带式运输机传动装置设计课程设计
带式运输机传动装置的设计

机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。
带式运输机传动装置设计课程设计模板

带式运输机传动装置设计课程设计机械设计课程设计说明书设计题目: 带式运输机传动装置专业班级: 机械1312姓名:学号:指导老师:成绩评定等级评阅签字评阅日期湖北文理学院理工学院机械与汽车工程系1月目录第一章课程设计任务书........................................................ 错误!未定义书签。
1.1主要内容................................................................................. 错误!未定义书签。
1.3进度安排................................................................................. 错误!未定义书签。
1.4设计数据................................................................................. 错误!未定义书签。
1.5传动方案................................................................................. 错误!未定义书签。
1.6已知条件................................................................................. 错误!未定义书签。
第二章电动机的选择 .................................................................... 错误!未定义书签。
2.1电动机容量的选择................................................................. 错误!未定义书签。
带式运输机传动装置设计任务书

带式运输机传动装置设计任务书一. 课程设计书设计课题:设计一带式运输机传动装置.运输机连续单向运转, 载荷平稳,空载起动, 使用期限8年,减速器小批量生产,两班制工作,运输容许速度误差为±5% 。
表一二. 设计要求1.减速器装配图一(A1)。
2.绘制轴零件图(A4)、齿轮零件图(A3)各一,绘制箱体零件图(A1)。
3.设计说明书一份。
三. 设计步骤1.传动装置总体设计方案:2电动机的选择3传动装置总传动比的确定及各级传动比的分配4 传动装置运动和运动参数计算5 设计V带和带轮6 高速齿轮传动的设计2)验算齿根弯曲应力1).复合齿形系数 由表3-6,2).齿根应力MPaY mbd KT FS F 59.9821.4250501018.44.12241111=⨯⨯⨯⨯⨯⨯==∂MPaY Y FS FS F F 81.10496.321.459.981212=⨯=∂=∂由[][]2211,F F F F ∂<∂∂<∂ 结论:齿根弯曲疲劳强度足够。
21.41=FS Y 96.32=FS YMPa F 59.981=∂MPa F 81.1042=∂7滚动轴承和传动轴的设计计算与说明主要结论1高速轴设计:(1)材料:选用45钢, 调质处理,查表3-1[]1, C 取115 (2)各轴段直径的确定 改尺寸由3npCd=,P=2.0368kw,则mmnpCd91.181.4580368.211533==≥因为有键连接,所以()86.19%5191.18d=+⨯= mm,取d1=22mm,L1=44mm; L2装轴承套也起轴向定位作用,所以取d2=28mm,L2=58.6mm;L3装轴承,所以取d3=30mm,L3=28mm; d7也是装轴承,取d7=30,L7=28mm;d6段为齿轮轴过渡段,取d6=36mm,L6=10mm;d5段我齿轮轴段,L5=b1=56mm;d4段为过渡段取d4=36mm,L4=10mm初选轴承6206,其径为30mm。
带式运输机传动装置设计-单级圆柱齿轮减速器设计(含图纸)

课程设计带式运输机传动装置设计 ---- 单级圆柱齿轮减速器设计课程设计任务书机械工程学院(系、部)机械设计与制造 ____________ 专业班级机械设计带式运输机传动装置设计一一单级圆柱齿轮减速器完成期限:起止日期工作内容课程名称: 设计题目 设计 内容及任务进度安排、设计的主要技术参数一、传动万案 单级圆柱齿轮减速器 三、设计任务1. 按照给定的设计数据和传动方案设计减速器装置;2. 完成减速器装配图1张(A0或A1);3. 零件工作图3张;4. 编写设计计算说明书1份。
