算法设计与分析实验报告

合集下载

算法设计与分析实验报告

算法设计与分析实验报告

实验一排序算法设计一、实验内容冒泡排序二、实验问题分析该问题主要涉及到了指针和循环和相互比较的方法,是综合知识的应用。

三、数学模型根据题目要求,依次对每个数据进行比较,直至得出最后结果。

如果a>b则交换位置,如果a<b则不交换。

四、程序流程图五、源代码#include <stdio.h>void sort(int a[]){int temp;for(int i=0;i<9;i++){for(int j=0;j<10-i-1;j++){if(a[j]>a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}printf("排序后的数据\n"); for(i=0;i<10;i++){if(i==5){printf("\n");}printf("%d ",a[i]);}printf("\n");}void main(){int a[10];for(int i=0;i<10;i++){scanf("%d",&a[i]);}printf("排序前的数据\n"); for(i=0;i<10;i++){if(i==5){printf("\n");}printf("%d ",a[i]);}printf("\n");sort(a);}六、测试结果实验二递归算法设计一、实验内容1.判断S字符是否为“回文”的递归函数,并编写程序测试。

二、实验问题分析递归是一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法。

递归算法设计,就是把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题,在逐步求解小问题后,再返回(回溯)得到大问题的解。

算法设计与分析实验报告(模版)

算法设计与分析实验报告(模版)

武汉工程大学计算机科学与工程学院《算法设计与分析》实验报告专业班级实验地点学生学号指导教师学生姓名实验时间实验项目算法基本工具和优化技巧实验类别基本性实验实验目的及要求目的与要求:练习算法基本工具和优化技巧的使用实验内容要点:1、熟悉循环和递归的应用2、熟悉数据结构在算法设计中的应用3、了解优化算法的基本技巧4、掌握优化算法的数学模型成绩评定表类别评分标准分值得分合计上机表现积极出勤、遵守纪律主动完成实验设计任务30分实验报告及时递交、填写规范内容完整、体现收获70分说明:评阅教师:日期:年月日一、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。

一只狼从0号洞开始,顺时针方向计数,每当经过第m个洞时,就进洞找兔子。

输入m,n,问兔子有没有幸免的机会?如果有,该藏哪里?代码设计:。

结果:。

二、有52张牌,使他们全部正面朝上,第一轮是从第2张开始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌开始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张开始,凡是4的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上,以此类推,直到翻的牌超过104张为止。

