初中数学九年级下册确定圆的条件

合集下载

中考数学总复习 九年级下册 第三章 圆(知识归纳+考点攻略+方法技巧)课件 北师大版

中考数学总复习 九年级下册 第三章 圆(知识归纳+考点攻略+方法技巧)课件 北师大版
d=R-r 0≤d<R-r
最新北师大版初中数学精品
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类
[注意] (1)两圆内含时,若 d 为 0,则两圆为同心圆. (2)由两圆构成的图形都是轴对称图形,其对称轴是两圆的圆 心所在的直线. 12.弧长及扇形的面积公式 (1)弧长公式
nπR 半径为 R 的圆中,n°的圆心角所对的弧长 l= 180 . (2)扇形的面积公式 半径为 R,圆心角是 n°的扇形面积是 S 扇形=3n60πR2;
方法技巧 (1)垂径定理是根据圆的对称性推导出来的,该定理及其推论是 证明线段相等、垂直关系、弧相等的重要依据.利用垂径定理常作 “垂直于弦的直径”辅助线(往往又只是作圆心到弦的垂线段,如本 例);(2)垂径定理常与勾股定理结合在一起,进行有关圆的半径、圆 心到弦的距离、弦长等数量的计算.这些量之间的关系是 r2=d2+a2 2(其中 r 为圆半径,d 为圆心到弦的距离,a 为弦长).
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
图X3-7
[解析] D 连接AO,因为OC⊥AB,所以AD=BD=3 cm,因 为OD=4 cm,在直角三角形ADO中,由勾股定理可以得到AO=5 cm,所以OC=5 cm,所以DC=1 cm.
最新北师大版初中数学精品
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类
┃知识归纳┃
1.确定圆的要素
圆心确定其位置,半径确定其大小.只有圆心没有半径, 虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没 有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确 定;只有圆心和半径都固定,圆才被唯一确定.

(完整版)北师大版数学初中九年级下册第三章圆的知识点归纳

(完整版)北师大版数学初中九年级下册第三章圆的知识点归纳

《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(基础)

华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(基础)

《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;2.探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;6.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.两圆的五种位置关系可以概括为三类:要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°,∴ 112EF OE ==,∴ 223OF OE EF =-=. 在Rt △DFO 中,OF =3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.(2017•曲靖一模)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 和∠BOC 互补,则弦BC 的长度为.【思路点拨】首先过点O 作OD ⊥BC 于D ,由垂径定理可得BC=2BD ,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC 的度数,利用余弦函数,即可求得答案. 【答案】4.【解析】解:过点O 作OD ⊥BC 于D , 则BC=2BD ,∵△ABC 内接于⊙O ,∠BAC 与∠BOC 互补, ∴∠BOC=2∠A ,∠BOC+∠A=180°, ∴∠BOC=120°, ∵OB=OC ,∴∠OBC=∠OCB=(180°﹣∠BOC )=30°, ∵⊙O 的半径为4, ∴BD=OB•cos∠OBC=4×=2,∴BC=4.故答案为:4.【总结升华】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用. 举一反三:【变式】如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是( )N MO C BAA.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD ,∴∠ABC=∠ODB , ∵AB=AC ,∴∠ABC=∠ACB , ∴∠ODB=∠ACB , ∴OD ∥AC ,∵DF 是⊙O 的切线, ∴DF ⊥OD , ∴DF ⊥AC .(2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°, ∴∠ABC=∠ACB=67.5°, ∴∠BAC=45°, ∵OA=OE ,∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以AB 为底面的圆柱的侧面积.根据题意,应先求出AB 所对的圆心角度数以及所在圆的半径,才能求AB 的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是AB 的中点,∴ 12AE AB ==EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)R R =-+. 解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°.∴AB的长为120481803ππ⨯=(m).∴帆布的面积为8601603ππ⨯=(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.。

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合,是初中九年级的数学学习重点内容,下面店铺为你整理了北师大版初中数学九下第三章圆教案,希望对你有帮助。

北师大版数学九下圆教案:圆的有关性质教学过程:一、复习旧知:1、角平分线及中垂线的定义(用集合的观点解释)2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。

并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?二、讲授新课:1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O2、进一步观察,体会圆的形成,结合园的定义,分析得出:① 圆上各点到定点(圆心)的距离等于定长(半径)② 到定点的距离等于定长的点都在以定点为圆心,定长为半径的圆上。

