高三数形结合练习题

合集下载

四川省外国语学校2024学年高三保温练习(二)数学试题

四川省外国语学校2024学年高三保温练习(二)数学试题

四川省外国语学校2024学年高三保温练习(二)数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b +的最大值为( ) A .94B .9C .13D .12.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭ B .2935,2424⎡⎤⎢⎥⎣⎦ C .2935,2424⎛⎫⎪⎝⎭D .2935,2424⎛⎤⎥⎝⎦3.函数()2f x ax =-与()xg x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( ) A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞ D .(2,e ⎤-∞⎦4.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3B .2C .1D .05.若复数12z i =+,2cos isin ()z ααα=+∈R ,其中i 是虚数单位,则12||z z -的最大值为( )A 1B .12C 1D .126.已知函数()0)f x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点分别为1x ,2x ,3x ,则( )A .123x x x <<B .213x x x <<C .231x x x <<D .312x x x <<7.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( ) A .()112n n + B .()1312n n - C .2n n 1-+ D .222n n -+8.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .69.设i 是虚数单位,若复数1z i =+,则22||z z z+=( )A .1i +B .1i -C .1i --D .1i -+10.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则ab 的最小值为( ) 参考数据:2ln 20.69,ln 20.48≈≈A .12B .24C .2log 3D .2211.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.执行如图所示的程序框图,若输出的310S =,则①处应填写( )A .3?k <B .3?kC .5?kD .5?k <二、填空题:本题共4小题,每小题5分,共20分。

高三数学模拟考试卷(附答案解析)

高三数学模拟考试卷(附答案解析)

高三数学模拟考试卷(附答案解析)一、单选题(本大题共4小题,共20分。

在每小题列出的选项中,选出符合题目的一项)1.已知p:sinx=siny,q:x=y,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则此双曲线的渐近线方程为()A. y=±3xB. y=±2xC. y=±2xD. y=±x3.函数y=f(x)是定义域为R的奇函数,且对于任意的x1≠x2,都有f(x1)−f(x2)x1−x2<1成立.如果f(m)>m,则实数m的取值集合是()A. {0}B. {m|m>0}C. {m|m<0}D. R4.已知数列{an}满足a1+a2+⋯+an=n(n+3),n∈N*,则an=()A. 2nB. 2n+2C. n+3D. 3n+1二、填空题(本大题共12小题,共54分)5.不等式|2x+1|+|x−1|<2的解集为______.6.函数f(x)=x+9x(x>0)的值域为______.7.函数f(x)=sinx+cosx(x∈R)的最小正周期为______.8.若an为(1+x)n的二项展开式中x2项的系数,则n→+∞lim ann2=______.9.在所有由1,2,3,4,5这五个数字组成的无重复数字的五位数中,任取一个数,则取出的数是奇数的概率为______.10.若实数x,y满足x+y≤4y≤3xy≥0,则2x+3y的取值范围是______.11.已知向量a,b满足|a|=2,|b|=1,|a+b|=3,则|a−b|=______.12.已知椭圆C:x29+y2b2=1(b>0)的左、右两个焦点分别为F1、F2,过F2的直线交椭圆C于A,B两点.若△F1AB是等边三角形,则b的值等于______.13.已知等比数列{an}的前n项和为Sn,公比q>1,且a2+1为a1与a3的等差中项,S3=14.若数列{bn}满足bn=log2an,其前n项和为Tn,则Tn=______.14.已知A,B,C是△ABC的内角,若(sinA+i⋅cosA)(sinB+i⋅cosB)=12+32i,其中i为虚数单位,则C 等于______.15.设a∈R,k∈R,三条直线l1:ax−y−2a+5=0,l2:x+ay−3a−4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为.16.设函数f(x)=x2−1,x≥a|x−a−1|+a,x<a,若函数f(x)存在最小值,则a的取值范围为______.三、解答题(本大题共5小题,共76分。

北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试题(解析版)

北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试题(解析版)