2007.12.30 -传动装置总体设计2008.1.2指导教师(签字): __________ 年月日系(教研室)主任(签字): ________________ 年月日机械设计设计说明书带式运输机传动装置设计单级圆柱齿轮减速器设计任务书起止日期:学生姓名班级_______________________________ 学号_______________________________ 成绩_______________________________ 指导教师(签字) ______________________________机械工程学院机械设计课程设计带式运输机上的单级圆柱齿轮减速器的设计传动装置简图:带式运输机的传动装置如图1图1 带式运输机的传动装置原始数据如表1表1 带式输送机传动装置原始数据三、工作条件三班制,使用年限10年,每年按365天计算,连续单向,载荷平稳,小批量生产,运输链速度允许误差为链速度的_5%四、传动方案如图2五、设计任务设计计算说明书一份,零件图3张,装配图1张。
一、设计方案分析I选择电动机的类型和结构1选择电动机的类型因为装置的载荷平稳,单向连续长期工作,因此可选用丫型闭式笼型二项异步电动机,电压为380V。
该电机工作可靠,维护容易,价格低廉,、配调速装置,可提高起动性能。
2确定电动机功率(1)根据带式运输机工作类型,选取工作机效率为n w =0.96工作机所需功率P W= FV= 700 2.5=1.823kw1000% 1000996(2)查机参考文献[1]表10-2可以确定各部分效率:①联轴器效率:口联=0.98 ;②滚动轴承传动效率:n滚=0.99 ;③闭式直齿圆柱齿轮传动效率:查参考文献[2]表16-2,选取齿轮精度等级为8级,传动效率□齿不低于0.97 (包括轴承不低于0.965)故取□齿=0.97 ;④滚筒传动效率:一般选取"筒=0.99 ;⑤V带传动效率:查参考文献[2]表3确定选用普通V带传动,一般选取耳带=0.96 ;⑥由上数据可得传动装置总效率:□n 3 n n n总一联•滚•齿•筒•带=0.98 X 0.99 3X 0.97 X 0.99 X 0.96 =0.8766(3)电动机所需功率:p-P w1.823kwP d = n = =2.08kwa 0.8766(4)确定电动机的额定功率P cd :因为载荷平稳,连续运转,电动机额疋功率P cd略大于p d 耳w =0.96 P W =1.823kw11联=0.98 "滚=0.99* 齿=0.97口筒=0.99□带=0.96n总=0.8766 p d =2.08kw计算与说明主要结果查参考文献[1]表19-1,丫系列三相异步电动机的技术参数,选电动机额定功率为P ed =2.2kw。
带式运输机传动装置 课程设计

目录一.拟定传动方案 (2)1.电动机选型说明 (2)2.电动机容量的确定 (2)3.电动机传动比的确定及各传动比的分配 (3)4.电动机型号 (3)5. 各轴转速、转矩及传动功率 (4)二.传动件的设计 (5)1.V带传动主要传动参数 (5)三.齿轮传动部分的设计 (7)(1)高速级齿轮传动主要参数 (7)(2)低速级齿轮传动主要参数 (12)四.减速器各轴结构设计 (17)1.低速轴的设计 (17)2.高速轴的设计 (22)3.中间轴的设计 (23)五.轴承与键的选择与校核 (26)六.润滑与密封 (30)七、减速器的箱体及其附件 (30)八.小结 (33)九.参考文献 (34)查得,5.1=AK,则mNTKTAca⋅=⋅=⋅=77.188518.12575.14,查课程设计书P159表16-4,选用HL5型弹性柱销联轴器,半联轴器的孔径为60,半联轴器与轴配合的毂孔长度为:mmL1071=,半联轴器长度mmL142=。
2.初步选取可同时承受径向力与轴向力的滚动轴承,参照mmd702=,选择30314圆锥滚子轴承,其尺寸为3515070⨯⨯=⨯⨯BDd a=30.6故mmdmmdmmdmmd70,80,85,756543====四.计算轴上的载荷1)由轴的初步结构作计算简图:2)判断危险截面参照《机械设计》P372图15-24 从应力集中来看截面Ⅳ和Ⅴ应力集中最严重。
但截面Ⅴ不受扭矩作用而且轴径较大故不必校核。
因此轴只需较核截面Ⅳ。
