA OD ==可得OAD ∆是等边三角形,由此可得60POA ∠=︒,30P ∠=︒;②作BQ AC ⊥交O 于Q ,可证ABQP 为菱形,求PQ CQ 可转化为求ABBC. 【解答】解:(1)证明:如图1,PA 切O 于点A ,AC 是O 的直径, 90PAO CDA ∴∠=∠=︒ CD PB ⊥ 90CEP ∴∠=︒ CEP CDA ∴∠=∠ //PB AD ∴ POA CAO ∴∠=∠ ~APO DCA ∴∆∆(2)如图2,连接OD , ①AD AO =,OD AO =OAD ∴∆是等边三角形 60OAD ∴∠=︒ //PB AD60POA OAD ∴∠=∠=︒ 90PAO ∠=︒90906030P POA ∴∠=︒-∠=︒-︒=︒②存在.如图2,过点B 作BQ AC ⊥交O 于Q ,连接PQ ,BC ,CQ , 由①得:60POA ∠=︒,90PAO ∠=︒ 60BOC POA ∴∠=∠=︒OB OC = 60ACB ∴∠=︒30BQC BAC ∴∠=∠=︒ BQ AC ⊥, CQ BC ∴= BC OB OA ==()CBQ OBA AAS ∴∆≅∆ BQ AB ∴=30OBA OPA ∠=∠=︒AB AP ∴=BQ AP ∴= PA AC ⊥//BQ AP ∴∴四边形ABQP 是平行四边形AB AP =∴四边形ABQP 是菱形PQ AB ∴=∴tan tan 60PQ ABACB CQ BC==∠=︒【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.26.(10分)如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为(8,0) (1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m =,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0)t >.过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A ,B 的坐标,进而可得出点C ,D 的坐标,再利用正方形的性质可得出关于m 的方程,解之即可得出结论;(3)由(2)可得出点A ,B ,C ,D 的坐标,根据点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E ,F 的坐标,由//AQ EF 且以A 、E 、F 、Q 四点为顶点的四边形为平行四边形可得出AQ EF =,分04t <…,47t <…,78t <…三种情况找出AQ ,EF 的长,由AQ EF =可得出关于t 的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入213y x bx c =-++,得: 064803c b c =⎧⎪⎨-++=⎪⎩,解得:830b c ⎧=⎪⎨⎪=⎩,∴该二次函数的解析式为21833y x x =-+. (2)当y m =时,21833x x m -+=,解得:14x =24x =,∴点A 的坐标为(4)m ,点B 的坐标为(4+)m ,∴点D 的坐标为(40),点C 的坐标为(40).矩形ABCD 为正方形,4(4m ∴+=,解得:116m =-(舍去),24m =.∴当矩形ABCD 为正方形时,m 的值为4.(3)以A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形.由(2)可知:点A 的坐标为(2,4),点B 的坐标为(6,4),点C 的坐标为(6,0),点D 的坐标为(2,0).设直线AC 的解析式为(0)y kx a k =+≠,将(2,4)A ,(6,0)C 代入y kx a =+,得:2460k a k a +=⎧⎨+=⎩,解得:16k a =-⎧⎨=⎩, ∴直线AC 的解析式为6y x =-+.当2x t =+时,22181443333y x x t t =-+=-++,64y x t =-+=-+, ∴点E 的坐标为214(2,4)33t t t +-++,点F 的坐标为(2,4)t t +-+. 以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且//AQ EF ,AQ EF ∴=,分三种情况考虑:①当04t <…时,如图1所示,AQ t =,2214174(4)3333EF t t t t t =-++--+=-+, 21733t t t ∴=-+, 解得:10t =(舍去),24t =;②当47t <…时,如图2所示,4AQ t =-,2214174(4)3333EF t t t t t =-++--+=-+,217433t t t ∴-=-+, 解得:32t =-(舍去),46t =;③当78t <…时,4AQ t =-,2214174(4)3333EF t t t t t =-+--++=-, 217433t t t ∴-=-,解得:55t =,65t =+.综上所述:当以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形时,t 的值为4或6.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m 的方程;(3)分04t <…,47t <…,78t <…三种情况,利用平行四边形的性质找出关于t 的一元二次方程.。
2019年湖南省邵阳市中考数学试卷(word版,含答案)
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,属于无理数的是()A.B.1.414 C.D.2.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10-11元D.0.57×1012元4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.以下计算正确的是()A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)•(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m37.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y 2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C 落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()CCADA DBCBD二、填空题(本大题有8个小题,每小题3分,共24分)11.的相反数是____.-12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.13.如图,在平面直角坐标系中,点A的坐标为(-4,2),反比例函数的图象经过线段OA的中点B,则k=_____.-214.不等式组的解集是______.-2≤x<-115.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)AB=AC或∠ADC=∠AEB或∠ABE=∠ACD16.关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是____.17.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是____.418.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O 顺时针旋转180°得到△A′OB′,则点B′的坐标是_______.(-2,-2)三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.计第:3-()-1+|-2|cos60°=3-3+2×=120.先化简,再求值:21.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=22.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是_____;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50-5-10-12-8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°× =86.4°;(4)3000×20%=600名, 答:全校有600学生报名参加篮球社团活动.23.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率. 解:设平均增长率为x ,根据题意列方程得 30(1+x )2=36.3 解得x 1=0.1,x 2=-2.1(舍) 答:我国外贸进出口总值得年平均增长率为10%.24.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且OB=OE ;支架BC 与水平线AD 垂直.AC=40cm ,∠ADE=30°,DE=190cm ,另一支架AB 与水平线夹角∠BAD=65°,求OB 的长度(结果精确到1cm ;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:设OE=OB=2x ,∴OD=DE+OE=190+2x , ∵∠ADE=30°, ∴OC=OD=95+x ,∴BC=OC -OB=95+x-2x=95-x , ∵TAN∠BAD=,∴2.14=,解得:x ≈9, ∴OB=2x=18.25.如图1,已知⊙O 外一点P 向⊙O 作切线PA ,点A 为切点,连接PO 并延长交⊙O 于点B ,连接AO 并延长交⊙O 于点C ,过点C 作CD ⊥PB ,分别交PB 于点E ,交⊙O 于点D ,连接AD . (1)求证:△APO ~△DCA ; (2)如图2,当AD=AO 时 ①求∠P 的度数;②连接AB ,在⊙O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出的值;若不存在,请说明理由.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°-∠POA=90°-60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴ PQ CQ = AB BC =TAN∠ACB=TAN60°=26.如图,二次函数y=- x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分1别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.解:(1)将(0,0),(8,0)代入y=- 1 3 x2+bx+c,得:将a(2,4),c(6,0)代入y=kx+a,得∴直线ac的解析式为y=-x+6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖南省邵阳市城步县中考数学模拟试卷(二)
一、选择题(每小题四个选项中,只有一项最符合题意.本大题共12个小题,每小题3分,共36分) 1.给出四个数,,其中为无理数的是( )
A.﹣1 B.0 C.0.5 D.