海淀区2023—2024学年第二学期期末练习高三数学2024.05本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,0,1,2,{3}A B x a x =-=≤<∣.若A B ⊆,则a 的最大值为()A.2 B.0C.1- D.-2【答案】C 【解析】【分析】根据集合的包含关系可得1a ≤-求解.【详解】由于A B ⊆,所以1a ≤-,故a 的最大值为1-,故选:C2.在52()x x-的展开式中,x 的系数为()A.40B.10C.40-D.10-【答案】A 【解析】【分析】利用二项式定理的性质.【详解】设52(x x-的通项1k T +,则()5115C 2k k k k T x x --+=-,化简得()5215C 2k kk k T x -+=⋅-⋅,令2k =,则x 的系数为()225C 240-=,即A 正确.故选:A3.函数()3,0,1,03x x x f x x ⎧≤⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩是()A.偶函数,且没有极值点B.偶函数,且有一个极值点C.奇函数,且没有极值点D.奇函数,且有一个极值点【答案】B 【解析】【分析】根据函数奇偶性定义计算以及极值点定义判断即可.【详解】当0x ≤时,0x ->,则1()(3()3xx f x f x --===,当0x >时,0x -<,则1()3()()3xx f x f x --===,所以函数()f x 是偶函数,由图可知函数()f x 有一个极大值点.故选:B.4.已知抛物线24x y =的焦点为F ,点A 在抛物线上,6AF =,则线段AF 的中点的纵坐标为()A.52B.72C.3D.4【答案】C 【解析】【分析】根据抛物线定义求得点A 的纵坐标,再求AF 中点纵坐标即可.【详解】抛物线24x y =的焦点()0,1F ,又16A AF y =+=,解得5A y =,故线段AF 的中点的纵坐标为1532+=.故选:C.5.在ABC 中,34,5,cos 4AB AC C ===,则BC 的长为()A.6或32B.6C.3+D.3【答案】A 【解析】【分析】根据余弦定理即可求解.【详解】由余弦定理可得222222543cos 2104AC CB ABCB C AC BCBC+-+-===⋅,故22151806CB BC BC -+=⇒=或32,故选:A6.设,R,0a b ab ∈≠,且a b >,则()A.b a a b< B.2b a a b+>C.()sin a b a b -<- D.32a b>【答案】C 【解析】【分析】举反例即可求解ABD,根据导数求证()sin ,0,x x x <∈+∞即可判断C.【详解】对于A ,取2,1a b ==-,则122b aa b=->=-,故A 错误,对于B ,1,1a b ==-,则2b aa b+=,故B 错误,对于C ,由于()sin 0,cos 10y x x x y x '=->-≤=,故sin y x x =-在()0,∞+单调递减,故sin 0x x -<,因此()sin ,0,x x x <∈+∞,由于a b >,所以0a b ->,故()sin a b a b -<-,C 正确,对于D,3,4a b =-=-,则11322716a b =<=,故D 错误,故选:C7.在ABC 中,π,2C CA CB ∠===,点P 满足()1CP CA CB λλ=+- ,且4CP AB ⋅= ,则λ=()A.14-B.14C.34-D.34【答案】B 【解析】【分析】用CB ,CA 表示AB ,根据0CA CB ⋅=,结合已知条件,以及数量积的运算律,求解即可.【详解】由题可知,0CA CB ⋅=,故CP AB ⋅()()()()2211881168CA CB CB CA CA CB λλλλλλλ⎡⎤=+-⋅-=-+-=-+-=-+⎣⎦,故1684λ-+=,解得14λ=.故选:B.8.设{}n a 是公比为()1q q ≠-的无穷等比数列,n S 为其前n 项和,10a >.则“0q >”是“n S 存在最小值”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的判定以及等比数列前n 项和公式判断即可【详解】若10a >且公比0q >,则110n n a a q -=>,所以n S 单调递增,n S 存在最小值1S ,故充分条件成立.若10a >且12q =-时,11112211013212n nn a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-->⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭,当n 为奇数时,121132nn S a ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递减,故最大值为1n =时,11S a =,而123n S a <,当n 为偶数时,121132n n S a ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递增,故最小值为2n =,122aS =,所以n S 的最小值为112a ,即由10a >,n S 存在最小值得不到公比0q >,故必要性不成立.故10a >公比“0q >”是“n S 存在最小值”的充分不必要条件.故选:A9.设函数()f x 的定义域为D ,对于函数()f x 图象上一点()00,x y ,若集合()(){}0,k k x x y f x x D ≤∈-+∀∈R∣只有1个元素,则称函数()f x 具有性质0x P .下列函数中具有性质1P 的是()A.()1f x x =- B.()lg f x x=C.()3f x x = D.()πsin2f x x =-【答案】D 【解析】【分析】根据性质1P 的定义,结合各个函数的图象,数形结合,即可逐一判断各选择.【详解】根据题意,要满足性质1P ,则()f x 的图象不能在过点()()1,1f 的直线的上方,且这样的直线只有一条;对A :()1f x x =-的图象,以及过点()1,0的直线,如下所示:数形结合可知,过点()1,0的直线有无数条都满足题意,故A 错误;对B :()lg f x x =的图象,以及过点()1,0的直线,如下所示:数形结合可知,不存在过点()1,0的直线,使得()f x 的图象都在该直线的上方,故B 错误;对C :()3f x x =的图象,以及过点()1,1的直线,如下所示:数形结合可知,不存在过点()1,1的直线,使得()f x 的图象都在该直线的上方,故C 错误;对D :()πsin2f x x =-的图象,以及过点()1,1-的直线,如下所示:数形结合可知,存在唯一的一条过点()1,1-的直线1y =-,即0k =,满足题意,故D 正确.故选:D.10.设数列{}n a 的各项均为非零的整数,其前n 项和为n S .