3)作出轴的计算简图mmLmmLmmL86,100,170321===(1)水平面mmNLFMmmNLFMmmNdFMNLLLFFNLLLFFNHHNHHaatNHtNH⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅==+⋅=+⋅==+⋅=+⋅=28.3866548698.449538665410054.386686.308682267.3003.2053254.3866861008652.836298.44958610010052.8362322211432223231(2)垂直面mmNTKcaA⋅==77.18855.1mmLmmLmmL86100170321===mmNMmmNMmmNMNFNFHHaNHNH⋅=⋅=⋅===28.38665438665486.30868254.386698.44952121故可知轴安全。
带式运输机传动装置设计任务书

带式运输机传动装置设计任务书1、带式运输机工作原理带式运输机传动示意图如下图所示。
2、已知条件1)工作条件:两班制,连续单向运转,载荷较平稳,室内工作,有粉尘,环境最高温度35℃;2)使用折旧期:八年;3)检修间隔期:四年一次大修,两年一次中修,半年一次小修;4)动力来源:电力,三相交流,电压380/220V;5)运输带速度允许误差:±5%;6)制造条件及生产批量:一般机械厂制造,小批量生产。
3、设计数据运输带工作拉力:F=2600N ;运输带工作速度:V=1.1m/s ;卷筒直径:D=220mm。
注:运输带与卷筒直接按机卷筒轴承的摩擦影响已经在F中考虑。
4、传动方案带—单级直齿圆柱齿轮减速器,传动方案简图如图1-2所示。
5、设计内容1)按照给定的数据和传动方案设计减速器装置;2)完成减速器装配图一张(A1);3)零件工作图两张;4)编写设计计算说明书1份。
一、选择电动机电动机是常用的原动机,是已经系列化的标准产品,具有结构简单、工作可靠、控制简便和维护容易等优点。
在接卸设计课程设计中,主要根据需电动机的输出功率,工作条件及经济性要求,从产品目录中选择其类型和结构形式、容量(功率)和转速、确定具体型号。
(1)选择电动机的类型:按工作要求和条件选取Y系列一般用途的全封闭自扇冷式笼型三相异步电动机。
(2)选择电动机的容量:工作机所需的功率:P w =F*V/1000=2600x1.1 / 1000=2.86(kW)由电动机至工作机之间的总效率(包括工作机的效率)为η= η1*η2*η2*η3*η4*η5机械传动及摩擦副的效率概略表得各部分效率为:齿轮传动效率η1 = 0.96;滚动轴承传动效率(一对)η2= 0.99、;闭式圆柱齿轮传动效率η3=0.97;弹性联轴器传动效率η4=0.99;卷筒轴的轴承及卷筒的传动效率η5=0.96.η= 0.96×0.99×0.99×0.97×0.99×0.96 =0.867所以:P d= P w/η= 2.86 / 0.867 kW = 3.30 kW使P m = (1∽1.3)P d = 3.30 ~ 4.29kW根据P m选取电动机的额定功率P w,因为载荷较平稳,由查表选得Y系列电动机的额定功率P d = 4 kW △P%=(P m - P d)/ P m =(4.29-4)/ 4.29 = 6.7% 可以选用该功率的电动机(3)确定电动机的转速:运输机卷筒轴的工作转速为:n w = 60×1000V/πD = 60×1000×1.1/(3.14×220) =95.54r/min按推荐传动比范围,取V带传动传动比i1= 2 ∽4,单级直齿圆柱齿轮传动比i2 = 3 ∽5,则合理总传动比的范围为: i= 6 ∽20故电动机的转速范围为:n d= i*n w= (6∽20)×95.54r/min = 573.24 ∽1910.8 r/min符合这一范围的同步转速有750 r/min 、1000 r/min,1500 r/min.再根据计算出的容量,挑选出电机做比较选择,取1000 r/min的电动机。
设计带式输送机传动装置机械设计说明书

机械设计基础课程设计计算说明书设计题目带式运输机上的单级圆柱齿轮减速器系机电工程系专业数控技术班级设计者指导教师2011年 07 月 12 日目录一、设计任务书 0二、带式运输送机传动装置设计 (1)三、普通V带传动的设计 (5)四、直齿圆柱齿轮传动设计 (6)五、低速轴系的结构设计和校核 (9)六、高速轴结构设计 (16)七、低速轴轴承的选择计算 (18)八、低速轴键的设计 (19)九、联轴器的设计 (20)十、润滑和密封 (20)十一﹑设计小结 (21)参考资料 (22)一.设计任务书一.设计题目设计带式输送机传动装置。
二.工作条件及设计要求1.设计用于带式运输机的传动装置。
2.该机室内工作,连续单向运转,载荷较平稳,空载启动。
运输带速允许误差为 5%。
3.在中小型机械厂小批量生产,两班制工作。