2.下列图形中,不是中心对称图形的是( )
A. B. C. D.
3.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,
165,获得这组数据方法是( )
A.直接观察 B.查阅文献资料
C.互联网查询 D.测量
4.一次函数y=2x+1的图象不经过第( )象限.
A.一 B.二 C.三 D.四
5.若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1 B.k<﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠0 6.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是( )
A.1 B. C. D.2 7.已知△ABC的两个内角∠A=30°,∠B=70°,则△ABC是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
8.Rt△ABC中,∠C=90°,若BC=2,AC=3,下列各式中正确的是 ( )
A. B. C. D.
9.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落
在点F处,连接FC,则sin∠ECF=( ) A. B. C. D.
10.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进
行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知( ) A.(1)班比(2)班的成绩稳定
B.(2)班比(1)班的成绩稳定
C.两个班的成绩一样稳定
D.无法确定哪班的成绩更稳定
11.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长
是( )
A.13 B.14 C.15 D.16 12.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋
转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=( )
A. B. C. D.
二、填空题(本大题共8小题;共24分) 13.﹣5的相反数是 ;﹣5的绝对值是 ;﹣5的立方是 ;﹣0.5的倒数是 .
14.写一个有两个相等的实数根的一元二次方程: .
15.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为 克. 16.在△ABC中,∠A=60°,∠B=2∠C,则∠B= °.
17.在半径为6cm的圆中,圆心角为120°的扇形的面积是 cm2.
18.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规
律,第五个图形有 个正方形.
19.已知▱ABCD的顶点B(1,1),C(5,1),直线BD,CD的解析式分别是y=kx,y=mx﹣14,则BC= ,点A的坐标是 . 20.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,
4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为 .
三、解答题(本大题共7小题;共60分) 21.(1)计算:﹣|﹣|+(﹣)﹣1﹣2sin60°
(2)解方程﹣=. 22.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销
量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆.要使得每天利润达到1200元,则每盆兰花售价应定为多少元? 23.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角
为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式) 24.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从
C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,
当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?
25.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.
26.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记
为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; (3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最
大值. 27.如图,AB是⊙O的直径,=,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线
PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数; (2)当点D在AB上方,且CD⊥BP时,求证:PC=AC; (3)在点P的运动过程中 ①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数; ②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积. 2019年湖南省邵阳市城步县中考数学模拟试卷(二)
参考答案与试题解析 一、选择题(每小题四个选项中,只有一项最符合题意.本大题共12个小题,每小题3分,共36分) 1.给出四个数,,其中为无理数的是( )
A.﹣1 B.0 C.0.5 D.
【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断. 【解答】解:结合所给的数可得,无理数有:. 故选:D. 【点评】此题考查了无理数的定义,关键要掌握无理数的三种形式,要求我们熟练记忆. 2.下列图形中,不是中心对称图形的是( )
A. B. C. D.
【分析】根据中心对称图形的概念求解. 【解答】解:A、是中心对称图形,故本选项错误; B、不是中心对称图形,故本选项正确;
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误;
故选:B. 【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,
165,获得这组数据方法是( )
A.直接观察 B.查阅文献资料
C.互联网查询 D.测量
【分析】要得出某校八年级(3)班体训队员的身高,需要测量. 【解答】解:因为要对篮球队员的身高的数据进行收集和整理,获得这组数据方法应该是测量. 故选:D. 【点评】此题主要考查了调查收集数据的过程与方法,解答此题要明确,调查要进行数据的收集、整理. 4.一次函数y=2x+1的图象不经过第( )象限. A.一 B.二 C.三 D.四
【分析】根据一次函数图象的性质可得出答案. 【解答】解:∵2>0,1>0, ∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限. 故选:D. 【点评】此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况: ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大; ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大; ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小; ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小. 5.若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1 B.k<﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠0 【分析】根据△的意义得到k≠0且△=4﹣4k×(﹣1)>0,然后求出两不等式的公共部分即可. 【解答】解:∵x的方程kx2+2x﹣1=0有两个不相等的实数根, ∴k≠0且△=4﹣4k×(﹣1)>0,解得k>﹣1, ∴k的取值范围为k>﹣1且k≠0. 故选:D. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义. 6.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是( )
A.1 B. C. D.2 【分析】先根据圆周角定理证得△ABC是直角三角形,然后根据直角三角形的性质求出AC的长. 【解答】解:∵AB是⊙O的直径, ∴∠ACB=90°; Rt△ABC中,∠ABC=30°,AB=4;