由此得出圆的定义:圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。

圆的内部是到圆心的距离小于半径的点的集合。

同样有:圆的外部是到圆心的距离大于半径的点的集合。

4、初步掌握圆与一个集合之间的关系:⑴已知图形,找点的集合例如,如图,以O为圆心,半径为2cm的圆,则是以点O为圆心,2cm长为半径的点的集合;以O为圆心,半径为2cm的圆的内部是到圆心O的距离小于2cm的所有点的集合;以O为圆心,半径为2cm的圆的外部是到圆心O的距离大于2cm的点的集合。

⑵已知点的集合,找图形例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。

初中九年级数学教案:圆

初中九年级数学教案:圆

初中九年级数学教案:圆教学目标1.理解圆的定义;2.熟练掌握圆的相关术语;3.掌握圆的周长和面积的计算方法;4.能够应用圆的知识解决实际问题。

教学重点1.圆的定义及相关术语;2.圆的周长和面积公式。

教学难点1.圆周率的概念及计算方法;2.圆形图形的面积计算。

教学过程第一步:引入教师通过出示大型圆形物品(如篮球、乒乓球等)或手绘的圆形图形来引出圆的概念,并解释圆与其他几何图形的区别。

第二步:圆的定义及相关术语•圆:以某点为圆心,以某线段为半径所确定的点集,称为圆。

•圆心:圆心是圆上的一个点,它到圆的任意一点的距离都相等,通常用字母O表示。

•半径:以圆心为中心,与圆相切的线段的长度,通常用字母r表示。

•直径:通过圆心的线段,长度是两个切点之间的最大距离,通常用字母d表示。

•弧:圆上两点间的部分,通常用字母AB表示。

•圆周:圆形的边界线称为圆周,通常用字母C表示。

教师通过多次演示和练习,确保学生能够正确理解和掌握以上术语的含义。

第三步:周长和面积的计算1. 圆周长教师出示圆和直径的关系图,让学生通过推理得出圆周长的公式:C = πd,其中π为圆周率,约等于3.14。

然后教师引导学生通过圆的半径推导同样的公式:C = 2πr。

2. 圆面积教师出示圆和半径的关系图,让学生通过推理得出圆面积的公式:S = πr^2。

然后让学生根据圆和直径的关系推导同样的公式:S = π(d/2)^2。

第四步:应用教师出示应用题材料,让学生运用所学知识进行计算,例如:小明买了一块圆形木板,直径是40cm,他准备在木板上画一个小圆圆,圆心距离圆心的距离是10cm。

请你算一下,他剩余的木板面积是多少?教师引导学生从已知条件出发推导出所需计算的参数,然后应用圆的面积公式进行计算。

第五步:归纳教师让学生回顾本节课所学内容,做好笔记,然后引导他们发表自己对圆的理解和认识,以加深学生对此知识点的领会和掌握。

课堂小结通过本节课,学生掌握了圆的定义以及相关术语,熟练运用圆的周长和面积的计算公式,也能够应用学到的知识解决实际问题。

初中数学_北师大数学九年级下册3.1圆教学设计学情分析教材分析课后反思

初中数学_北师大数学九年级下册3.1圆教学设计学情分析教材分析课后反思
鼓励学生自主表达,精准数学语言
组内交流,选代表回答
4、请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?
讨论
培养学生思维的灵活,从而达到巩固双基,举一反三的目的。此处留给学生充分的时间去思考、讨论.并培养学生对某个问题作出正确判断、合理决策的能力.使学生完整地经历“表象—本质;粗放—准确”的活动过程,培养学生抓关键条件的能力和缜密描述的能力.
集体纠正答案(培养孩子的表达能力)
回答
对本节课进行测评及问题分析
作 业
1.A书 习题3.1 1, 2题
B新课堂61—62
2.预习3.2 圆的对称性 P96
板 书
设 计
3.1 圆
1.圆的定义:
2.点和圆的位置关系
点在圆外 d﹥r
点在圆上 d﹦r
点在圆内 d﹤r
学情分析
本班的学生学习基础参差不齐,学习习惯差别很大,不少学生学习上缺少主动性、自觉性和目的性;学习时不注重方法,不讲求逻辑联系,分析问题思路杂乱表达东拼西凑,数学思维简单。但学生在小学已经对圆有初步的感性认识,在此基础上继续研究了圆的基本性质,并解决了一些实际问题。因此,在学习本节内容时,学生很容易理解、掌握。
(1)若PO=5.5,则点P在;
(2)若PO=4,则点P在;
(3)若PO=,则点P在圆上.
纠正
计算
让学生多层次,多角度认识问题,多种策略考虑问题。
2、正方形ABCD的边长为3cm,以A为圆心,3cm长为半径作⊙A,
则点A在⊙A,点B在⊙A,点C在⊙A,点D在⊙A。
3、已知⊙O的半径是5cm,A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系:
课堂教学效果分析

