固体表面产生化学吸附的原因
胶体化学第7章-2 固液界面的吸附作用

对稀溶液,Gibbs等温式可写作
c n RT c S
S :固体的比表面
将(1)式代入求导
Sc ( 0 m ) dn n s RT n dc
s 2
s 2
作不定积分
n RT ln n ln c ln a ( 0 m )S
s 2
s
set
n s RT 1 ( 0 m )S n
n ac
s 2
1
n
加而直线降低的关系导出的 关系式,只适用于中等覆盖度的化学吸附或物理 吸附。
1 =n / n ln Ac a s n2 k1 k2 ln c
s 2 s m
四、自电解质溶液中的吸附
1. 固体表面与介质在液体介质中带电
a.表面基团解离 b.吸附带电 c.非水介质中的带电... 为了保持荷电固体和介质的电中性,介质中的 与固体表面电荷符号相反的离子必将靠近表面 形成双电层(double layer)。
四、自电解质溶液中的吸附
2 双电层
Stern面
滑动面
- - 溶剂分子 - 反离子 - -
表面电势
φ0
Stern电势
φδ
ζ
+- + +- + +- + +- + +- + +-
-
紧密层(Stern层)
扩散层
例:AgNO3+过量KCl →AgCl(晶体)+K++Cl-+NO3-
①Cl-可在AgCl晶体上吸附成牢固的化学结合
b 结构影响 : 碳自水溶液中吸附量 在水中的溶解度
(2)溶剂影响
溶剂/溶质作用强烈,溶解度上升,吸附量降低 溶剂/吸附剂作用强烈,竞争吸附,吸附量降低
(3)吸附剂影响
气体吸附原理

气体吸附原理气体吸附是指气体分子在固体表面上附着的现象,它是一种重要的物理化学过程,广泛应用于化工、环保、能源等领域。
气体吸附原理是指气体分子在与固体表面相互作用时,通过吸附作用在固体表面上形成一层吸附层的过程。
气体吸附过程是一个复杂的物理化学过程,它受到多种因素的影响。
其中,最重要的是吸附剂的性质和气体分子的性质。
吸附剂的性质包括孔径大小、孔隙结构、化学成分等,而气体分子的性质则包括分子大小、极性、化学活性等。
这些因素共同作用,决定了气体在固体表面上的吸附行为。
气体吸附过程可以分为物理吸附和化学吸附两种类型。
物理吸附是指气体分子与吸附剂表面之间的范德华力作用,它是一种弱相互作用力,通常发生在低温下。
而化学吸附则是指气体分子与吸附剂表面发生化学键结合的过程,它是一种强相互作用力,通常发生在高温下。
在气体吸附过程中,吸附剂的孔隙结构对吸附性能起着至关重要的作用。
孔隙结构可以影响吸附剂的比表面积、孔体积和孔径分布等参数,从而影响气体分子在吸附剂表面上的扩散和吸附速率。
通常情况下,孔径越小,吸附剂的比表面积和孔体积越大,气体分子在其表面上的吸附性能也越好。
此外,气体分子的性质也对气体吸附过程产生重要影响。
一般来说,分子大小越小、极性越大、化学活性越高的气体分子,其在固体表面上的吸附性能也越好。
这是因为这些气体分子更容易与吸附剂表面发生相互作用,从而形成稳定的吸附层。
在工业应用中,气体吸附技术被广泛应用于气体分离、气体储存、气体检测等领域。
例如,在天然气净化过程中,气体吸附技术可以有效去除天然气中的杂质气体,提高天然气的纯度。
在气体储存领域,气体吸附技术可以将气体分子吸附到多孔吸附剂中,实现气体的高效储存和释放。
总之,气体吸附原理是一个复杂而重要的物理化学过程,它受到多种因素的影响。
通过深入研究气体吸附原理,可以更好地理解气体分子在固体表面上的吸附行为,为气体吸附技术的应用和发展提供理论基础和技术支持。
第六章.固体表面--气固界面现象