要求试用期为十年,大修期为3年。
三.原始数据第三组选用原始数据:运输带工作拉力F=1250N 运输带工作速度V=s 卷筒直径D=240mm四.设计任务1.完成传动装置的结构设计。
2.完成减速器装备草图一张(A1)。
3.完成设计说明书一份。
二.带式运输送机传动装置设计电动机的选择1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼型三相异步电动机2.电动机功率的选择:P=Fv/1000=1250*1000=E3.确定电动机的转速:卷筒工作的转速Wn=60*1000/(π*D)=60*1000**240)=min4.初步估算传动比:总i =电动机n /卷筒n =d n /w n =43.1191000或43.1191500=~ 因为根据带式运输机的工作要求可知,电动机选1000r/min 或1500r/min 的比较合适。
5.分析传动比,并确定传动方案(1)机器一般是由原动机,传动装置和工作装置组成。
传动装置是用来传递原动机的运动和动力,变换其运动形式以满足工作装置的需要,是机器的重要组成部分。
带式—输送机传动装置说明书(课程设计)

学校:电子科技大学中山学院学院:机电工程学院专业:09机械C班
机电工程学院
机械设计课程设计
题目名称设计一带式输送机传动装置课程名称机械设计课程设计
学生姓名XXX
学号29100101062
班级09机械C班
指导教师XX
电子科技大学中山学院机电工程学院
2012年6月18日
学校:电子科技大学中山学院学院:机电工程学院专业:09机械C班
图1 带式输送机传动简图
图2 电动机
带式输送机的设计参数:
输送带的牵引力1.25kN;输送带的速度为:1.8m/s
图3
图4
根据轴上零件的定位、装拆方便的要,同时考虑到强度的原则,主动轴和从动轴均设计为阶梯轴。
①轴段①的确定:
图5主动轴
、同理可求得从动轴的二维图如图6(键槽大小还没确定)。
图6从动轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带式运输机传动装置设计 1. 工作条件
连续单向运转,载荷有轻微冲击,空载起动;使用期5年,每年300个工作日,小批量生产,单班制工作,运输带速度允许误差为±5%.
1-电动机;2-联轴器;3-展开式二级圆柱齿轮减速器;4-卷筒;5-运输带 题目B图 带式运输机传动示意图
2. 设计数据
学号—数据编号 11-1 12-2 13-3 14-4 15-5 运输带工作拉力FkN
运输带工作速度vms
卷筒直径Dmm 380 360 340 320 300 3. 设计任务 1选择电动机,进行传动装置的运动和动力参数计算. 2进行传动装置中的传动零件设计计算. 3绘制传动装置中减速器装配图和箱体、齿轮及轴的零件工作图. 4编写设计计算说明书. 二、电动机的选择 1、动力机类型选择 因为载荷有轻微冲击,单班制工作,所以选择Y系列三相异步电动机. 2、电动机功率选择 1传动装置的总效率: 2电机所需的功率: 3、确定电动机转速 计算滚筒工作转速: 因为40~8ai
所以min/4.2030~08.40676.5040~8rninwad
符合这一范围的同步转速有750、1000、和1500r/min. 根据容量和转速,由有关手册查出有三种适用的电动机型号,因此有三种传动比方案,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min.
4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132M2-6.
其主要性能:额定功率;满载转速960r/min;额定转矩;质量63kg. 三、计算总传动比及分配各级的传动比 1、总传动比 2、分配各级传动比 查表可知214.1ii
所以16.591.184.14.11aii
四、动力学参数计算 1、计算各轴转速 2、计算各轴的功率 Po= P电机= PI=P电机×η1=×= KW PII=PI×η2=××= KW PIII=PII×η3=××= PⅣ=××= 3、计算各轴扭矩 T零=9550P/n=4377 N·mm TI=×106PI/nI=4333 N·mm TII=×106PII/nII= 21500N·mm TIII=×106PIII/nIII=75520 N·mm TⅣ=9550×106 PⅣ/nⅣ=74025 N·mm 五、传动零件的设计计算 1. 选精度等级、材料及齿数 1)材料及热处理; 选择小齿轮材料为40Cr调质,硬度为280HBS,大齿轮材料为45钢调质,硬度为240HBS,二者材料硬度差为40HBS.