若()*,j i i j -∈N为正偶数,均有2ji aa ≥,且20S =,则10S 的最小值为()A.0B.22C.26D.31【答案】B 【解析】【分析】因为2120S a a =+=,不妨设120,0a a ><,由题意求出3579,,,a a a a 的最小值,46810,,,a a a a 的最小值,10122S a =,令11a =时,10S 有最小值.【详解】因为2120S a a =+=,所以12,a a 互为相反数,不妨设120,0a a ><,为了10S 取最小值,取奇数项为正值,取偶数项为负值,且各项尽可能小,.由题意知:3a 满足312a a ≥,取3a 的最小值12a ;5a 满足51531224a a a a a ≥⎧⎨≥≥⎩,因为1110,42a a a >>,故取5a 的最小值14a ;7a 满足717317531224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,取7a 的最小值18a ;同理,取9a 的最小值116a ;所以135791111112481631a a a a a a a a a a a ++++=++++=,4a 满足422a a ≥,取4a 的最小值22a ;6a 满足62642224a a a a a ≥⎧⎨≥≥⎩,因为20a <,所以2224a a >,取6a 的最小值12a ;8a 满足828418641224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,因为20a <,所以222482a a a >>,取8a 的最小值12a ;同理,取10a 的最小值12a ;所以24681022222222229a a a a a a a a a a a ++++=++++=,所以101211131931922S a a a a a =+=-=,因为数列{}n a 的各项均为非零的整数,所以当11a =时,10S 有最小值22.故选:B【点睛】关键点点睛:10S 有最小值的条件是确保各项最小,根据递推关系2j i a a ≥分析可得奇数项的最小值与偶数项的最小值,从而可得10S 的最小值.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.若()2(i)2i R x x +=∈,则x =__________.【答案】1【解析】【分析】利用复数的四则运算,结合复数相等的性质得到关于x 的方程组,解之即可得解.【详解】因为2(i)2i x +=,所以222i i 2i x x ++=,即212i 2i x x -+=,所以21022x x ⎧-=⎨=⎩,解得1x =.故答案为:1.12.已知双曲线22:14x C y -=,则C 的离心率为__________;以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为__________.(写出一个即可)【答案】①.②.22(1x y ++=或(22(1x y +=)【解析】【分析】根据离心率的定义求解离心率,再计算焦点到渐近线的距离,结合圆的标准方程求解即可.【详解】22:14x C y -==,又渐近线为12y x =,即20x y -=,故焦点)与()到20x y -=1=,则以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为22(1xy ++=或22(1x y -+=,故答案为:2;22(1xy ++=或(22(1x y +=)13.已知函数()2cos sin f x x a x =+.(i )若0a =,则函数()f x 的最小正周期为__________.(ii )若函数()f x 在区间()0,π上的最小值为2-,则实数=a __________.【答案】①.π②.2-【解析】【分析】根据二倍角公式即可结合周期公式求解,利用二次函数的性质即可求解最值.【详解】当0a =时,()2cos 21cos 2x f x x +==,所以最小正周期为2ππ2T ==,()2222cos sin sin sin 1sin 124a a f x x a x x a x x ⎛⎫=+=-++=--++⎪⎝⎭,当()0,πx ∈时,(]sin 0,1x ∈,且二次函数开口向下,要使得()f x 在区间()0,π上的最小值为2-,则需要1022a a-≥-,且当sin 1x =时取最小值,故112a -++=-,解得2a =-,故答案为:π,2-14.二维码是一种利用黑、白方块记录数据符号信息的平面图形.某公司计划使用一款由()2*nn ∈N 个黑白方块构成的n n ⨯二维码门禁,现用一款破译器对其进行安全性测试,已知该破译器每秒能随机生成162个不重复的二维码,为确保一个n n ⨯二维码在1分钟内被破译的概率不高于1512,则n 的最小值为__________.【答案】7【解析】【分析】根据题意可得21615260122n⨯≤,即可由不等式求解.【详解】由题意可知n n ⨯的二维码共有22n 个,由21615260122n⨯≤可得2216153126022602n n -⨯⨯≤⇒≤,故2231637n n -≥⇒≥,由于*n ∈N ,所以7n ≥,故答案为:715.如图,在正方体1111ABCD A B C D -中,P 为棱AB 上的动点,DQ ⊥平面1,D PC Q 为垂足.给出下列四个结论:①1D Q CQ =;②线段DQ 的长随线段AP 的长增大而增大;③存在点P ,使得AQ BQ ⊥;④存在点P ,使得PQ //平面1D DA .其中所有正确结论的序号是__________.【答案】①②④【解析】【分析】根据给定条件,以点D 为原点,建立空间直角坐标系,求出平面1D PC 的法向量坐标,进而求出点Q 的坐标,再逐一计算判断各个命题即得答案.【详解】在正方体1111ABCD A B C D -中,令1AB =,以点D 为原点,建立如图所示的空间直角坐标系,设(01)AP t t =≤≤,则1(0,0,0),(0,1,0),(0,0,1),(1,,0)D C D P t ,1(0,1,1),(1,1,0)CD CP t =-=-,令平面1D PC 的法向量(,,)n x y z = ,则10(1)0n CD y z n CP x t y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,取1y =,得(1,1,1)n t =- ,由DQ ⊥平面1D PC 于Q ,得((1),,)DQ n t λλλλ==-,即((1),,)Q t λλλ-,((1),1,)CQ t λλλ=-- ,显然2(1)10CQ n t λλλ⋅=-+-+=,解得21(1)2t λ=-+,于是222111(,,)(1)2(1)2(1)2t Q t t t --+-+-+,对于①,222222221||(1)(1)(1)(1)||D Q t t CQ λλλλλλ=-++--+-+,①正确;对于②,2221||(1)11(1)2(1)2DQ t t t =-++-+-+在[0,1]上单调递增,②正确;对于③,而(1,0,0),(1,1,0)A B ,((1)1,,),((1)1,1,)AQ t BQ t λλλλλλ=--=---,若2222[(1)1](1)(23)(32)10AQ BQ t t t t λλλλλλ⋅=--+-+=-+--+=,显然22(32)4(23)430t t t t ∆=---+=--<,即不存在[0,1]t ∈,使得0AQ BQ ⋅=,③错误;对于④,平面1D DA 的一个法向量(0,1,0)DC =,而((1)1,,)PQ t t λλλ=--- ,由0PQ DC t λ⋅=-=,得t λ=,即21(1)2t t =-+,整理得322310t t t -+-=,令32()231,[0,1]f t t t t t =-+-∈,显然函数()f t 在[0,1]上的图象连续不断,而(0)10,(1)10f f =-<=>,因此存在(0,1)t ∈,使得()0f t =,此时PQ ⊄平面1D DA ,因此存在点P ,使得//PQ 平面1D DA ,④正确.所以所有正确结论的序号是①②④.故答案为:①②④【点睛】思路点睛:涉及探求几何体中点的位置问题,可以建立空间直角坐标系,利用空间向量证明空间位置关系的方法解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数2()2cos(0)2xf x x ωωω=+>,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在且唯一确定.(1)求ω的值;(2)若不等式()2f x <在区间()0,m 内有解,求m 的取值范围.条件①:(2π)3f =;条件②:()y f x =的图象可由2cos2y x =的图象平移得到;条件③:()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,2ω=;(2)π(,)3+∞.【解析】【分析】(1)选条件①,由ππ1cos()332ω-=的解不唯一,此条件不符合题意;选条件②,由周期求出ω;选条件③,由给定等式确定最大最小值条件,求出周期范围,由给定区间内无极值点求出周期即可.(2)由(1)求出函数()f x 的解析式,再借助不等式有解列式求解即得.【小问1详解】依题意,π()cos 12cos()13f x x x x ωωω=++=-+,选条件①,由(2π)3f =,得ππ2cos()1233ω-+=,即ππ1cos()332ω-=,于是πππ2π,N 333k k ω-=+∈或πππ2π,N 333k k ω*-=-+∈,显然ω的值不唯一,因此函数()f x 不唯一,不符合题意.选条件②,()y f x =的图象可由2cos2y x =的图象平移得到,因此()y f x =的最小正周期为函数2cos2y x =的最小正周期π,而0ω>,则2ππω=,所以2ω=.选条件③,()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+,则ππ(()463f f --=,即函数()f x 分别在ππ,63x x ==-时取得最大值、最小值,于是()f x 的最小正周期ππ2[(π63T ≤⨯--=,由()f x 在区间ππ(,36-内无极值点,得()f x 的最小正周期ππ2[()]π63T ≥⨯--=,因此πT =,而0ω>,所以2π2Tω==.【小问2详解】由(1)知π()2cos(213f x x =-+,由(0,)x m ∈,得πππ2(,2)333x m -∈--,由不等式()2f x <在区间(0,)m 内有解,即π1cos(2)32x -<在区间(0,)m 内有解,则有ππ233m ->,解得π3m >,所以m 的取值范围是π(,)3+∞.17.在三棱锥-P ABC 中,2,AB PB M ==为AP 的中点.(1)如图1,若N 为棱PC 上一点,且MN AP ⊥,求证:平面BMN ⊥平面PAC ;(2)如图2,若O 为CA 延长线上一点,且PO ⊥平面,2ABC AC ==,直线PB 与平面ABC 所成角为π6,求直线CM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)根据BM AP ⊥和,MN AP ⊥可证线面垂直,即可求证面面垂直,(2)根据线面角的几何法可得π6PBO ∠=,建立空间直角坐标系,利用法向量与方向向量的夹角即可求解.【小问1详解】连接,,BM MN BN.因为,AB PB M =为AP 的中点,所以BM AP ⊥.又,MN AP ⊥,,MN BM M MN BM ⋂=⊂平面BMN ,所以AP ⊥平面BMN .因为AP ⊂平面,PAC 所以平面BMN ⊥平面PAC .【小问2详解】因为PO ⊥平面,ABC OB ⊂平面,ABC OC ⊂平面ABC ,所以,,PO OB PO OC PBO ∠⊥⊥为直线PB 与平面ABC 所成的角.因为直线PB 与平面ABC 所成角为π6,所以π6PBO ∠=.因为2PB =,所以1,PO OB ==.2=,所以1OA =.又2AB =,故222AB OB OA =+.所以OB OA ⊥.如图建立空间直角坐标系O xyz -.则())0,1,0,A B,()()0,3,0,0,0,1C P ,110,,22M ⎛⎫⎪⎝⎭.所以()0,3,1PC =-,()BC = ,510,,22MC ⎛⎫=- ⎪⎝⎭.设平面PBC 的法向量为(),,n x y z =,则0,0,n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩即30,330.y z x y -=⎧⎪⎨+=⎪⎩令1y =,则)3,1,3n = .设CM 与平面PBC 所成角为θ,则2sin cos ,132511344MC n MC n MC nθ⋅====⋅+⋅.所以直线CM 与平面PBC 所成角的正弦值为213.18.图象识别是人工智能领域的一个重要研究方向.某中学人.工智能兴趣小组研发了一套根据人脸照片识别性别的程序.在对该程序的一轮测试中,小组同学输入了200张不同的人脸照片作为测试样本,获得数据如下表(单位:张):识别结果真实性别男女无法识别男902010女106010假设用频率估计概率,且该程序对每张照片的识别都是独立的.(1)从这200张照片中随机抽取一张,已知这张照片的识别结果为女性,求识别正确的概率;(2)在新一轮测试中,小组同学对3张不同的男性人脸照片依次测试,每张照片至多测一次,当首次出现识别正确或3张照片全部测试完毕,则停止测试.设X 表示测试的次数,估计X 的分布列和数学期望EX ;(3)为处理无法识别的照片,该小组同学提出上述程序修改的三个方案:方案一:将无法识别的照片全部判定为女性;方案二:将无法识别的照片全部判定为男性;方案三:将无法识别的照片随机判定为男性或女性(即判定为男性的概率为50%,判定为女性的概率为50%).