8-蛋白质代谢
蛋白质分解代谢

胃蛋白酶的作用
氨基末端42个氨基酸残基 胃蛋白酶原 (相对分子质量 4万) HCl激活 自身激活 胃蛋白酶 (相对分子质量 3.3万)
蛋白质
多肽 氨基酸(少量)
(二)小肠中消化(主要部位)
• 消化的酶:
胰液、小肠液(细胞膜)多种蛋白酶及肽酶 1.胰液中的蛋白酶——最适pH7.0,产物是氨基 酸和寡肽
• 天冬氨酸:-酮戊二酸氨基转移酶
简称天冬氨酸转氨酶(aspartate transaminase AST或GOT)
ALT和AST催化的反应
CH3 CHNH2 COOH 丙氨酸
+
COOH (CH2)2 C=O COOH α -酮戊二酸 COOH (CH2)2 C=O COOH α -酮戊二酸
ALT
• 细胞对氨基酸的摄取需要膜上转运蛋白并且需要 Na+的同向协同转运,需要钠泵(Na+-K+-ATP酶)。
细胞外 细 胞 膜 细胞内
ATP
K+
Na+
Na+ 氨基酸
ADP+Pi
K+
Na+
Na+ 氨基酸
三、蛋白质的腐败作用
腐败作用:肠道细菌(主要是大肠杆菌)对
未消化的蛋白质或未吸收的消化产物作用, 产生一系列产物的过程。 部位主要是在大肠的下段
氨基酸的一般代谢
外源性氨基酸:
食物蛋白质消化吸收的蛋白质
内源性氨基酸:
体内蛋白质降解产生与合成的氨基酸
氨基酸代谢库:
内源性与外源性氨基酸混合在一起 分布于体液各处参与代谢。
氨基酸代谢库以游离氨基酸总量计
体内氨基酸的来源与去路:
食物蛋 消化吸收 白质
(整理)第八章蛋白质的分解代谢

第八章蛋白质的分解代谢一. 选择题(一)A型题1.氮的负平衡常出现于下列情况A. 长时间饥饿B. 消耗性疾病C. 大面积烧伤D. 大量失血E. 以上都可能2.需肠激酶激活后才有活性的是A. 胃蛋白酶原B. 弹性蛋白酶原C. 胰蛋白酶原D. 糜蛋白酶原E.羧基肽酶原3.体内氨的主要代谢去路是A. 合成嘌呤碱B. 合成非必需氨基酸C. 合成尿素D. 合成谷氨酰胺E.合成嘧啶碱4.血氨升高的主要原因可以是A. 脑功能障碍B. 肝功能障碍C. 肾功能障碍D. 碱性肥皂水灌肠E.蛋白质摄入过多5.食物蛋白质营养价值的高低主要取决于A. 必需氨基酸的种类B. 必需氨基酸的数量C. 必需氨基酸的比例D. 以上都是E.以上都不是6.体内氨基酸脱氨基的最重要方式是A. 氧化脱氨基B. 联合脱氨基C. 转氨基作用D. 还原脱氨基E.直接脱氨基7.一碳单位的载体是A. 叶酸B. 维生素B12C. S-腺苷甲硫氨酸D. 维生素B6E.四氢叶酸8.脑中氨的主要代谢去路是A. 合成谷氨酰胺B. 合成尿素C. 合成必需氨基酸D. 扩散入血E.合成含氮碱9.下列化合物中活性甲基供体是A. 同型半胱氨酸B. S-腺苷甲硫氨酸C. 甲硫氨酸D. 半胱氨酸E.胱氨酸10.儿茶酚胺类物质是由哪一氨基酸代谢转变而来A. 丙氨酸B. 酪氨酸C. 色氨酸D. 甲硫氨酸E.苯丙氨酸11.α-酮酸可进入下列代谢途径,错误的是A. 还原氨基化合成非必需氨基酸B. 