前面已讨论了固-液界面现象,这里将对气- 前面已讨论了固-液界面现象,这里将对气-固界面即 固体表面进行讨论。 固体表面进行讨论。 1. 固体表面的不均匀性 表面形状:固体按其大小和形状可分为: 表面形状:固体按其大小和形状可分为:普通大小的固 体,纤维状固体,粉末状固体及粒径在10-6m以下的所 纤维状固体,粉末状固体及粒径在10-6m以下的所 10 谓胶体粒子。普通固体表面:固体表面跟液体表面不同, 谓胶体粒子。普通固体表面:固体表面跟液体表面不同, 肉眼看是平滑的,放大1000倍以上则为不平滑的了。 肉眼看是平滑的,放大1000倍以上则为不平滑的了。 1000倍以上则为不平滑的了
Γ=
τ1 + τ 2
2
② 晶体的自然外形及表面自由焓 一般固体的外形主要取决于加工, 一般固体的外形主要取决于加工,自然晶形则与晶体 的表面自由焓直接相关。 的表面自由焓直接相关。可以将多晶面固体加工成球 正方形等任何形状, 形、正方形等任何形状,但当我们将这某一特定形状 的多晶面体加热融熔后,冷却或溶解后再浓缩析出时, 的多晶面体加热融熔后,冷却或溶解后再浓缩析出时, 定会自发地呈现原来的多晶面形状。 定会自发地呈现原来的多晶面形状。这是因为固体分 子呈有序排列时,在某种状态下自由焓最低。 子呈有序排列时,在某种状态下自由焓最低。即一定 体积的固体必然要构成总的表面自由焓最低的形状。 体积的固体必然要构成总的表面自由焓最低的形状。
铁:570oC以下 570oC以下 Fe2O3/ Fe3O4/ Fe
金属的氧化程度取决于与其共存的氧的分压。 分 金属的氧化程度取决于与其共存的氧的分压 。 压高, 则易生成深度氧化物, 压高 , 则易生成深度氧化物 , 否则即生成不完全 氧化物。 氧化物。 合金的情况更复杂。 Fe和 Cr的合金就因 Cr的含量不 的合金就因Cr 合金的情况更复杂 。 如 Fe 和 Cr 的合金就因 Cr 的含量不 同, 其表面结构也不同: 其表面结构也不同: 5% Cr Fe2 /Fe3 /FeO/FeO Cr2 /Fe+Cr2 Fe2O3/Fe3O4/FeO/FeO· Cr2O3/Fe+Cr2O3/Fe+Cr 10% 10%Cr Fe2 /Fe3 /FeO· Cr2 /Fe+Cr2 Fe2O3/Fe3O4 /FeO Cr2O3/Fe+Cr2O3/Fe +Cr 23% 23%Cr : Cr2 Cr2O3/Fe + Cr
2.吸附机理2

2.5.1、半导性的能带结构
二、半导体导电机理: 本征半导体:满带,空带中间有禁带。 0K时半导体不导电。 一定温度下,满带电子跃迁到空带,空带有自由电子导电, 满带有空穴导电。 温度升高,空带电子,满带空穴数增加,导电性加强。 空带 满带 导带 满带
2.5.1、半导性的能带结构
三、半导体分类
本征(化学计量)半导体:
主要内容 2.3.1 吸附热表述方法 2.3.2 测定方法 2.3.3 化学吸附热随吸附量的变化
2.3. 吸附热
2.3.1 吸附热表述方法: 积分吸附热 微分吸附热 初始吸附热
2.3. 吸附热
积分吸附热
一、积分吸附热:从吸附开始到吸附平衡时,固体表面平均吸 附1mol气体所放出的热量。
q积=Q/n
2.4.1 金属催化剂的电子结构与催化活性 二、价键理论和d特性百分数(d%)的概念
价键理论认为,过渡金属原子以杂化轨道相结合。杂化轨道 通常为d 、 s、p等原子轨道的线性组合,称之为dsp杂化, 用于形成金属键,称为成键轨道;未杂化的d电子用于分子 的化学吸附,对应轨道为原子(非键)轨道。 杂化轨道中d成键轨道所占的百分数称为d特性百分数,用符 号d%表示。它是价键理论用以关联金属催化活性和金属电子 结构的一个特性参数。
1、积分吸附热表示了吸附热达到吸附平衡过程中的平均结果; 2、可以反映物理吸附与化学吸附:吸附热小为物理吸附;吸 附热大为化学吸附。
2.3. 吸附热
二、微分吸附热:固体表面吸附dnmol气体,放出的热量。 q微=dQ/dn 1、微分吸附热表示固体表面瞬间的吸附情况。 2、作用 (1)微分吸附热可以将化学吸附分类; (2)可以判断固体表面的均匀性
微分吸附热
2.3. 吸附热
固体表面与界面行为