现从若干张不同的人脸照片(其中男性、女性照片的数量之比为1:1)中随机抽取一张,分别用方案一、方案二、方案三进行识别,其识别正确的概率估计值分别记为123,,p p p .试比较123,,p p p 的大小.(结论不要求证明)【答案】(1)34(2)分布列见解析;()2116E X =(3)231p p p >>【解析】【分析】(1)利用用频率估计概率计算即可(2)由题意知X 的所有可能取值为1,2,3,分别求出相应的概率,然后根据期望公式求出即可(3)分别求出方案一、方案二、方案三进行识别正确的概率,然后比较大小可得【小问1详解】根据题中数据,共有206080+=张照片被识别为女性,其中确为女性的照片有60张,所以该照片确为女性的概率为603804=.【小问2详解】设事件:A 输入男性照片且识别正确.根据题中数据,()P A 可估计为9031204=.由题意知X 的所有可能取值为1,2,3.()()()31331111,2,3444164416P X P X P X ====⨯===⨯=.所以X 的分布列为X123P34316116所以()331211234161616E X =⨯+⨯+⨯=.【小问3详解】231p p p >>.19.已知椭圆E 的焦点在x 轴上,中心在坐标原点.以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为(1)求栯圆E 的方程;(2)设过点()2,0M 的直线l (不与坐标轴垂直)与椭圆E 交于不同的两点,A C ,与直线16x =交于点P .点B 在y 轴上,D 为坐标平面内的一点,四边形ABCD 是菱形.求证:直线PD 过定点.【答案】(1)22186x y +=(2)证明见解析【解析】【分析】(1)根据焦点三角形的周长以及等边三角形的性质可得22a c +=且12c a =,即可求解,,a b c 得解,(2)联立直线与椭圆方程得韦达定理,进而根据中点坐标公式可得2286,3434t N t t ⎛⎫-⎪++⎝⎭,进而根据菱形的性质可得BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭,即可求解220,34t B t ⎛⎫ ⎪+⎝⎭,221614,3434t D t t ⎛⎫- ⎪++⎝⎭.进而根据点斜式求解直线PD 方程,即可求解.【小问1详解】由题意可设椭圆E 的方程为22222221(0),x y a b c a b a b+=>>=-.因为以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为所以22a c +=且12c a =,所以a c ==.所以26b =.所以椭圆E 的方程为22186x y +=.【小问2详解】设直线l 的方程为()20x ty t =+≠,令16x =,得14y t =,即1416,P t ⎛⎫ ⎪⎝⎭.由223424,2x y x ty ⎧+=⎨=+⎩得()223412120t y ty ++-=.设()()1122,,,A x y C x y ,则1212221212,3434t y y y y t t +=-=-++.设AC 的中点为()33,N x y ,则12326234y y ty t +==-+.所以3328234x ty t =+=+.因为四边形ABCD 为菱形,所以N 为BD 的中点,AC BD ⊥.所以直线BD 的斜率为t -.所以直线BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭.令0x =得222862343434t t t y t t t =-=+++.所以220,34t B t ⎛⎫ ⎪+⎝⎭.设点D 的坐标为()44,x y ,则4343222162142,2343434t t x x y y t t t ===-=-+++,即221614,3434t D t t ⎛⎫-⎪++⎝⎭.所以直线PD 的方程为()221414143416161634tt t y x t t ++-=--+,即()746y x t =-.所以直线PD 过定点()4,0.【点睛】方法点睛:圆锥曲线中定点问题的两种解法:(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.20.已知函数()()ln 0)f x x a a =-+>.(1)若1a =,①求曲线()y f x =在点()()22f ,处的切线方程;②求证:函数()f x 恰有一个零点;(2)若()ln 2f x a a ≤+对(),3x a a ∈恒成立,求a 的取值范围.【答案】(1)①2y =;②证明见解析(2)[)1,+∞【解析】【分析】(1)①求导,即可求解斜率,进而可求直线方程,②根据函数的单调性,结合零点存在性定理即可,(2)求导后构造函数()()(),,3g x x a x a a =-∈,利用导数判断单调性,可得()f x 的最大值为()()()000ln 2f x x a x a =-+-,对a 分类讨论即可求解.【小问1详解】当1a =时,()()ln 1f x x =-+.①()11f x x =--'.所以()()22,20f f =='.所以曲线()y f x =在点()()22f ,处的切线方程为2y =.②由①知()()(]()1ln 11,3,1f x x x f x x =-=-'+∈,且()20f '=.当()1,2x ∈时,因为111x >>-()0f x ¢>;当()2,3x ∈时,因为111x <<-,所以()0f x '<.所以()f x 在区间()1,2上单调递增,在区间()2,3上单调递减.因为()()()322,3ln20,1e 330f f f -==>+=-+<-+<.所以函数()f x 恰有一个零点.【小问2详解】由()()ln f x x a =-+得()f x -='.设()()(),,3g x x a x a a =-∈,则()10g x '=-<.所以()g x 是(),3a a 上的减函数.因为()()0,320g a g a a =>=-<,所以存在唯一()()()000,3,0x a a g x x a ∈=-=.所以()f x '与()f x 的情况如下:x()0,a x 0x ()0,3x a ()f x '+-()f x极大所以()f x 在区间(),3a a 上的最大值是()()()()0000ln ln 2f x x a x a x a =-+=-+-.当1a ≥时,因为()20g a a =-≤,所以02x a ≤.所以()()()0ln 222ln 2f x a a a a a a ≤-+-=+.所以()()0ln 2f x f x a a ≤≤+,符合题意.当01a <<时,因为()20g a a =>,所以02x a >.所以()()()0ln 222ln 2f x a a a a a a >-+-=+,不合题意.综上所述,a 的取值范围是[)1,+∞.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.