初中九年级数学下册知识点

初中九年级数学下册知识点

初中九年级数学下册知识点初中九年级数学下册知识点在日常生活或是工作,学习中,大家一定都或多或少地接触过一些化学知识,下面是店铺为大家收集的有关初中数学之基础知识点总结相关内容,仅供参考,希望能够帮助到大家。

初中九年级数学下册知识点11、二次根式成立的条件:被开方数是一个非负数。

2、二次根式的实质:是一个非负数的算术平方根。

因此√a≥0。

3、两个公式:(√a)2=a(a≥0);√a2=∣a∣.4、二次根式的乘除:√a×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).5、最简二次根式:⑴被开方数不含分母;⑵被开方数中不含能开的尽方的因数或因式。

6、二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

7、利用公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2.第二十二章一元二次方程1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。

①是整式方程,②未知数的最高次数是二次,③只含有一个未知数,④二次项系数不为零。

2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。

3、一元二次方程的根:代入使方程成立。

4、一元二次方程的解法:①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。

②公式法:x=(-b±√b2-4ac)/2a,③因式分解法:右端为零,左端分解为两个因式的乘积。

5、一元二次方程的根的判别式①当△>0时,方程有两个不相等的②当△=0时,方程有两个相等的实数根,③当△<0时,方程没有实数根。

注意:应用的前提条件是:a≠0.6、一元二次方程根与系数的关系:x1+x2=-b/a,x1*x2=c/a.注意:应用的前提条件是:a≠0,△≥0.7、列方程解应用题:审题设元→列代数式、列方程→整理成一般形式→解方程→检验作答。

2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.2圆的基本性质(第1课时)

2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.2圆的基本性质(第1课时)