统计最后有几张正面朝上,以及他们的位置号。

代码设计:。

结果:。

三、A、B、C、D、E 5人为某次竞赛的前5名,他们在名次公布前猜名次。

A说:B得第三名,C得第五名。

B说:D得第二名,E得第四名。

C说:B得第一名,E得第四名。

D说:C得第一名,B得第二名。

E说:D得第二名,A得第三名。

结果每个人都猜对了一半,实际名次是什么呢?代码设计:。

结果:。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告姓名:班级:计算机科学与技术102班学号:1090教师:设计时间:2012.04.23编程工具:C-Free 5.0【实验一】:使用递归方法输出杨辉三角杨辉三角.cpp//使用递归方法输出杨辉三角,每个数字占用4个空格位#include <stdlib.h>#include <stdio.h>int calcit(int x, int y){if (x==y||y==0)return 1;elsereturn calcit(x-1,y-1)+calcit(x-1,y);}int main(){int i, j,k,n;printf("请输入行数(最好<=13):");scanf("%d",&n);for (i = 0; i<n; i++){for(k=(n-i)*2;k>0;k--)printf(" ");for (j=0;j<=i;j++)printf("%4d",calcit(i, j));printf("\n");}return 0;}【实验二】:快速排序(一)快速排序.cpp#include<stdio.h>#include<stdlib.h>#define SIZE 100void quick_sort(int data[],int x,int y);int pation(int data[],int x,int y);int main(){int i,n,data[SIZE];printf("请输入要排列的数目(<=100):");scanf("%d",&n);printf("请输入要排列的数列:\n");for(i=0;i<n;++i)scanf("%d",&data[i]);quick_sort(data,0,n-1);printf("排列后的数列为:\n");for(i=0;i<n;++i)printf( "%d ",data[i]);printf("\n");return 0;}void quick_sort(int data[],int x,int y){if(x>=y) return;int q=pation(data,x,y);quick_sort(data,x,q-1);quick_sort(data,q+1,y);}int pation(int data[],int x,int y){int n=data[x],i=x+1,j=y,temp;while(1){while(data[i]<n) ++i;while(data[j]>n) --j;if(i>=j) break;temp=data[i]; data[i]=data[j]; data[j]=temp;}data[x]=data[j];data[j]=n;return j;}(二)插入排序.cpp#include<stdio.h>#include<conio.h>#define X 100#define Y 100int main(){int a[X],r[Y];int *p;int i,j,n;printf("请输入要排列的数目(<=100):");scanf("%d",&n);printf("请输入要排列的数列:\n");for(i=0;i<n;i++){p=&a[i];scanf("%d",p);r[i+1]=a[i];}r[0]=1;for(i=2;i<=n;i++){r[0]=r[i];j=i-1;while(r[j]>r[0]){r[j+1]=r[j];j--;}r[j+1]=r[0];}printf("排列后的顺序是:\n");for(i=1;i<=n;i++){p=&r[i];printf("%d ",*p);}printf("\n");return 0;}【实验三】:趣味矩阵(一)次上三角的自动打印次上三角的自动打印.cpp#include "stdio.h"#include "stdlib.h"#define MAX 100void InterestMatrix(int n){int a[MAX][MAX];int k=1,m=0; // 计数器int i,j;//矩阵初始化for(i=0;i<n;i++){for(j=0;j<=i;j++)a[i][j]=k++;}//打印矩阵for(i=0;i<n;i++){m=i;for(j=0;j<n-i;j++)printf("%d ",a[m++][j]);printf("\n");}}int main(){int n;printf("输入矩阵的阶数n:");scanf("%d",&n);printf("\n");InterestMatrix(n);printf("\n");return 0;}(二)特殊趣味矩阵的打印趣味矩阵.cpp//使左对角线和右对角线上的元素为0,它们上方的元素为1,左边的元素为2,下方的元素为3,右边的元素为4#include<stdio.h>int main(){int i,j,a[100][100],n;printf("请输入矩阵的阶数:");scanf("%d",&n);for(i=1;i<=n;i++)for(j=1;j<=n;j++){if(i==j||i+j==n+1)a[i][j]=0;if(i<j&&i+j<n+1)a[i][j]=1;if(i>j&&i+j<n+1)a[i][j]=2;if(i>j&&i+j>n+1)a[i][j]=3;if(i<j&&i+j>n+1)a[i][j]=4;}for(i=1;i<=n;i++){printf("\n");for(j=1;j<=n;j++)printf("%d ",a[i][j]);}printf("\n");return 0;}。

算法课设实验报告(3篇)

算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。

为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。

二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。

1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。

(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。

- 对每种算法进行时间复杂度和空间复杂度的分析。

- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。

(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。

- 编写三种排序算法的代码。

- 分析代码的时间复杂度和空间复杂度。

- 编写测试程序,生成随机测试数据,测试三种算法的性能。

- 比较三种算法的运行时间和内存占用。

2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。

(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。

- 分析贪心算法的正确性,并证明其最优性。

(3)实验步骤:- 分析活动选择问题的贪心策略。

- 编写贪心算法的代码。

- 分析贪心算法的正确性,并证明其最优性。

- 编写测试程序,验证贪心算法的正确性。

3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。

(2)实验内容:- 实现一个动态规划算法问题,如背包问题。

- 分析动态规划算法的正确性,并证明其最优性。

(3)实验步骤:- 分析背包问题的动态规划策略。

- 编写动态规划算法的代码。

- 分析动态规划算法的正确性,并证明其最优性。

- 编写测试程序,验证动态规划算法的正确性。

三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。

算法设计与分析实验报告棋盘覆盖问题

算法设计与分析实验报告棋盘覆盖问题

算法设计与分析实验报告棋盘覆盖问题贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:信计101班实验日期:2013-9-30 姓名: 张胜学号:1007010162 指导教师:程欣宇实验序号:一实验成绩: 一、实验名称分治算法实验 - 棋盘覆盖问题二、实验目的及要求1、熟悉递归算法编写;2、理解分治算法的特点;3、掌握分治算法的基本结构。

