华东师大版八年级下册 16.2分式运算测试

合集下载

完整版华师大版八年级下册数学第16章 分式含答案

完整版华师大版八年级下册数学第16章 分式含答案

华师大版八年级下册数学第16章分式含答案一、单选题(共15题,共计45分)1、遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万kg,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万kg,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万kg?设原计划每亩平均产量x万kg,则改良后平均每亩产量为1.5x万kg,根据题意列方程为()A. ﹣=20B. ﹣=20C. ﹣=20 D. + =202、甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A. B. C. D.3、下列计算正确的是()A.a 2•a 3=a 6B.(﹣2xy 2)3=﹣8x 3y 5C.2a ﹣3=D.(﹣a)3÷(2a)2=﹣ a4、钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.634×10 4B.6.34×10 6C.63.4×10 5D.6.34×10 75、函数中自变量x的取值范围是()A.x≠2B.C.D. 且x≠06、如果,,那么等于()A.1B.2C.3D.47、用科学记数法表示5700000,正确的是()A.5.7×10 6B.5.7×10 5C.570×10 4D.0.57×10 78、我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×10 3B.16.7×10 4C.1.67×10 5D.0.167×10 69、若代数式+ 有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠110、下列函数中,自变量x的取值范围是x≥2的是()A. B. C. D.11、下列各式运算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.(a 2)3=a 6D.a 0=112、新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿13、﹣()]=中,在()内填上的数是()A. B. C. D.14、若分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x>﹣2D.x>215、计算的结果是()A.x 2﹣1B.x﹣1C.x+1D.1二、填空题(共10题,共计30分)16、把1020000用科学记数法表示为________;2.236×107的原数是________;17、 ________.18、分式的最简公分母是________.19、化简分式的结果是________.20、计算:(﹣x2y)2=________(﹣2)﹣2=________﹣2x2•(﹣x)3=________(﹣0.25)2014×42015=________.(﹣1)2015+(﹣π)0+2﹣2=________.21、当x________时,分式无意义.22、要使代数式有意义,则的取值范围是________.23、分式有意义的条件是________.24、已知分式的值为零,那么x的值是________.25、第一季度,我国国民经济开局平稳,积极因素逐渐增多.社会消费品零售总额约为97790亿元,同比增长8.3%;网上零售额为22379亿元,同比增长15.3%.其中22379亿用科学记数法表示为________.三、解答题(共5题,共计25分)26、﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+| ﹣2|27、列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?28、先化简,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.29、列方程或方程组解应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.30、解分式方程:+1=参考答案一、单选题(共15题,共计45分)1、A2、B4、B5、A6、B7、A8、C9、D10、C11、C12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

2022-2023学年华东师大版八年级下册数学《第16章 分式 》单元测试卷(有答案)

2022-2023学年华东师大版八年级下册数学《第16章 分式  》单元测试卷(有答案)