2、晶界构型 晶界形状也由表面张力相互关系决定 多晶体结构,多晶体晶界形状 (1)固-固-固相 晶界交汇处均为固相,此时
多晶体面中,每一个晶界相交角度均为120°所有晶体断面的有 规律六角形状,晶界以120°相等,能量D趋于最稳定系统的总 界面能最小,且晶应当是平直的。
(2)固-固-气相 (3)固-固-液相
由此式得,曲面附加压力引饱和蒸气压变化曲面半径越小引起 蒸汽变化与愈大。
6-6 润湿分相分布
1、润湿 表面与界面之间形成液-固-气,固-固-液,固-固-气三种体
系,其中转为重要的是液-固-气系统 润湿:液体与固体接触,使固体表面能下降的现象。 润滑角θ :液体表面张力γLV与固—液界面张力γSL之间夹角。 γSV,γSL,γLV,分别为液-固-气、固-液,固-气之界面张力
晶界应力与热彭胀系数Δ α 温度变化原底d成正比,如热膨胀为各向同性即Δα =0,τ =0。 如产生应力则晶粒越大,应力愈大强度越差,搞热冲击性也差。
6-6弯曲表面
1、弯曲表面附加压力 表面张力的存在造成弯曲表面上产生附加压力
如右图一根毛细管向其中吹气在管端形成一半径为气泡压力 增大,气泡体积增大相应表面积增加,阻碍其体积增加的阻力 为由于扩大表面积所需总表面能为克服此表面张力环境做功为
γAγB :A、B两界面的表面能 γAB :AB之间的表面能
粘附功:剥开单位粘附面积所需作功,粘附功W大则VAB小,
两者结合粘附牢固 相似表面易于粘附,一般金属排登陆艇它们之间的吸附层且
具足够的塑性变形可出现率固粘附即为冷焊。
4、实际表面结构 硅酸盐表面由于吸附都带有硅酸基团,吸附水而成水膜。
6-5 晶界
T↑表面能V0↓介质不同,表面能数值不同
第七章 气体在固体表面上的吸附

吸附剂
常用的吸附剂: 1)硅胶:是无定型氧化硅水合物,典型的极性吸附剂。用
做干燥剂,催化剂载体,主要吸附非极性溶剂中的极性 物质。生产工艺简单,成本低廉,再生产温度低,机械 强度好 2)活性炭:是多孔型性含碳物质,主要由各种有机物质 (木、煤、果核、果壳等)经炭化和活化制成。具有高 度发达的孔隙结构,良好的化学稳定性和机械强度。主 要吸附非极性物质及长链极性物质(孔吸附,适合非极 性),由于存在表面含氧基团,也可吸附某些极性物质。 应用于化学工业、环境保护、食品工业。例:有毒气体 的吸附、各类水溶液的脱色、除臭、水质净化、食品及 药物精制等的各种废水处理
吸附热
吸附等温线 吸附等压线 吸附等量线 Langmuir吸附等温式 Freundlich吸附等温式 BET吸附等温式
吸附剂和吸附质 (adsorbent,adsorbate)
当气体或蒸汽在固体表面被吸附时,固体称为 吸附剂,被吸附的气体称为吸附质。
常用的吸附剂有:硅胶、分子筛、活性炭等。 为了测定固体的比表面,常用的吸附质有:氮 气、水蒸气、苯或环己烷的蒸汽等。 吸附的分类:物理吸附与化学吸附。
固气吸附的一些现象毛细凝结现象一定温度t时中等孔径尺寸的多孔固体孔壁上发生了气体吸附若液体能完全润湿孔壁所得的吸附等温线如图所示ab线段是低压下的吸附当压力达到折点处发生毛细凝聚蒸汽变成液体在毛细管中凝聚吸附量迅速增加这是因为液体能润湿固体在孔中液面呈弯月形如图所示可以应用kelvin公式毛细凝结现象根据kelvin公式凹面上的蒸汽压比平面上小所以在小于饱和蒸汽压时凹面上已达饱和而发生凝聚这就是毛细凝聚现象
随着H原子向Ni表 面靠近,位能不断下降, 达到b点,这是化学吸 附的稳定状态。
化学吸附
Ni和H之间的距离等 于两者的原子半径之和。
第二章催化中的吸附作用