彻底氧化分解为CO2和H2OC. 转变为糖或酮体D. 转变为脂类物质E.转变为某些必需氨基酸12.牛磺酸是由下列哪一氨基酸代谢转变而来A. 甲硫氨酸B. 半胱氨酸C. 谷氨酸D. 甘氨酸E.天冬氨酸13.测定下列哪一酶活性可以帮助诊断急性肝炎A. NAD+B. ALTC. ASTD. MAOE.FAD14.谷氨酸脱羧基作用需要哪一物质作为辅酶A. 磷酸吡哆醇B. 磷酸吡哆胺C. 磷酸吡哆醛D. 以上都是E.以上都不是15.肌肉组织中氨基酸的脱氨基方式主要是A. 甲硫氨酸循环B. 丙氨酸-葡萄糖循环C. 嘌呤核苷酸循环D. 鸟氨酸循环E.γ-谷氨酰循环16.N5-CH3 FH4可进入下列代谢A. 转变为N5,N10-CH2-FH4B. 提供甲基参与合成dTMPC. 转变为N5,N10-CH=FH4D. 转变为N10-CHO⋅FH4E. 通过甲硫氨酸循环提供甲基,参与重要甲基化合物的合成17.AST含量最高的器官是A.肝B. 心C. 肾D. 脑E. 肺18. 下列哪组是非必需氨基酸A. 精氨酸和谷氨酸B. 亮氨酸和异亮氨酸C. 缬氨酸和苏氨酸D. 色氨酸和甲硫氨酸E.赖氨酸和苯丙氨酸19. 蛋白质的互补作用是指A.糖和脂的混合食用,以提高营养价值B.脂和蛋白质的混合食用,以提高营养价值C.不同来源的蛋白质混合食用,以提高营养价值D.糖和蛋白质的混合食用,以提高营养价值E.糖、脂和蛋白质的混合食用,以提高营养价值20.能使尿中酮体排出量增加的氨基酸是A. 精氨酸和异亮氨酸B. 赖氨酸和亮氨酸C. 缬氨酸和丝氨酸D. 苏氨酸和酪氨酸E.天冬氨酸和谷氨酸21.蛋白质的哪一营养作用可被糖或脂肪代替A. 构成组织结构的材料B. 维持组织蛋白的更新C. 修补损伤组织D. 氧化供能E. 执行各种特殊功能22.胰蛋白酶专一水解下列哪一肽键A.碱性氨基酸的羧基与其他氨基酸的氨基形成的肽键B. 芳香族氨基酸的羧基与其他氨基酸的氨基形成的肽键C. 脂肪族氨基酸的羧基与其他氨基酸的氨基形成的肽键D. 各种氨基酸的羧基与其他氨基酸的氨基形成的肽键E. 碱性氨基酸残基的羧基末端肽键23. 氮的总平衡常见于下列哪种情况A. 儿童、孕妇B. 健康成年人C. 长时间饥饿D. 康复期病人E. 消耗性疾病24.下列哪一氨基酸不参与蛋白质合成A. 谷氨酰胺B. 半胱氨酸C. 瓜氨酸D. 酪氨酸E. 脯氨酸25.催化谷氨酸氧化脱氨的酶是A. 谷氨酸脱氨酶B. 谷氨酸水解酶C. 氨基酸氧化酶D. 谷氨酸转氨酶E. 谷氨酸脱氢酶26. 转氨酶的辅酶中含有的维生素是A. 维生素B1B. 维生素B2C. 维生素B6D. 维生素PPE. 维生素B1227.鸟氨酸循环的亚细胞部位在A. 胞液和微粒体B. 线粒体和内质网C. 微粒体和线粒体D. 内质网和胞液E. 线粒体和胞液28.鸟氨酸循环中第二个NH3来自下列哪一氨基酸直接提供A. 精氨酸B. 天冬氨酸C. 鸟氨酸D. 瓜氨酸E. 谷氨酰胺29 磷酸吡哆醛参与()A. 脱氢反应B. 脱水反应C. 谷氨酸脱羧反应D. 脱硫化氢反应E. 羟化反应30.