2022-2023学年华东师大版八年级下册数学《第16章分式》单元测试卷一.选择题(共10小题,满分30分)1.下列各式中:﹣3x,,,,,分式的个数是()A.2B.3C.4D.52.下列关于x的方程中,不是分式方程的是()A.B.C.D.3.若分式的值为0,则x的值为()A.3B.﹣3C.±3D.04.将分式中的x、y的值同时扩大3倍,则扩大后分式的值()A.扩大3倍B.扩大6倍C.扩大9倍D.扩大27倍5.已知﹣=3,则代数式的值为()A.1B.2C.4D.66.若a=﹣0.32,b=(﹣3)﹣3,,,则()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.a<b<d<c 7.把与通分后,的分母为(1﹣a)(a+1)2,则的分子变为()A.1﹣a B.1+a C.﹣1﹣a D.﹣1+a8.下列化简结果正确的是()A.(a2﹣ab)÷=a2b B.=x﹣yC.=﹣m+1D.=9.已知关于x的方程的两个解分别为a,,则方程的解是()A.a,B.,a+1C.,a+1D.a,10.下列结论中,正确的是()A.x为任何实数时,分式总有意义B.当x=±2时,分式的值为0C.和的最简公分母是6m(2x﹣y)(y﹣2x)D.将分式中的x,y的值都变为原来的10倍,分式的值不变二.填空题(共10小题,满分30分)11.化简:=.12.阳阳是一个有爱心的同学,经常帮助同学.如图,阳阳家到学校的路程是1km,到小明家的路程是3km.阳阳原来是步行上学.为让小明每天准时到学校上课,他坚持骑小三轮车接送小明,已知阳阳骑小三轮车的速度是他步行速度的3倍,接送小明上学要比他自己步行上学多用20min,求阳阳步行速度和骑车速度各是多少?如果设阳阳步行的速度为xkm/h,根据题意,可列方程为.13.使分式有意义的条件为.14.有分别写有x,x+1,x﹣1的三张卡片,若从中任选一个作为分式的分子,使得分式为最简分式,则应选择写有的卡片.15.关于x的方程无解,则m的值为.16.若(a+3)a+1=1,则a的值是.17.当x分别取﹣2022、﹣2021、﹣2020、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于.18.用换元法解关于x的分式方程﹣2a﹣1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是,若原方程的解为正数,则a的取值范围为.19.轮船在静水中的速度是a千米/小时,水流速度是b千米/小时(a>b),轮船在逆流中航行s千米所需要的时间是小时.20.甲、乙两位采购员同去一家面粉公司购买两次面粉,两次面粉的单价不同,两位采购员的购货方式也不同,其中,甲每次购买800kg,乙每次用去600元,设两次购买的面粉单价分别为a元/kg和b元/kg(a,b是正数,且a≠b),那么甲所购面粉的平均单价是元/kg,乙所购面粉的平均单价是元/kg;在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为元/kg.(结果用含a,b的代数式表示,需化为最简形式)三.解答题(共7小题,满分60分)21.化简:(1)(﹣ab)3÷(﹣);(2)(a+4)(a﹣4)﹣(a﹣1)2.22.计算:.23.若a+b﹣1=0,求代数式(﹣1)•的值.24.已知关于x的分式方程.(1)若分式方程有增根,求m的值;(2)若分式方程的解是正数,求m的取值范围.25.如图,把圆分成四个区域,现在按Ⅰ,Ⅱ,Ⅲ,Ⅳ的顺序分别在四个区域内写一个数,要求后面的数是它前面那个数的.(1)若在第Ⅰ区写的数是,求在第Ⅳ区写的数是多少?(请用科学记数法表示)(2)若在第Ⅳ区写的数是a2+2a.①计算:第Ⅱ区与第Ⅲ区的差;②当﹣2<a<0时,比较第Ⅱ区与第Ⅲ区两数的大小.26.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式的值.解:∵,∴即∴∴材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则,,,∴根据材料解答问题:(1)已知,求的值.(2)已知,求的值.27.甲、乙两地相距1400km,从甲地到乙地乘高铁列车比乘特快列车少用9h,已知高铁列车的平均速度是特快列车的2.8倍.(1)写出这一问题中的所有等量关系;(2)如果设特快列车的平均速度为xkm,请列出关于x的方程;(3)如果设小明同学乘高铁列车从甲地到乙地需yh,请列出关于y的方程.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:﹣3x,,,,中:,为分式,共两个,其余为整式;故选:A.2.解:A、分母中含有未知数,是分式方程,故本选项不符题意;B、分母中不含有未知数,是整式方程,故本选项符合题意;C、分母中含有未知数,是分式方程,故本选项不符题意;D、分母中含有未知数,是分式方程,故本选项不符题意.故选:B.3.解:∵分式的值为0,∴x2﹣9=0且2x+6≠0,∴x=3,故选:A.4.解:∵分式中的x、y的值同时扩大3倍后,分子扩大为原来的9倍,分母扩大为原来的3倍,∴分式的值扩大为原来的3倍,故A正确.