三、实验环境Visual C++四、实验内容根据教材上分析的棋盘覆盖问题的求解思路,进行验证性实验;要求完成棋盘覆盖问题的输入、分治求解、输出。

有余力的同学尝试消去递归求解。

五、算法描述及实验步骤分治算法原理:分治算法将大的分解成形状结构相同的子问题,并且不断递归地分解,直到子问题规模小到可以直接求解。

棋盘覆盖问题描述:在一个2k x 2k个方格组成的棋盘中恰有一个方格与其他的不同称为特殊方格,想要求利用四种L型骨牌(每个骨牌可覆盖三个方格)不相互重叠覆盖的将除了特殊方格外的其他方格覆盖。

实验步骤:1、定义用于输入和输出的数据结构;2、完成分治算法的编写;3、测试记录结构;4、有余力的同学尝试不改变输入输出结构,将递归消除,并说明能否不用栈,直接消除递归,为什么,六、调试过程及实验结果实验运行结果:七、总结通过本次实验,我更深的理解了递归和分治策略。

代码是书上的算法,加上主函数就行了,用的是C语言编写,很长时间没用了,感觉有点生疏。

实验结果有点问题,就是覆盖棋盘时,并不是按照1,2,3….的字符顺序,而是按照很乱的顺序输出字符,这个我不知道怎么解决,就没解决。

八、附录#include "stdio.h"#include "conio.h"int board[8][8] ={{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0 ,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0}};int tile=0;void chessBoard(int tr, int tc, int dr, intdc, int size){int t=tile++,s=size/2;if (size==1) return;if (dr<tr+s&&dc<tc+s)chessBoard(tr,tc,dr,dc,s);else {board[tr+s-1][tc+s-1]=t;chessBoard(tr,tc,tr+s-1,tc+s-1,s);}if(dr <tr+s && dc >= tc+s)chessBoard(tr,tc+s,dr,dc,s);else {board[tr+s-1][tc+s]=t;chessBoard(tr,tc+s,tr+s-1,tc+s,s);} if(dr >= tr+s&&dc<tc+s)chessBoard(tr+s,tc,dr, dc,s);else {board[tr+s][tc+s-1]=t;chessBoard(tr+s,tc,tr+s,tc+s-1,s);} if(dr >= tr+s &&dc>=tc+s) chessBoard(tr+s,tc+s,dr,dc,s);else {board[tr+s][tc+s]=t;chessBoard(tr+s,tc+s,tr+s,tc+s,s);} }main(){int i ,j;chessBoard(0,0,5,5,8);for(i=0;i <8;i++){for( j=0;j <8;j++) {if(board[i][j]<10)printf("0");printf("%d",board[i][j]);printf(" ");}printf( "\n"); } getchar();}。

算法设计与分析实验报告(中南民族大学)

算法设计与分析实验报告(中南民族大学)

院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。

主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。

2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。

3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。

实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。

对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。

如果有必要,合并这些问题的解,以得到原始问题的解。

求解矩阵相乘的DAC算法,使用了strassen算法。

DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告教师:学号:姓名:实验一:串匹配问题实验目的:(1) 深刻理解并掌握蛮力法的设计思想;(2) 提高应用蛮力法设计算法的技能;(3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。

三、实验要求:( 1) 实现BF 算法;(2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法;(3 ) 对上述3 个算法进行时间复杂性分析, 并设计实验程序验证分析结果。