设正整数2n ≥,*,i i a d ∈N ,(){}1,1,2,i i i A x x a k d k ==+-= ,这里1,2,,i n = .若*12n A A A ⋃⋃⋃=N ,且()1i j A A i j n ⋂=∅≤<≤,则称12,,,n A A A 具有性质P .(1)当3n =时,若123,,A A A 具有性质P ,且11a =,22a =,33a =,令123m d d d =,写出m 的所有可能值;(2)若12,,,n A A A 具有性质P :①求证:()1,2,,i i a d i n ≤= ;②求1nii ia d =∑的值.【答案】(1)27或32(2)①证明见解析②12n +【解析】【分析】(1)对题目中所给的12,,,n A A A ,我们先通过分析集合中的元素,证明()1,2,,i i a d i n ≤= ,111ni i d ==∑,以及112ni i i a n d =+=∑,然后通过分类讨论的方法得到小问1的结果;(2)直接使用(1)中的这些结论解决小问2即可.【小问1详解】对集合S ,记其元素个数为S .先证明2个引理.引理1:若12,,,n A A A 具有性质P ,则()1,2,,i i a d i n ≤= .引理1的证明:假设结论()1,2,,i i a d i n ≤= 不成立.不妨设11a d >,则正整数111a d A -∉,但*12n A A A ⋃⋃⋃=N ,故11a d -一定属于某个()2i A i n ≤≤,不妨设为2A .则由112a d A -∈知存在正整数k ,使得()11221a d a k d -=+-.这意味着对正整数1112c a d d d =-+,有()111212111c a d d d a d d A =-+=+-∈,()()11122212212211c a d d d a k d d d a k d d A =-+=+-+=++-∈,但12A A =∅ ,矛盾.所以假设不成立,从而一定有()1,2,,i i a d i n ≤= ,从而引理1获证.引理2:若12,,,n A A A 具有性质P ,则111ni i d ==∑,且112ni i ia n d =+=∑.证明:取集合{}121,2,...,...n T d d d =.注意到关于正整数k 的不等式()1201...i i n a k d d d d <+-≤等价于12...11i i n i i ia a d d dk d d d -<≤-+,而由引理1有i i a d ≤,即011iia d ≤-<.结合12...n i d d d d 是正整数,知对于正整数k ,12...11i i n i i i a a d d d k d d d -<≤-+当且仅当12...n i iT d d dk d d ≤=,这意味着数列()()11,2,...k i i x a k d k =+-=恰有iT d 项落入集合T ,即i iT T A d ⋂=.而12,,,n A A A 两两之间没有公共元素,且并集为全体正整数,故T 中的元素属于且仅属于某一个()1i A i n ≤≤,故12...n T A T A T A T ⋂+⋂++⋂=.所以1212......n nT T T T A T A T A T d d d +++=⋂+⋂++⋂=,从而12111...1nd d d +++=,这就证明了引理2的第一个结论;再考虑集合T 中全体元素的和.一方面,直接由{}121,2,...,...n T d d d =知T 中全体元素的和为()1212 (12)n n d d d d d d +,即()12T T +.另一方面,i T A ⋂的全部iT d 个元素可以排成一个首项为i a ,公差为i d 的等差数列.所以i T A ⋂的所有元素之和为11122i i i i i i i iTT TT T a a d T d d d d d ⎛⎫⎛⎫⋅+-=+- ⎪ ⎪⎝⎭⎝⎭.最后,再将这n 个集合()1,2,...,i T A i n ⋂=的全部元素之和相加,得到T 中全体元素的和为112ni i i i T Ta T d d =⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.这就得到()11122ni i i i T T T Ta T d d =⎛⎫+⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑,所以有()221111111222222nnn ni i i i i i i i i iiiT T T TTn TTn T a a a T TT d d d d d ====⎛⎫+⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑.即1122ni i iT T na d =+-=+∑,从而112ni i i a n d =+=∑,这就证明了引理2的第二个结论.综上,引理2获证.回到原题.将123,,d d d 从小到大排列为123r r r ≤≤,则123123m d d d r r r ==,由引理2的第一个结论,有1231231111111r r r d d d ++=++=.若13r ≥,则1231111111111311r r r r r r r =++≤++=≤,所以每个不等号都取等,从而1233r r r ===,故12327m r r r ==;情况1:若11r =,则23111110r r r +=-=,矛盾;情况2:若12r =,则231111112r r r +=-=,所以232221111122r r r r r =+≤+=,得24r ≤.此时如果22r =,则3211102r r =-=,矛盾;如果24r =,则32111124r r =-=,从而34r =,故12332m r r r ==;如果23r =,由于12r =,设()()123123,,,,i i i r r r d d d =,{}{}123,,1,2,3i i i =,则12i d =,23i d =.故对于正整数对()()2121212112331212211i i i i i i i i k a a a a k a a a a ⎧=+--+--⎪⎨=+--+--⎪⎩,有2112231i i k k a a -=--,从而12121223i i i i a k a k A A +=+∈⋂,这与12i i A A ⋂=∅矛盾.综上,m 的取值只可能是27或32.当()()123,,3,3,3d d d =时,27m =;当()()123,,4,2,4d d d =时,32m =.所以123m d d d =的所有可能取值是27和32.【小问2详解】①由引理1的结论,即知()1,2,,i i a d i n ≤= ;②由引理2的第二个结论,即知112nii ia n d=+=∑.【点睛】关键点点睛:本题的关键点在于,我们通过两个方面计算了一个集合的各个元素之和,从而得到了一个等式,这种方法俗称“算二次”法或富比尼定理.。