故选:A.5.解:∵,∴,∴x﹣y=﹣3xy,∴===4.故选:C.6.解:∵a=﹣0.32=﹣0.09,,,,∴a<b<d<c.故选:D.7.解:==,故的分子为1+a.故选:B.8.解:A、(a2﹣ab)÷=a(a﹣b)=﹣a2b,故A不符合题意;B、,故B不符合题意;C、==1﹣m,故C符合题意;D、已是最简分式,故D不符合题意.故选:C.9.解:方程可以写成x+1+=a+1+的形式,∵方程的两根分别为a,,∴方方程的两根的关系式为x+1=a+1,x+1=,即方程的根为x=a或﹣,∴方程的根是:x=a或﹣.故选:A.10.解:A、当x=0时,分式没有意义,不符合题意;B、当x=2时,分式无意义,不符合题意;C、和的最简公分母是6m(2x﹣y),不符合题意;D、将分式中的x,y的值都变为原来的10倍,则=,即分式的值不变,符合题意.故选:D.二.填空题(共10小题,满分30分)11.解:==,故答案为:.12.解:∵阳阳骑小三轮车的速度是他步行速度的3倍,且阳阳步行的速度为xkm/h,∴阳阳骑小三轮车的速度为3xkm/h.根据题意得:﹣=.故答案为:﹣=.13.解:∵要使分式有意义,∴x+2≠0,∴x≠﹣2.故答案为:x≠﹣2.14.解:∵==,==,∴,都不是最简分式,无法化简,是最简分式,故使得分式为最简分式,则应选择写有x的卡片.故答案为:x.15.解:去分母得:3x﹣2=x+1+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:m=﹣5.故答案为:﹣5.16.解:当a+1=0,a+3≠0时,a=﹣1;当a+3=1时,a=﹣2;当a+3=﹣1时,a=﹣4,此时a+1=﹣3,(a+3)a+1=(﹣1)﹣3=﹣1,不符合题意;综上,a=﹣1或a=﹣2.故答案为:﹣1或﹣2.17.解:当x=﹣a(a≠0)时,=,当x=时,==,∵+=0,∴当x=2022时与当x=时相加所得的代数式的值为0,当x=﹣2021时与当x=时相加所得的代数式的值为0,……当x=﹣2时与当x=时相加所得的代数式的值为0,当x=﹣1时所得的代数式的值为0,当x=1时所得的代数式的值为0,当x=0时所求的代数式的值为﹣1,∴这些分式的值其和等于﹣1,故答案为:﹣1.18.解:设=y,则=,关于x的分式方程﹣2a﹣1=0可化为y+﹣2a﹣1=0,两边都乘以y得,y2﹣(2a+1)y+2a=0,即(y﹣2a)(y﹣1)=0,解得y=2a(a≠0),y=1,当y=1时,即=1,此方程无实数根,当y=2a时,即=2a,两边都乘以x得,x﹣1=2ax,解得x=﹣,又∵原方程的解为正数,∴﹣>0,解得a<,而a≠0,∴a的取值范围为a<且a≠0,故答案为:y2﹣(2a+1)y+2a=0;a<且a≠0.19.解:依题意得:s÷(a﹣b)=(小时).故答案是:.20.解:由题意可得,甲购买面粉的平均单价是:(元/kg),乙购买面粉的平均单价是:(元/kg),在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为:(元/kg),故答案为:;;.三.解答题(共7小题,满分60分)21.解:(1)原式=(﹣a3b3)•(﹣)=.(2)原式=a2﹣16﹣(a2﹣2a+1)=a2﹣16﹣a2+2a﹣1=2a﹣17.22.解:=(﹣2)2+(﹣1)+1﹣3=4﹣1+1﹣3=1.23.解:(﹣1)•=•=•=3(a+b),∵a+b﹣1=0,∴a+b=1,当a+b=1时,原式=3×1=3.24.解:去分母得:2﹣x﹣m=2x﹣4,(1)由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m=0;(2)解得:x=,根据分式方程的解为正数,得到>0,且≠2,解得:m<6且m≠0.25.解:(1)在第Ⅰ区写的数是,则在第Ⅳ区写的数是×××=0.0005=5×10﹣4,答:在第Ⅰ区写的数是,在第Ⅳ区写的数是5×10﹣4;(2)①在第Ⅳ区写的数是a2+2a,则在第Ⅱ区的数为(a2+2a)×100=100a2+200a,第Ⅲ区的数为(a2+2a)×10=10a2+20a,所以第Ⅱ区与第Ⅲ区的差为(100a2+200a)﹣(10a2+20a)=90a2+180a;②当﹣2<a<0时,则a+2>0,所以a2+2a=a(a+2)<0,由于第Ⅲ区的数是第Ⅱ区数的,且两个区的数均为负数,所以第Ⅲ区的数大.26.解:(1)∵=,∴=4,∴=4,即x﹣1+=4,∴x+=5;(2)令=k,∴a=5k,b=4k,c=3k,∴原式=,=2.4.27.解:(1)等量关系:①乘高铁列车=甲地到乙地比乘特快列车﹣9;②高铁列车的平均行驶速度=特快列车的平均速度×2.8;(2)设特快列车的平均行驶速度为xkm/h,由题意得,解得:x=100,经检验x=100是原分式方程的解,2.8x=280,答:特快列车的平均行驶速度为100km/h,特高铁列车的平均行驶速度为280km/h,∴关于x的方程为;(3)设小明乘高铁列车从甲地到乙地需yh,由题意得,解得:y=5,经检验y=5是原分式方程的解,y+9=14,答:小明乘高铁列车从甲地到乙地需5h,小明乘高特快列车从甲地到乙地需14h,∴关于y的方程为.。