2)精度等级选用7级精度; 3)试选小齿轮齿数z1=24,大齿轮齿数z2=124的; 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算.按式10—21试算,即 dt≥321·HEdtZuuTKσφ 选定载荷3.1tK 计算扭矩mNT*77.431 7级精度; z1=20 z2=96 3.确定公式内的各计算数值 (1) 试选Kt= (2) 由1表10-7选取尺宽系数φd=1 (3) 由1表10-6查得材料的弹性影响系数ZE= (4) 由1图10-21d按齿面硬度查得小齿轮的接触疲劳强度极σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(5) 由1式10-13计算应力循环次数 N1=60n1jLh=60×960×1×1×8×300×5=810912.6 N2=N1/=×10e8 N3=×10e8 N4=N3/=×10e8 此式中j为每转一圈同一齿面的啮合次数.Ln为齿轮的工作寿命,单位小时 (6) 由1图10-19查得接触疲劳寿命系数 KHN1= KHN2= KHN3= KHN4= 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式10-12得 σH1=×600MPa=552MPa σH2=×550MPa=517MPa σH3=×600MPa=564MPa σH4=×550MPa=539MPa 计算高速轴 试算小齿轮分度圆直径d1t
d1t≥3211·*32.2HEdtZuuTKσφ
=3235178.1892.312.3·11077.433.1*32.2= 计算圆周速度 v=10006021ndtπ=100060960092.50π=s 计算齿宽b及模数m b=φdd1t=1×= m=11zdt=24029.50= h==×= b/h== 计算载荷系数K 由1表10—2 已知载荷平稳,所以取KA=1 根据v=s,7级精度,由1图10—8查得动载系数KV=;由1表10—4查得7级精度小齿轮相对支撑非对称布置时KHB的计算公式和直齿轮的相同
使用系数 KA=1 由b/h=,KHB= 查1表10—13查得KFB = 由1表10—3查得KHα=KHα=1. 故载荷系数 K=KAKVKHαKHβ=××1×= 按实际的载荷系数校正所得的分度圆直径,由1式10—10a得 d1=31/ttKKd=33.1/79.1092.50mm= 计算模数m m11zd=2473.50mm= 由1图10-20c查得小齿轮得弯曲疲劳强度极限 σF1=500Mpa;大齿轮得弯曲疲劳极限强度σF2=380MPa
由110-18查得弯曲寿命系数KFN1= KFN2= 计算弯曲疲劳许用应力 取安全系数S= 见1表10-12得 σF1=KFN1σF1/S=4.1500*85.0= σF2= KFN2σF2/S=4.1380*9.0= 计算载荷系数 K=KAKVKFαKFβ=1××4×= 查取应力校正系数 由表10-5查得Ysa1=;Ysa2=、 查取齿形系数 1FaY= 2FaY=
计算大、小齿轮的并FSaFaYYσ加以比较
1
11FSaFa
YY
σ=57.30358.165.2=
2
22FSaFaYY
σ=29.24481.116.22=
设计计算 m≥3201600.0·241410*377.4512.122e= 对结果进行处理取m=2 Z1=d1/m=2≈26 Z2=u Z1=26≈135 几何尺寸计算 计算分度圆直径 中心距 d1=z1m=262=52mm d2=z1m=1352 =270mm a=d1+d2/2=270+52/2=161 计算齿轮宽度 b=φdd1 =52mm 计算低速轴 试算小齿轮分度圆直径d1t
D2t≥3211·*32.2HEdtZuuTKσφ =3235398.1892.312.3·1102153.1*32.2= 计算圆周速度 v=10006022ndtπ=10006005.18682.82π=s 计算齿宽b及模数m b=φdd1t=1×= m=11zdt=2482.82= h==×= b/h== 计算载荷系数K 由1表10—2 已知载荷平稳,所以取KA=1 根据v=s,7级精度,由1图10—8查得动载系数KV=;由1表10—4查得7级精度小齿轮相对支撑非对称布置时KHB的计算公式和直齿轮的相同
使用系数 KA=1 由b/h=,KHB= 查1表10—13查得KFB = 由1表10—3查得KHα=KHα=1. 故载荷系数 K=KAKVKHαKHβ=××1×= 按实际的载荷系数校正所得的分度圆直径,由1式10—10a得 d1=31/ttKKd=33.1/9.082.82mm= 计算模数m m11zd=2432.71mm= 由1图10-20c查得小齿轮得弯曲疲劳强度极限 σF1=500Mpa;大齿轮得弯曲疲劳极限强度σF2=380MPa
由110-18查得弯曲寿命系数KFN3= KFN4= 计算弯曲疲劳许用应力 取安全系数S= 见1表10-12得 σF1=KFN1σF1/S=4.1500*9.0= σF2= KFN2σF2/S=4.1380*95.0= 计算载荷系数 K=KAKVKFαKFβ=1××1×= 查取应力校正系数 由表10-5查得Ysa3=;Ysa4=、 查取齿形系数 3FaY= 4FaY=
计算大、小齿轮的并FSaFaYYσ加以比较
1
11FSaFa
YY
σ=3214358.165.2=
2
22FSaFaYY
σ=86.25778.12.2=
设计计算 m≥32015186.0·241410*2159.022e= 对结果进行处理取m= 取3 Z1=d1/m=3≈=28