#include "stdio.h"#include "conio.h"#include <iostream>//BF算法int BF(char s[],char t[]){ int i; int a; int b; int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****BF*****算法\n");for(i=0;i<m;i++){ b=0; a=i; while(s[a]==t[b]&&b!=n){a++; b++; }if(b==n){ printf("查找成功!!\n\n"); return 0;}}printf("找不到%s\n\n",t); return 0; }//前缀函数值,用于KMP算法int GETNEXT(char t[],int b){ int NEXT[10]; NEXT[0]=-1;int j,k; j=0; k=-1; while(j<strlen(t)){if ((k==-1)||(t[j]==t[k])){j++;k++;NEXT[j]=k; }else k=NEXT[k];}b=NEXT[b];return b;}//KMP算法int KMP(char s[],char t[]){int a=0; int b=0;int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****KMP算法*****\n");while(a<=m-n){while(s[a]==t[b]&&b!=n){a++;b++; }if(b==n){printf("查找成功!!\n\n");return 0;}b=GETNEXT(t,b);a=a-b;if(b==-1) b++;}printf("找不到%s\n\n",t);return 0; } //滑动距离函数,用于BM算法int DIST(char t[],char c){ int i=0,x=1;int n; n=strlen(t);while(x&&i!=n-1){if(t[i]==c)x=0;else i++;}if(i!=n-1)n=n-1-i;return n; } //BM算法结果分析与体会:glibc里的strstr函数用的是brute-force(naive)算法,它与其它算法的区别是strstr不对pattern(needle)进行预处理,所以用起来很方便。

算法设计算法实验报告(3篇)

算法设计算法实验报告(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,加深对算法设计方法、基本思想、基本步骤和基本方法的理解与掌握。

通过具体问题的解决,提高利用课堂所学知识解决实际问题的能力,并培养综合应用所学知识解决复杂问题的能力。

二、实验内容1. 实验一:排序算法分析- 实验内容:分析比较冒泡排序、选择排序、插入排序、快速排序、归并排序等基本排序算法的效率。

- 实验步骤:1. 编写各排序算法的C++实现。

2. 使用随机生成的不同规模的数据集进行测试。

3. 记录并比较各算法的运行时间。

4. 分析不同排序算法的时间复杂度和空间复杂度。

2. 实验二:背包问题- 实验内容:使用贪心算法、回溯法、分支限界法解决0-1背包问题。

- 实验步骤:1. 编写贪心算法、回溯法和分支限界法的C++实现。

2. 使用标准测试数据集进行测试。

3. 对比分析三种算法的执行时间和求解质量。

3. 实验三:矩阵链乘问题- 实验内容:使用动态规划算法解决矩阵链乘问题。

- 实验步骤:1. 编写动态规划算法的C++实现。

2. 使用不同规模的矩阵链乘实例进行测试。

3. 分析算法的时间复杂度和空间复杂度。

4. 实验四:旅行商问题- 实验内容:使用遗传算法解决旅行商问题。

- 实验步骤:1. 设计遗传算法的参数,如种群大小、交叉率、变异率等。

2. 编写遗传算法的C++实现。

3. 使用标准测试数据集进行测试。

4. 分析算法的收敛速度和求解质量。

三、实验结果与分析1. 排序算法分析- 通过实验,我们验证了快速排序在平均情况下具有最佳的性能,其时间复杂度为O(nlogn),优于其他排序算法。

- 冒泡排序、选择排序和插入排序在数据规模较大时效率较低,不适合实际应用。

2. 背包问题- 贪心算法虽然简单,但在某些情况下无法得到最优解。

- 回溯法能够找到最优解,但计算量较大,时间复杂度较高。

- 分支限界法结合了贪心算法和回溯法的特点,能够在保证解质量的同时,降低计算量。

3. 矩阵链乘问题- 动态规划算法能够有效解决矩阵链乘问题,时间复杂度为O(n^3),空间复杂度为O(n^2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