专题 幂、指数、对数函数(七大题型)(解析版)

专题  幂、指数、对数函数(七大题型)(解析版)

专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。

高三数学专题复习11:数形结合思想

高三数学专题复习11:数形结合思想

专题十一 数形结合思想一、考点回顾1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。

它可以使抽象的问题具体化,复杂的问题简单化。

“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。

2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。

3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。

4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。

5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。

用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。

二、经典例题剖析1.选择题(1)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞解析:因为()g x 是二次函数,值域不会是A 、B ,画出函数()y f x =的图像(图1)易知,当()g x 值域是[)0+,∞时,(())f g x 的仁政域是[)0+,∞,答案:C 。

高三数学试卷附答案解析

高三数学试卷附答案解析

高三数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.函数的图象可能是( )2.已知函数f(x)的导函数f′(x)=ax 2+bx +c 的图象如图所示,则f(x)的图象可能是( )3.设、分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为()A .B .C .D .4.已知圆的弦AB 的中点为,直线AB 交x 轴于点P ,则A .4B .5C .6D .85.已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种7.复数满足,则()A. B.2 C. D.8.已知函数,则实数a等于A. B. C.2 D.99.若集合,,则集合=()A.B.C.D.10.执行右边的程序框图,若,则输出的A. B. C. D.11.执行如图所示的程序框图,输出的值为()A.B.C.D.12.三棱锥中,,是等腰直角三角形,.若为中点,则与平面所成的角的大小等于( ) A. B. C. D.13.设函数,若,则下列不等式必定成立的是A. B. C. D.14.过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若是直角三角形,则此双曲线的离心率e的值为()A. B.2 C. D.15.为了得到的图象,只需将的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位16.已知复数则|z|=()A. B. C.3 D.217.已知函数,且函数有两个不同的零点,则实数的取值范围是()A.B.或C.或D.或18.下列函数中,是偶函数,且在区间内单调递增的函数是()A. B. C. D.19.已知函数,则与两函数图象的交点个数为()A. B. C. D.20.抛物线的内接ABC的三条边所在直线与抛物线均相切,设A,B两点的纵坐标分别是,则C点的纵坐标为()A. B. C. D.二、填空题21.如图所示,AB 和AC 分别是圆O 的切线,且OC=3,AB=4, 延长AO与圆O 交于D点,则△ABD 的面积是_______.22.已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为 .23.设,函数的值域为.若,则的取值范围是 . 24.已知向量满足,则的取值范围为 ;25.如图是棱长为的正方体,是高为的正四棱锥,若点在同一个球面上,则该球的表面积为___.26.给出下列四个命题: ①命题“”的否定是“”;②是空间中的三条直线,的充要条件是且;③命题“在中,若,则”的逆命题为假命题; ④对任意实数,有,且当时,,则当时,.其中的真命题是_______.(写出所有真命题的编号)27.如图,为测量坡高,选择A 和另一个山坡的坡顶C 为测量观测点。

高考数学最新真题专题解析—导数及其应用(新高考卷)

高考数学最新真题专题解析—导数及其应用(新高考卷)

高考数学最新真题专题解析—导数及其应用(新高考卷)【母题来源】2022年新高考I 卷【母题题文】已知函数f(x)=x 3−x +1,则( ) A. f(x)有两个极值点 B. f(x)有三个零点C. 点(0,1)是曲线y =f(x)的对称中心D. 直线y =2x 是曲线y =f(x)的切线 【答案】AC 【分析】本题考查利用导数研究函数的极值与零点以及曲线上一点的切线问题,函数的对称性,考查了运算能力以及数形结合思想,属于中档题. 【解答】解: f(x)=x 3−x +1⇒f′(x)=3x 2−1 ,令 f′(x)=0 得: x =±√33,f′(x)>0⇒x <−√33 或 x >√33 ; f′(x)<0⇒−√33<x <√33,所以 f(x) 在 (−∞,−√33) 上单调递增,在 (−√33,√33) 上单调递减,在 (√33,+∞)上单调递增,所以 f(x) 有两个极值点 (x =−√33 为极大值点, x =√33为极小值点 ) ,故 A正确 ;又 f(−√33)=−√39−(−√33)+1=1+2√39>0 , f(√33)=√39−√33+1=1−2√39>0 ,所以 f(x) 仅有 1 个零点 ( 如图所示 ) ,故 B 错 ;又 f(−x)=−x 3+x +1⇒f(−x)+f(x)=2 ,所以 f(x) 关于 (0,1) 对称,故 C 正确 ;对于 D 选项,设切点 P(x 0,y 0) ,在 P 处的切线为 y −(x 03−x 0+1)=(3x 02−1)(x −x 0) ,即 y =(3x 02−1)x −2x 03+1 ,若 y =2x 是其切线,则 {3x 02−1=2−2x 03+1=0,方程组无解,所以 D 错. 【母题来源】2022年新高考II 卷【母题题文】曲线y =ln|x|经过坐标原点的两条切线方程分别为 , . 【答案】y =x e y =−xe 【分析】本题考查函数切线问题,设切点坐标,表示出切线方程,带入坐标原点,求出切点的横坐标,即可求出切线方程,为一般题. 【解答】解:当 x >0 时,点 (x 1,lnx 1)(x 1>0) 上的切线为 y −lnx 1=1x 1(x −x 1).若该切线经过原点,则 lnx 1−1=0 ,解得 x =e , 此的切线方程为 y =xe .当 x <0 时,点 (x 2,ln(−x 2))(x 2<0) 上的切线为 y −ln (−x 2)=1x 2(x −x 2) .若该切线经过原点,则 ln(−x 2)−1=0 ,解得 x =−e , 此时切线方程为 y =−xe . 【命题意图】考察导数的概念,考察导数的几何意义,考察导数求导法则求导公式,导数的应用,考察数学运算和逻辑推导素养,考察分类讨论思想,函数和方程思想,化归与转化的数学思想,分析问题与解决问题的能力。