下列有关氨基酸代谢的论述,错误的是A.氨基酸的吸收是耗能的主动转运过程B.转氨基作用是所有氨基酸共有的代谢途径C.氨基酸脱氨基的主要方式是联合脱氨基作用D.氨基酸经脱氨基作用后生成α-酮酸和NH3E.氨基酸经脱羧基作用后生成胺类和CO2(二)B型题A. 苹果酸B. 草酰乙酸C. 琥珀酸D. α-酮戊二酸E. 延胡索酸31.经转氨基作用可生成谷氨酸的是32.经转氨基作用可生成天冬氨酸的是A. 酪氨酸B. 谷氨酸E. 甲硫氨酸33.在体内能直接生成γ-氨基丁酸的是34.在体内能生成多胺的是A. 1分子B. 2分子C. 3分子D. 4个E.3个35.一次鸟氨酸循环共耗ATP36.一次鸟氨酸循环共耗高能磷酸键A.胃蛋白酶B. 羧基肽酶C. 肠激酶D. 二肽酶E. 胆汁酸37.属于内肽酶的是38.属于外肽酶的是39.激活胰蛋白酶原的是A.酪氨酸、苯丙氨酸和色氨酸B. 半胱氨酸、胱氨酸和蛋氨酸C. 缬氨酸、亮氨酸和异亮氨酸D. 精氨酸、赖氨酸和组氨酸E. 谷氨酸和天冬氨酸40.含硫氨基酸是41.芳香族氨基酸是42.分支氨基酸是A. γ-氨基丁酸B. 5-羟色胺C. 牛磺酸D. 多胺E. 组胺43.促进细胞生长、增殖的是44.与过敏反应有关的是45.参与形成结合型胆汁酸的是(三)D型题46.蛋白质的含氮特点是A. 平均含氮量为16%B. 1 g 氮相当于16 g 蛋白质C. 平均含氮量为6.25 %D. 1 g 氮相当于6.25 g 蛋白质E. 平均含氮量为6.0%47.尿素分子中的两个氮原子分别来自A. 鸟氨酸B. 氨分子E. 瓜氨酸48.色氨酸在体内可代谢转变为A. 褪黑激素B. 5-HTC. 牛磺酸D. 泛酸E. 丙酮酸49.参与血氨运输的主要物质是A. 丙氨酸B. 谷氨酸C. 天冬氨酸D. 谷氨酰胺E. 天冬酰胺50.参与联合脱氨基作用的辅酶有A. NAD+B. 磷酸吡哆醛及磷酸吡哆胺C. FADD. 生物素E. TPP51.肝内联合脱氨基作用是将下列两个反应联合起来进行A. 氨基转移作用B. 脱氨基作用C. 谷氨酸的氧化脱氨基作用D. 脱水脱氨基作用E. 直接脱氨基作用52.影响一碳单位代谢的维生素有A. 生物素B. 叶酸C. B12D. B6E. 泛酸53.半胱氨酸可代谢产生A. 甲硫氨酸B. 牛磺酸C. 硫酸根D. γ-氨基丁酸E. 磷酸根54.酪氨酸可以代谢转化为下列活性物质A. T1B. T3C. T4D. T2E. γ-T355.通过甲硫氨酸循环提供活性甲基合成的化合物有A. 乙醇胺B. 胆碱C. 胍乙酸D. 肌酸E. 去甲肾上腺素56.以嘌呤核苷酸循环方式脱氨的组织有A. 肝B. 心肌C. 脑D. 骨骼肌E. 肾57.动物实验发现生酮氨基酸主要有A. 色氨酸B. 亮氨酸C. 赖氨酸D. 苯丙氨酸E. 酪氨酸58.氨基酸的一般代谢途径是指A. 合成组织蛋白B. 脱氨基作用C. 脱羧基作用D. 合成活性物质E. 转氨基作用59.天冬氨酸经联合脱氨基作用后生成A. α-酮戊二酸B. CO2C. NH3D. 草酰乙酸E. 谷氨酸60.