第24章圆24.2 圆的基本性质第1课时圆的定义及与圆有关的概念教学目标教学反思1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.会判断点与圆的位置关系,并应用这一关系进行解题.教学重难点重点:认识圆,理解圆的本质属性.难点:理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学过程导入新课问题情境:观察下列图片,从图片中找出共同的图形.教师追问:你还能举出生活中的圆形吗?师生活动:学生列举生活中的圆形,教师适当引导.思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?师生活动:如果把车轮做成圆形,车轴安装在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离总是等于车轮半径长.因此车厢里坐的人都将平稳地被车子拉着走.假设车轮是个破的,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离不相等,那么这种车子行驶起来一定很颠簸.同样道理,如果车轮设计成三角形或是正方形,因为其中心点到周边各点的距离不等长,所以行驶起来也一定会很颠簸!探究新知1.圆的定义教师提问:同学们,你们知道怎样画一个圆吗?你有哪些方法?师生活动:学生畅所欲言,教师圆规演示画圆的过程,总结圆的定义.1.定好半径长(即圆规两脚间的距离);2.固定圆心(即把有针尖的脚固定在一点);教学反思3.旋转一圈(使铅笔在纸上画出封闭曲线);4.用字母表示圆心、半径、直径.【归纳总结】圆的旋转定义:在一个平面内,线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.问题情境:1.以1 cm为半径能画几个圆,以点O为圆心能画几个圆?2.如何画一个确定的圆?师生活动:学生独立思考并回答,教师引导.教师追问:从画圆的过程可以看出什么呢?【归纳总结】①圆上各点到定点(圆心O)的距离都等于半径.②平面内到定点的距离等于定长的所有点都在同一个圆上.【归纳总结】圆的集合定义:平面内到定点(圆心O )的距离等于定长(半径r)的所有点组成的图形.探究:确定一个圆的要素.教师提问:当圆的圆心确定时,这个圆唯一确定吗?当圆的半径确定时,这个圆唯一确定吗?师生活动:学生小组讨论,举出反例,思考确定圆的要素,教师引导.①②【解】如图①,圆心相同,半径不同,能画出无数个同心圆;如图②,半径相同,圆心不同,能画出无数个等圆.【归纳总结】确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.圆的基本性质:同圆的半径相等.【新知应用】例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.师生活动:(学生思考,教师引导)要使A ,B ,C ,D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,点A ,B ,C ,D 与点O 的距离有什么关系?【证明】∵ 四边形ABCD 为矩形, ∴ OA =OC =12AC ,OB =OD =12BD ,AC =BD ,∴ OA =OB =OC =OD ,∴ A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上.【归纳总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ). 2.点与圆的位置关系圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.请你用集合的语言描述下面的两个概念:(1)圆的内部是到圆心的距离小于圆的半径r 的所有点的集合; (2)圆的外部是到圆心的距离大于圆的半径r 的所有点的集合. 【新知讲解】点与圆的位置关系: 1.点P 在圆上⇔OP =r (如图①). 2.点P 在圆内⇔OP <r (如图②). 3.点③练一练:1.正方形ABCD 的边长为3 cm ,以A 为圆心,3cm 长为半径作⊙A ,则点A 在⊙A ,点B 在⊙A ,点C 在⊙A ,点D 在⊙A .2.一点和⊙O 上的最近点距离为4 cm ,最远距离为10 cm ,则这个圆的半径是 cm.3.与圆有关的概念 (1)弦连接圆上任意两点的线段(如图中的AB )叫做弦.图中的弦还有 .经过圆心的弦(如图中的AC )叫做直径.注意:①弦和直径都是线段.②直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径. (2)弧圆上任意两点间的部分叫做圆弧,简称弧.以A ,B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”. (3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.教学反思(4)劣弧与优弧小于半圆的弧叫做劣弧,如图中的AC .大于半圆的弧叫做优弧,如图中的ABC .(5)等圆能够重合的两个圆叫做等圆.等圆是两个半径相等的圆. (6)等弧在同圆或等圆中,能够互相重合的弧叫做等弧. 3.概念辨析(1)长度相等的弧是等弧吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)长度相等的弧不一定是等弧,只有在同圆或等圆中,长度相等的弧才是等弧.(2)直径是弦吗?弦是直径吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)直径是弦,但弦不一定是直径,只有在弦经过圆心时,这条弦才叫直径,因此直径是圆中最长的弦.(3)半圆是弧吗?弧是半圆吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)半圆是弧,但弧不一定是半圆,只有直径的两个端点把圆分成的两条弧才是半圆.【新知应用】例2 下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中正确的是________.(填序号)师生活动:(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【归纳总结】(学生总结,老师点评)由圆的有关概念可知,连接圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.例3 如图.(1)请写出以点B 为端点的劣弧及优弧; (2)请写出以点B 为端点的弦及直径; (3)请任选一条弦,写出这条弦所对的弧.师生活动:发对优弧、劣弧概念的思考.【解】(1)劣弧:BD ,BF ,BC ,BE .优弧:BFE ,BFC ,BCD ,BCF .(2)弦BD , AB , BE .其中弦AB 又是直径.(3)答案不唯一.如:弦DF ,它所对的弧是DF 和DEF . 【归纳总结】大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.要按照一定的顺序书写,不要遗漏.【拓展延伸】 例4 下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm ,且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.其中错误的有( )A .1个 B.2个 C.3个 D.4个师生活动:(引发学生思考)结合圆的定义分析怎样确定一个圆?确定一个圆的条件有哪些?【答案】A教学反思【归纳总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.例5A,B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10师生活动:(引发学生思考)连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.【答案】D【归纳总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.课堂练习1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)如图所示,图中有条直径,条非直径的弦.2.一点和⊙O上的点最近距离为6 cm,最远距离为12 cm,则这个圆的半径是 .3.判断下列说法的正误.(1)弦是直径. ()(2)过圆心的线段是直径. ()(3)半圆是弧. ()(4)过圆心的直线是直径. ()(5)直径是最长的弦. ()(6)半圆是最长的弧. ()(7)长度相等的弧是等弧. ()(8)同心圆也是等圆. ()4.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是.(填序号)5.如图,点A,B,C,E在⊙O上,点A,O,D与点B,O,C分别在同一直线上,图中有几条弦?分别是哪些?第5题图6.如图,点A,N在半圆O上,四边形ABOC和四边形DNMO均为矩形,求证:BC=MD.参考答案1.(1)直径半径(2)两三2.9 cm或3 cm3.(1)×(2)×(3)√(4)×(5)√(6)×(7)×(8)×4.①5.解:图中有3条弦,分别是弦AB,BC,CE.6.证明:如图,连接ON,OA.∵点A,N在半圆O上,∴ON=OA.∵四边形ABOC和四边形DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD. 教学反思第6题答图课堂小结学生独立思考,进行总结,教师补充概括. ⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩圆的旋转定义圆的定义圆的集合定义弦—直径劣弧圆弧半圆圆的有关概念优弧等圆等弧 布置作业教材第14页练习板书设计24.2 圆的基本性质第1课时 圆的定义及与圆有关的概念1.圆的定义(1)圆的旋转定义 (2)圆的集合定义2.与圆有关的概念:弦;直径;弧;半圆;等圆;等弧.3.点与圆的位置关系: 点P 在圆上⇔OP =r ; 点P 在圆内⇔OP <r ; 点P 在圆外⇔OP >r. 教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.5 确定圆的条件
目标导航
1、通过经历不在同一直线上的三个点确定一个圆的探索,了解不在同一直线上
的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形
的外接圆、三角形的外心,圆的内接三角形的概念,进一步体会解决数学问题的
策略.
2、定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个
条件不可忽略,“确定”一词应理解为“有且只有” .
3、通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,
这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也
随之确定了.
4.分析作圆的方法,实质是设法找圆心.过已知点作圆的问题,就是对圆心和
半径的探讨.
基础过关
1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上,
则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.
2.边长为6cm的等边三角形的外接圆半径是________.
3.△ABC的三边为2,3,13,设其外心为O,三条高的交点为H,则OH的长
为_____.
4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相
等.
5.已知⊙O的直径为2,则⊙O的内接正三角形的边长为_______.
6.如图,MN所在的直线垂直平分线段AB,利用这样的工具,
最少使用________ 次就可以找到圆形工件的圆心.
7.下列条件,可以画出圆的是( )
A.已知圆心 B.已知半径
C.已知不在同一直线上的三点 D.已知直径
8.三角形的外心是( )
A.三条中线的交点 B.三条边的中垂线的交点
C.三条高的交点 D.三条角平分线的交点