[名校联盟]2012届高三数学二轮复习04讲 数形结合思想

[名校联盟]2012届高三数学二轮复习04讲 数形结合思想

答案
(2,4]
图象法解不等式具有运算量小,思维
探究拓展
量小,简捷明了等优点,但对作图象要求较高,
必须能准确迅速作出相关函数或方程的图象,再
结合具体条件要求分析出结论来.图象法实质是转 化化归思想的应用.
变式训练2
解关于x的不等式:|x2-1|<ax (a>0).

设y1=|x2-1|,
y2=ax (a>0). 如图分别作出两个函数的图象,
a 1 2 2 , 又 x 0, 3 ,
3
不能直接使用
1 .为直观求解
, 作出函数在


原方程可化为 sin( 2 x
2 y 1 sin( 2 x ), x 0 , 3 3

3
)
a 1 2
.

a 1 ,y , 2 2
x·f(x)<0的x的取值范围是 (-1,0)∪(0,1) .
分析 函数f(x)比较抽象,欲解出目标不等式是 不可能的,注意到x·f(x)<0表明自变量与函数 值异号,故可作出f(x)的图象加以解决. 解析 作出符合条件的一个函数图象
(草图即可),可知:x·f(x)<0的
x取值范围是(-1,0)∪(0,1).
(2)双方性原则.既要进行几何直观分析,又要进
行相应的代数抽象探求,仅对代数问题进行几何 分析容易出错.
(3)简单性原则.不要为了“数形结合”而数形结
合.具体运用时,一要考虑是否可行和是否有利; 二是选择好突破口,恰当设参、用参、建立关 系,做好转化;三是挖掘隐含条件,准确界定参 变量的取值范围,特别是运用函数图象时应设法 选择动直线与定二次曲线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数形结合练习题
1.已知直角三角形ABC,角A为90°,AB = 3 cm,BC = 4 cm。


三角形ABC的面积。

解析:直角三角形ABC的面积可以通过底边AB和高BC求得。


于角A为90°,AB为底边,BC为高。

所以,三角形ABC的面积为底
边乘以高的一半。

面积 = (AB × BC) / 2
= (3 cm × 4 cm) / 2
= 12 cm² / 2
= 6 cm²
所以三角形ABC的面积为6平方厘米。

2.已知正方形ABCD,边长为5 cm。

求正方形ABCD内接圆的半径。

解析:正方形ABCD的对角线相互垂直且相等。

同时,内接圆的直径等于正方形的边长。

所以,通过对角线可以求得内接圆的直径,从
而计算其半径。

对角线的长度可以通过勾股定理求得。

对角线的长度等于边长的√2倍。

对角线长度= 5 cm × √2
≈ 7.07 cm
内接圆的直径等于对角线长度,所以内接圆的直径≈ 7.07 cm。

内接圆的半径等于直径的一半,所以内接圆的半径≈ 7.07 cm / 2
≈ 3.54 cm
所以正方形ABCD内接圆的半径约为3.54厘米。

3.已知等边三角形ABC,边长为6 cm。

求等边三角形ABC的高。

解析:等边三角形的高是指三角形内部某一顶点到对边的垂直距离。

对于等边三角形ABC,我们可以通过勾股定理求得其高的长度。

等边三角形的高可以通过边长乘以根号3的一半来求得。

高 = 边长× √3 / 2
= 6 cm × (√3 / 2)
≈ 6 cm × 0.866
≈ 5.196 cm
所以等边三角形ABC的高约为5.196厘米。

4.已知正方形ABCD和矩形EFGH。

正方形ABCD的边长为8 cm,矩形EFGH的长为10 cm,宽为6 cm。

求矩形EFGH的面积与正方形ABCD面积的比值。

解析:正方形ABCD的面积可以通过边长的平方来求得。

矩形EFGH的面积可以通过长乘以宽来求得。

正方形ABCD的面积 = 边长 ×边长
= 8 cm × 8 cm
= 64 cm²
矩形EFGH的面积 = 长 ×宽
= 10 cm × 6 cm
= 60 cm²
矩形EFGH的面积与正方形ABCD的面积的比值 = 矩形EFGH的面积 / 正方形ABCD的面积
= 60 cm² / 64 cm²
≈ 0.9375
所以矩形EFGH的面积与正方形ABCD的面积的比值约为0.9375。

通过以上练习题,我们巩固了在数学学习中数形结合的重要思维方式。

数形结合可以将抽象的数学概念与具体的几何形状联系起来,帮助我们更好地理解和应用数学知识。

希望以上解析对你的数学学习有所帮助。

相关文档
最新文档