能分解产生-CH2-基团的氨基酸是A. 谷氨酸B. 组氨酸C. 甘氨酸D. 丝氨酸E. 甲硫氨酸(四)X型题61.下列氨基酸中哪些是必需氨基酸A. 甲硫氨酸B. 亮氨酸C. 赖氨酸D. 酪氨酸E. 丝氨酸62.内肽酶有A. 弹性蛋白酶B. 糜蛋白酶C. 羧基肽酶BD. 氨基肽酶E. 胰蛋白酶63.下列哪些氨基酸经过转氨基作用后可进入糖代谢途径A. 丙氨酸B. 天冬氨酸C. 谷氨酸D. 亮氨酸E. 赖氨酸64.氨的代谢去路有A. 合成尿素B. 合成非必需氨基酸C. 合成谷氨酰胺D. 合成尿酸E. 合成部分必需氨基酸65.下列物质属于一碳单位的有A. -CH3B. CO2C. –CH=NHD. =CH2E. -CHO66.与半胱氨酸代谢有关的物质是A. 丙酮酸B. 牛磺酸C. PAPSD. 谷胱甘肽E. 甘氨酸67.将鸟氨酸循环与三羧酸循环联系起来的物质是A. 延胡索酸B. 瓜氨酸C. 鸟氨酸D. 天冬氨酸E. 精氨酸68.不能产生游离氨的脱氨基作用是A. 氧化脱氨基作用B. 氨基转移作用C. 联合脱氨基作用D. 嘌呤核苷酸循环E. 谷丙转氨酶催化的反应69.肠道中氨基酸的腐败产物可以有A. 吲哚B. 硫化氢C. 胺类D. 酚类E. 甲烷70.酪氨酸可以代谢转变为A. 延胡索酸B. 黑色素C. 乙酰乙酸D. 苯丙氨酸E. 甲状腺激素71.关于联合脱氨基作用的论述正确的是A. 它可以在全身各组织中进行B. 是产生游离氨的主要方式C. 逆过程可以合成非必需氨基酸D. 不需任何辅酶参与E. 需要消耗能量72.以下是关于甲硫氨酸循环的论述,错误的是A. 可以提供活性甲基B. 能再生成游离FH4C. 能使甲硫氨酸再生D. 甲硫氨酸能直接提供甲基E. 不需要辅酶参与73.能产生游离氨的脱氨基方式是A. 氧化脱氨基作用B. 氨基转移作用C. 联合脱氨基作用D. 嘌呤核苷酸循环E. 天冬氨酸的直接脱氨基作用74.机体内血氨可以来自A. 肠菌对氨基酸的腐败作用B. 胺类物质的氧化分解C. 氨基酸的脱氨基作用D. 肾小管细胞内谷氨酰胺的分解E. 碱性尿时75.参与鸟氨酸循环的氨基酸有A. 鸟氨酸B. 瓜氨酸C. 精氨酸D. 赖氨酸E. 谷氨酰胺二. 填空题1. 胰腺分泌的内肽酶有、、和;外肽酶有和。
生物化学_08 蛋白质的酶促降解和氨基酸代谢

R1-C| H-COONH+3
α-氨基酸1
R2-C|| -COOO
α-酮酸2
R1-C|| -COOO
α-酮酸1
转氨酶
R2-C| H-COONH+3
α-氨基酸2
(辅酶:磷酸吡哆醛)
-氨基酸 磷酸吡哆醛
醛亚胺
互变异构
-酮酸
磷酸吡哆胺
酮亚胺
磷酸吡哆醛的作用机理
谷丙转氨酶和谷草转氨酶
谷丙转氨酶 (GPT)
蛋白质
动植物
动植物废物 死的有机体
硝酸盐还原 反硝化作用 氧化亚氮
NH3
亚硝酸
硝酸盐
入地下水
(1)意义:
不需高温高压,节约能源,不污染环境; 生物固氮可以为农作物提供氮肥 (2)固氮酶结构(多功能酶):
铁蛋白 + 钼铁蛋白 二者结合才有活性 (3)固氮酶催化的反应及反应条件