N

M
B
A

6题图
9.下列命题不正确的是( )
A.三点确定一个圆 B.三角形的外接圆有且只有一个
C.经过一点有无数个圆 D.经过两点有无数个圆
10.一个三角形的外心在它的内部,则这个三角形一定是( )
A.等腰三角形 B.直角三角形 C.锐角三角形 D.等边三角形
11.等腰直角三角形的外接圆半径等于( )

A.腰长 B.腰长的22倍 C.底边的22倍
D.腰上的高
12.平面上不共线的四点,可以确定圆的个数为( )
A.1个或3个 B.3个或4个
C.1个或3个或4个 D.1个或2个或3个或4个
13.如图,已知:线段AB和一点C(点C不在直线AB上),求作:⊙O,使它经
过A、B、C三点.(要求:尺规作图,不写法,保留作图痕迹)
C

B
A
14.如图,A、B、C三点表示三个工厂,要建立一个供水站, 使它到这三个工
厂的距离相等,求作供水站的位置(不写作法,尺规作图,保留作图痕迹).

C
B
A

能力提升
15.如图,已知△ABC的一个外角∠CAM=120°,AD是∠CAM的平分线,且AD与
△ABC的外接圆交于F,连接FB、FC,且FC与AB交于E.
(1)判断△FBC的形状,并说明理由.
(2)请给出一个能反映AB、AC和FA的数量关系的一个等式,并说明你给
出的等式成立.
DEFC
M
B
A

16.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径?
(写出找圆心和半径的步骤).

B
A

17.已知:AB是⊙O中长为4的弦,P是⊙O上一动点,cos∠APB=13, 问是否
存在以A、P、B为顶点的面积最大的三角形?若不存在,试说明理由;若存在,
求出这个三角形的面积.
聚沙成塔
如图,在钝角△ABC中,AD⊥BC,垂足为D点,且AD与DC的长度为x2-7
x
+12=0的两个根(ADABC
的外接圆⊙O的面积.

O
D
C
B

A

相关文档
最新文档