2.递归出口,递归终止的条件,即最小子问题的求解,可以允许多个出口。

3.界函数,问题规模变化的函数,它保证递归的规模向出口条件靠拢(2)递归与非递归之间如何实现程序的转换?(3)分析二分查找和快速排序中使用的分治思想。

答:1.一般根据是否需要回朔可以把递归分成简单递归和复杂递归,简单递归一般就是根据递归式来找出递推公式(这也就引申出分治思想和动态规划)。

2.复杂递归一般就是模拟系统处理递归的机制,使用栈或队列等数据结构保存回朔点来求解。

(4)分析二次取中法和锦标赛算法中的分治思想。

二次取中法:使用快速排序法中所采用的分划方法,以主元为基准,将一个表划分为左右两个子表,左子表中的元素均小于主元,右子表中的元素均大于主元。

主元的选择是将表划分为r 部分,对找出r个中的中间值,并求r组的中间值中的中间值。

锦标赛算法:两两分组比较,大者进入下一轮,知道剩下1个元素max为止。

在每次比较中淘汰较小元素,将被淘汰元素记录在淘汰它的元素的链表上。

检查max的链表,从中知道最大元素,即second本科实验报告课程名称:算法设计与分析实验项目:贪心算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04日实验二贪心算法2.1 实验目的与要求1.理解贪心算法的基本思想;2.运用贪心算法解决实际问题,加深对贪心算法的理解和运用。

2.2 实验课时4学时(课内2学时+课外2学时)2.3 实验原理贪心算法的思想:(1)贪心算法(Greedy Approach)能得到问题的最优解,要证明我们所做的第一步选择一定包含着一个最优解,即存在一个最优解的第一步是从我们的贪心选择开始。

(2)在做出第一步贪心选择后,剩下的子问题应该是和原问题类似的规模较小的子问题,为此我们可以用数学归纳法来证明贪心选择能得到问题的最优解。

2.4 实验题目1.上机题目:最小延迟调度问题给定等待服务的客户集合A={1,2,…,n},预计对客户i的服务时长为t i>0,T=(t1,t2,…,t n),客户i希望的服务完成时刻为d i>0,D=(d1,d2,…,d n);一个调度f:A→N,f(i)为客户i的开始时刻。

如果对客户i的服务在d i之前结束,那么对客户i的服务没有延迟,即如果在d i之后结束,那么这个服务就被延迟了,延迟的时间等于该服务的实际完成时刻f(i)+t i减去预期结束时刻d i。

一个调度f的最大延迟是所有客户延迟时长的最大值max i∈A{f(i)+t i d i}。

附图2所示是不同调度下的最大延迟。

使用贪心策略找出一个调度使得最大延迟达到最小。

2.设计思想:贪心思想,按照他们的截止时间从小到大排序,如果截止时间相同按照花费时间从小到大排序。

然后按照f_min(所有客户延迟时长的最大值)=max(works[i].cost+time-works[i].deadline,f_min);寻找最所有客户延迟时长的最大值。

3.代码设计:sort(works,works+n,cmp);int f_min=0;int time=0;for(int i=0;i<n;i++){//if(works[i].cost+time>works[i].deadline)f_min=max(works[i].cost+time-works[i].deadline,f_min);//cout<<f_min<<endl;time+=works[i].cost;}printf("Maximum delay:\n");printf("%d\n",f_min);printf("Complete the order of tasks:\n");for(int i=0;i<n;i++)cout<<works[i].id<<" ";cout<<endl;}return 0;}/*样例输入:55 8 4 10 310 12 15 11 20*/运行结果:2.5 思考题(1)哈夫曼编码问题的编程如何实现?答:哈夫曼树,又名最优树,给定n个权值作为n的叶子结点,构造一颗二叉树,若带权路径长度达到最小,成这样的二叉树为最优二叉树,也称哈夫曼树。

实现步骤:1、初始化: 根据给定的n个权值{w1,w2,…..wn..}构成n棵二叉树的集合F={T1,T2….Tn},其中每棵二叉树中只有一个带权Wi的根结点,左右子树均空。

2、找最小树:在F中选择两棵根结点权值最小的树作为左右子树构造一-棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树,上根结点的权值之和。