催化的反应:
N2 + 6H+ + 6e-
合成尿素并随尿排出体外。
2NH3 + CO2 + 3ATP + 3H2O
H2N C=O + 2ADP +
H2N
AMP + 4Pi
在植物体内也有尿素的生成,植物体中含有脲 酶,能将尿素水解:
H2N C=O + H2O
H2N
脲酶 2NH3 + CO2
生成的氨可再循环利用。
(二)α-酮酸的代谢转变
1、还原氨基化: 合成新AA。 2、转变为糖和脂肪。 生糖AA: 分解生成丙酮酸和TCA循环的有机酸, 通过 糖异生作用转化为糖。 ※ 生酮AA:代谢终产物为乙酰CoA或乙酰乙酰CoA的AA。 (只有Leu、Lys是纯粹的生酮AA)。 ※ 3、氧化为CO2和H2O。
生物化学8 氨基酸代谢与合成

蛋白质降解和氨基酸的分解代谢蛋白质的降解细胞总是不断地从氨基酸合成蛋白质,又把蛋白质降解为氨基酸。
从表面上看,这样的变化过程看似是一种浪费,实际上它有二重功能,其一是排除那些不正常的蛋白质,它们一旦积聚,将对细胞有害;其二是通过排除积累过多的酶和调节蛋白使细胞代谢的井然有序得以进行。
蛋白质降解的特性蛋白质有选择地降解非正常蛋白质,例如血红蛋白与缬氨酸类似物结合,得到的产物在网织红细胞中的半存活期约10min,而正常血红蛋白可延续红细胞的存活期最终可达120天。
正常的胞内蛋白被排除的速度是由它们的个性决定的,绝大多数快速降解的酶都居于重要的“代谢控制”位置,而较稳定的酶在所有生理条件下有较稳定的催化活性。
降解速度还因它的营养及激素状态而有所不同。
在营养条件被剥夺的情况下,细胞提高它的蛋白质降解速度,以维持它的必需营养源使不可或缺的代谢过程得以进行。
蛋白质降解的反应机制真核细胞对于蛋白质降解有两种体系,一个是溶酶体的降解体质和一种ATP-依赖性的以细胞溶胶为基础的机制。
溶酶体溶酶体是具有单层被膜的细胞器,其中个含有50多种水解酶,包括不同种的蛋白酶,称之为组织蛋白酶。
溶酶体保持其内部PH在5左右,而它含有的酶的最适PH就是酸性。
如此可以抵制偶然的溶酶体渗漏从而保护了细胞,因此在细胞溶胶PH下,溶酶体的大部分酶都是无活性的。
溶酶体对细胞各组分的再利用是通过它融合细胞质的膜被点块即自(体吞)噬泡,并随即分解其内容物实现的。
溶酶体的阻断剂有抗虐药物——氯代奎宁(是一种弱碱,在不带电形式随意穿透溶酶体,在溶酶体内积累形成特电荷型,因此增高了溶酶体内部的pH,并阻碍了溶酶体的功能。
溶酶体降解蛋白质是无选择性的,而rong'mei't'抑制剂对于非正常蛋白或短寿命酶无快速的降解效应,但是它们可以防止饥饿状态下蛋白质的加速度崩溃。
许多正常的和病理活动都伴随溶酶体活性的升高。
ATP-依赖真核细胞蛋白质的降解主要是溶酶体的作用,但是缺少溶酶体的网织红细胞却可选择性的降解非正常蛋白质,这里有ATP-依赖的蛋白质水解体系存在ATP依赖蛋白质需要有泛肽存在。
蛋白质的分解代谢

2.肠激酶
胰蛋白酶原
胰蛋白酶
糜蛋白酶原
糜蛋白酶
弹性蛋白酶原 羧基肽酶原