第一节第一节吸吸附附什么是吸附现象当气体液体分子与固体表面接触时由于固体表面与气体相互作用使气体分子附着在固体表面上导致气体在固体表面上的浓度高于它们在体相中的浓度这种现象称吸附现象。
几个需要明确的概念吸附气体或液体的固体称为吸附剂被吸附的气体或液体称为吸附质吸附质在表面吸附后的状态称为吸附态吸附剂表面发生吸附的位置叫吸附中心吸附中心与吸附质共同构成表面吸附物种几个相近的定义几个相近的定义吸附adsorption 气体或液体分子在固相界面层的富集吸收absorption 流体分子渗入固体的体相内吸着sorption 吸附和吸收的集成。
包括表面的吸附、进入物体体相的吸收以及发生在物体孔隙中的毛细管凝结注释日文中的汉字“吸着” 多指吸附。
反应物分子在催化剂表面上吸附和催化过程实际上是发生在反应物分子与固体表面的“活性位”之间的化学作用要了解催化剂表面的活性位首先要了解固体催化剂的表面结构11、固体分类、固体分类结晶体它的结构基元空间是有序的周期的排列。
其特征是短程和长程都有序。
无定形它的结构单元没有形成有序的结构。
其特征是只存在短程有序。
通过XRD来区别结晶体与无定形2、晶体表面的晶面晶体最一般的特点是它具有空间点阵式的结构金属元素的单质有三种典型的结构形式立方体心b.c.c氨合成催化剂α-Fe 立方面心f.c.c金属Pt、Ni 六方密堆积h.c.pLa、α-Ti 金属元素的单质结构模型通常金属催化剂都是由许许多多的微晶组成暴露的晶面是多种多样的影响晶面的暴露比例有热力学和动力学因素晶体在结晶速度很快的条件下成长最终状态受热力学制约。
按热力学能量最低原理晶体表面将形成致密充填的晶面表面能最低其催化活性也最低 3 实际上固体表面不同晶面的暴露比例在很大程度上是取决于晶体长大过程的动力学包括凝聚、扩散、化学反应等过程受外部条件温度、压力、pH值等的影响很大选择合适的制备条件可提高所需晶面在催化剂表面上的比例从而提高催化剂的催化活性。
吸附(物理吸附与化学吸附)在催化中的应用

物理吸附与化学吸附在催化中的应用摘要:吸附过程与催化作用在国民经济和环境保护方面具有重要意义。
他们是化学工业,石油炼制以及国民经济其他领域最活跃的研究课题之一。
这两个领域涉及到的都是表面现象,使用的都是多孔固体。
吸附是催化反应得以发展的最关键步骤之一,通过它揭示催化本质和研究催化性质越来越受到人们的重视,因此许多在线原位动态测量技术得以快速发展。
关键词:物理化学吸附表征测定孔结构气体探针1. 吸附现象吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表面处产生积蓄, 此现象称为吸附。
吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象[1,2]。
实际上,人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。
随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附分离过程显示出节能、产品纯度高、可除去痕量物质、操作温度低等突出特点,使这一过程在化工、医药、食品、轻工、环保等行业得到了广泛的应用,例如:(1)气体或液体的脱水及深度干燥,如将乙烯气体中的水分脱到痕量,再聚合。
(2)气体或溶液的脱臭、脱色及溶剂蒸气的回收,如在喷漆工业中,常有大量的有机溶剂逸出,采用活性炭处理排放的气体,既减少环境的污染,又可回收有价值的溶剂。
(3)气体中痕量物质的吸附分离,如纯氮、纯氧的制取。
(4)分离某些精馏难以分离的物系,如烷烃、烯烃、芳香烃馏分的分离。
(5)废气和废水的处理,如从高炉废气中回收一氧化碳和二氧化碳,从炼厂废水中脱除酚等有害物质。
1.1吸附吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。
当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。