3、删除与加入: 在F中删除这两棵树,并将新的二叉树加入F中。

4、判断:重复前两步(2和3),直到F中只含有一棵树为止。

该树即为哈夫曼树。

(2)使用贪心策略求解背包问题。

答:首先计算每种物品单位重量的价值vi/wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

若将这种物品全部装入背包后,背包内的物品总重量未达到w,则选择单位重量价值次高的物品并尽可能多地装入背包。

依此策略一直地进行下去直到背包满重为止。

算法的主要计算时间在于将各种物品依其单位重量的价值从大到小排序。

因此,算法的计算时间上界为O(nlogn)。

(3)分析普里姆算法和克鲁斯卡尔算法中的贪心策略。

答:1、普里姆算法贪心策略:要记录到S中的下一条边(u,v)是一条不在S中,且使得SU{u,v}的权值之和也是最小的边时间复杂度:O(n^2) 空间复杂度:O(n^2)2、克鲁斯卡尔算法中的贪心策略:选取属于不同联通分量且构成权值最小且不形成回路的两个顶点组成的边、本科实验报告课程名称:算法设计与分析实验项目:动态规划实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月07日实验三动态规划算法3.1 实验目的与要求1.理解动态规划算法的基本思想;2.运用动态规划算法解决实际问题,加深对贪心算法的理解和运用。

3.2 实验课时4学时(课内2学时+课外2学时)3.3 实验原理动态规划(Dynamic Programming)算法思想:把待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解得到原问题的解。

动态规划求解过的子问题的结果会被保留下来,不像递归那样每个子问题的求解都要从头开始反复求解。

动态规划求解问题的关键在于获得各个阶段子问题的递推关系式:(1)分析原问题的最优解性质,刻画其结构特征;(2)递归定义最优值;(3)自底向上(由后向前)的方式计算最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

3.4 实验题目1.上机题目:最大子段和问题给定n个整数(可以为负数)组成的序列(a1,a2,…,a n),使用动态规划思想求该序列的子段和的最大值。

注:当所有整数均为负整数时,其最大子段和为0。

例如,对于六元组(-2, 11, -4, 13, -5, -2),其最大字段和为:a2 + a3 + a4 = 20。

除了动态规划,该问题可以使用顺序求和+比较(蛮力法)和分治法求解,思考其求解过程。

2.设计思想动态规划思想:dp[i],表示到当前i的最大字段和为多少,而他的字段和时要不就是前面的最大字段和加上本身的数值要不就是自身的数值。

状态转移方程:dp[i]=max(dp[i],dp[i-1]+a[i]);3.代码设计}return 0;}3.5 思考题(1)深刻理解动态规划与递归求解问题的区别是什么?、答:动态规划其实和分治策略是类似的,也是将一个原问题分解为若干个规模较小的子问题,递归的求解这些子问题,然后合并子问题的解得到原问题的解。

区别在于这些子问题会有重叠,一个子问题在求解后,可能会再次求解,于是我们想到将这些子问题的解存储起来,当下次再次求解这个子问题时,直接拿过来就是。

(2)动态规划思想解题的步骤是什么?答:第一步:确定子问题。

在这一步重点是分析那些变量是随着问题规模的变小而变小的,那些变量与问题的规模无关。

第二步:确定状态:根据上面找到的子问题来给你分割的子问题限定状态第三步:推到出状态转移方程:这里要注意你的状态转移方程是不是满足所有的条件,注意不要遗漏。

第四步:确定边界条件:先根据题目的限制条件来确定题目中给出的边界条件是否能直接推导出,如果不行也可以尝试从边界条件反推(举个例子:a(n)→a(2)有递推关系,但是a(2)→a(1)不符合上述递推关系,我们就可以考虑用a(1)来倒推出a(2),然后将递推的终点设置为a(2));第五步:确定实现方式:这个依照个人习惯就像是01背包的两层for循环的顺序第六步:确定优化方法:很多时候你会发现走到这里步的时候你需要返回第1步重来。

相关文档
最新文档