弹性蛋白酶 羧基肽酶
➢ 寡肽酶(氨基肽酶及二肽酶)
氨基肽酶
内肽酶
羧基肽酶
氨基酸 + 蛋白水解酶作用示意图
二肽酶
氨基酸
二、氨基酸的吸收
• 吸收部位:主要在小肠 • 吸收形式:氨基酸 • 吸收机制:耗能的主动吸收过程
蛋白质的吸收
在糖和脂肪等物质充分供应的条件下,为维持氮的总平衡,至 少必需摄入的蛋白质的量,称为~。成人每日最低蛋白质需要量为 30~50g,我国营养学会推荐成人每日蛋白质需要量为70~80g。
3. 蛋白质的营养价值
①必需氨基酸(essential amino acid)
指体内需要但自身不能合成,或合成不能满足需要的,必 须由食物供给的氨基酸,共有8种:赖、色、苯丙、蛋、苏、亮、 异亮及缬氨酸。另有两种半必需氨基酸:精氨酸、组氨酸
•其余10种氨基酸utrition value)
蛋白质的营养价值取决于必需氨基酸的种类、含 量和比例。衡量蛋白质营养价值高低的指标是蛋白质的 生理价值。
③蛋白质的互补作用
指营养价值较低的蛋白质混合食用,其必需氨基酸 可以互相补充而提高营养价值。
谷类:色氨酸多,赖氨酸少 豆类:色氨酸少,赖氨酸多
某些物质结构与神经递质结构相似,可取代正常神
经递质从而影响脑功能,称假神经递质。
CH2NH2 CH2
CH2NH2 H C OH
CH2NH2 CH2
CH2NH2 H C OH
苯乙胺
苯乙醇胺
OH 酪胺
OH β-羟酪胺
β-羟酪胺和苯乙醇胺结构类似儿茶酚胺,它们可取代儿 茶酚胺与脑细胞结合,但不能传递神经冲动,使大脑发生 异常抑制而昏迷,临床称为肝昏迷。
蛋白质在代谢中的作用

蛋白质在代谢中的作用蛋白质是生物体内最基本的化学物质之一,也是生物体内的重要营养成分之一,它在机体代谢中起着不可替代的作用。
在本文中,我们将深入探讨蛋白质在代谢中的作用。
1.蛋白质的基本结构和功能蛋白质是由氨基酸经过肽键连接而成的巨分子,它的基本分子结构由氨基酸残基组成,每一种氨基酸都有自己独特的性质和功能。
蛋白质在机体中有许多重要的功能,其中最重要的是构成组织和器官、调节机体代谢和免疫系统、传递和储存信息等。
2.蛋白质的代谢途径蛋白质在体内代谢主要有三个途径:消化吸收、蛋白质合成和蛋白质降解。
蛋白质消化吸收后,经过肝脏转运后再经过血液输送到各个细胞,然后进行蛋白质的合成或降解。
3.蛋白质在机体代谢中的作用蛋白质在机体代谢中起着极其重要的作用,主要包括以下方面。
3.1.构成组织和器官蛋白质是构成细胞、组织和器官的基本分子,它构成了肌肉、皮肤、骨骼等众多组织和器官的组织结构。
蛋白质的结构和功能的多样性使得它能够构建不同的组织和器官。
3.2.调节机体代谢和免疫系统蛋白质通过激活或抑制酶的活性、调节体内代谢物的浓度等方式来调节机体代谢。
同时,蛋白质也是免疫系统中重要的成分之一,它通过与免疫系统中的细胞和分子相互作用,调节机体免疫系统的功能。
3.3.能量供应蛋白质还能够通过降解产生能量供给,而且能够产生比碳水化合物和脂肪更多的能量。
在机体长时间饥饿时,蛋白质的降解可以维持机体基本的代谢功能。
3.4.传递和储存信息蛋白质能够通过信号传递、蛋白质互作和蛋白质合成等方式,在机体内部传递信息。
蛋白质在细胞中有着重要的功能,如携带基因信息和细胞膜通道的形成等等。
4.蛋白质与健康蛋白质是维持人体健康的重要营养素。
蛋白质缺乏会影响健康,对儿童和老年人影响更大。
同时,摄入过量的蛋白质也会导致肾脏负担过重,从而对健康产生负面影响。
5.总结由此可见,蛋白质在机体代谢中起着重要作用,不仅是人体健康的必要营养素,还是维持器官、组织、细胞功能的关键分子。
蛋白质周转代谢及其测定

蛋白质周转代谢及其测定
蛋白质周转代谢是指蛋白质在生物体内不断被合成、降解和再合成的过程。
蛋白质在人体中起着重要的作用,包括细胞结构、酶催化、激素调节、免疫防御等等。
蛋白质周转代谢的测定是为了研究蛋白质代谢的过程,了解蛋白质的合成和降解速率及相应的代谢途径。
常用的测定方法包括放射性同位素标记法、稳定同位素标记法、氨基酸代谢测定和蛋白质组学技术等。
放射性同位素标记法是指通过将放射性同位素标记到蛋白质分
子中,测定标记蛋白质的代谢速率。
稳定同位素标记法则是将稳定同位素标记到蛋白质中,通过测定标记同位素的代谢产物中同位素的相对丰度来计算蛋白质的代谢速率。
氨基酸代谢测定则是通过测定血液中氨基酸的浓度变化,计算蛋白质的合成和降解速率。
蛋白质组学技术则是通过大规模测定蛋白质的表达和变化来研究蛋白质代谢的过程。
总之,蛋白质周转代谢及其测定是非常重要的研究领域,对于深入了解蛋白质代谢过程以及相关疾病的发生机制都有着重要的意义。
- 1 -。
蛋白质对基础代谢的影响

蛋白质对基础代谢的影响
1 蛋白质对基础代谢的深层影响
蛋白质是维持生命活动不可缺少的基础物质,它不但具有构建机
体的作用,还参与机体的基本代谢活动。它可以分解为氨基酸,我们
称之为蛋白质的最小结构单位。因此,研究表明,蛋白质对人体基础
代谢具有重要影响。
蛋白质参与许多有关机体能量生产的重要反应,它以维持生命活
动所必需的能量为前提,通过食物的营养成分的分解,在机体内部作
为热量消耗的一部分渗透到血液中,形成基础代谢的关键组成部分,
影响机体消耗的热量。
另外,蛋白质或其他机体蛋白质的重要部分,也对胰岛素,胆固
醇,电解质和激素等多种激素的产生起到调节作用,它限制体内胰岛
素和胆固醇的产生,抑制脂肪细胞的增加,从而调节体内糖类,氨基
酸和脂肪代谢,有助于调节血糖水平,减少患胰岛素抵抗的风险,促
进健康状态的维持,对调节基础代谢发挥重要作用。
此外,蛋白质也有一定的调节功能,可以调节体内细胞交换通道
的开启或关闭,从而调节机体内细胞活力,影响体内细胞活动,引发
机体细胞内发生变化,在机体内部形成物质和能量交换,保持机体稳
定,从而有助于保持机体基础代谢活动的正常运作。
综上所述,蛋白质对基础代谢有着深层的影响。它通过影响机体
的能量摄取和消耗,促进激素的产生和调节,调节机体细胞交换通道
的开启和关闭,以及调节机体内物质和能量的交换,对机体的基础代
谢具有重要的调节作用。