华师大版数学八年级下册第16章分式测试题含答案

华师大版数学八年级下册第16章分式测试题含答案

华师大版八年级数学下册 第16章分式测试题一、单选题 1.下列代数式中,属于分式的是( ) A .5xB .3xy C .3x D 2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠4 3.一种微粒的半径是0.00004米,这个数据用科学记数法表示为( )A .4×106B .4×10﹣6C .4×10﹣5D .4×105 4.下列各式正确的是A .c -a-b =-c a-bB .c -a-b =-c a b +C .c -a b +=-c a b +D .c -a-b =--c a-b5.计算2269243m m m m m-+-⋅--的结果是( ) A .32m m -+ B .23m m +- C .32m m +- D .23m m -+ 6.下列各式计算正确的是( ) A .111a b a b +=+ B .2m m m a b ab ⋅= C .11b b a a a +÷= D .110a b b a +=--7.若方程6(1)(1)1m x x x -+--=1有增根,则它的增根是( ) A .0B .1C .﹣1D .1和﹣18.设24932321x A B x x x x -=---+- (A ,B 为常数),则( ) A .71A B =⎧⎨=⎩ B .49A B =⎧⎨=-⎩ C .17A B =⎧⎨=⎩ D .3513A B =-⎧⎨=⎩二、填空题9.计算:23b a a b⨯= . 10.若分式2x x -的值是0,则x 的值为_______. 11.分式222x x +,24x x -的最简公分母是_______________. 12.若代数式62x +与4x的值相等,则x =_________. 13.若关于x 的方程2345mx m x +=-的解是x =1,则m 的值是________. 14.如果轮船在静水中航行的速度是a km/h ,水流的速度为b km/h(a>b),那么轮船顺水航行s km 比逆水航行s km 所用的时间少________小时.15.已知x -3y =0,且y≠0,则222(1)y x y x y x-+⋅-的值等于________. 16.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是 .三、解答题17.计算: (1)11()3--(2018)0×(-12)-2; (2)1111x x ++-; (3)2221211x x x x x x -+÷-+-.18.解分式方程:222x x x =---5.19.已知分式1x y xy+-的值是m ,如果分式中x ,y 分别用它们的相反数代替,那么所得的值为n ,则m ,n 有何关系?20.先化简,再求值:(x -2+32x +)÷2212x x x +++,其中x =(π-2019)0+(13)-1.21.已知a ,b ,c 为实数,且13ab a b =+,14bc b c =+,15ca c a =+,求abc ab bc ca++的值.22.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案1.C【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【详解】根据分式的定义A.是整式,答案错误;B.是整式,答案错误;C.是分式,答案正确;D.是根式,答案错误;故选C.【点睛】本题考查了分式的定义,在解题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.3.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00004=4×10﹣5. 故选C .【点睛】本题考查科学记数法—表示较小的数, 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.B【解析】本题考查的是分式的基本性质根据分式的基本性质对各项分析即可.A 、,故本选项错误;B 、cca b a b =---+,正确;C 、,故本选项错误;D 、,故本选项错误;故选B .5.A【解析】【分析】将第一个分式的分子、分母进行因式分解后,再约分即可得解.【详解】2269243m m m m m -+-⋅--, =2(3)2·(2)(2)3m mm m m --+--, =32m m -+.故选A.【点睛】本题考查分式的乘法,约分是分式乘法的关键. 6.D【解析】【分析】根据分式的运算法则对各选项逐一判断即可. 【详解】A. 11a ba b ab++=,故该选项错误;B. m ma b⋅=2mab,故该选项错误;C.1b ba a+÷=11b a ba b b⨯=++,故该选项错误;D.11a b b a+--=11a b a b---=0, 故该选项正确.故选D.【点睛】本题考查了分式的运算,熟练掌握运算法则是解题关键.7.B【解析】方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.8.A【解析】【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【详解】()()()()()()()()()()1323249321321321A x B x A B x A B x x x x x x x --+--+-+-+-+-==. 所以3429A B A B ==-⎧⎨+⎩,解得71A B ⎧⎨⎩==. 故选A .【点睛】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.9.3b【解析】 试题分析:根据分式的乘法运算法则,约分化简即可:23b a 3b a b⨯=. 10.2.【解析】【分析】根据分式分子为0分母不为0的条件,要使分式2x x-的值为0,则必须x 20{x 0-=≠,从而求解即可.【详解】解:有题意可得:x 20{x 0-=≠解得:x 2=故答案为:2.【点睛】本题考查分式的值为零的条件,掌握分式值为零即分子为零且分母不为零是本题的解题关键.11.x(x +2)(x -2)【解析】【分析】根据确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母,先把分母因式分解,即可求出答案.【详解】 ∵()22222x x x x =++,()()2422x x x x x =-+-, ∴222x x +,24x x -的最简公分母是x (x+2)(x-2); 故答案为:x (x+2)(x-2).【点睛】此题考查了最简公分母,关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握;确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.12.4【解析】 ∵代数式62x +与4x的值相等, ∴642x x +=, 解得:x=4故答案是4.13.-196【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有m 的新方程,解此新方程可以求得m 的值.【详解】把x=1代入原方程得,23415m m +-= 去分母得,10m+15=4m-4解得,m=-196. 故答案为:-196. 【点睛】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答. 14.222bs a b - 【解析】【分析】根据时间=路程÷速度,求出逆水航行的时间-顺水航行的时间,即可得到代数式.【详解】根据题意得:那么轮船顺水航行skm 与逆水航行skm 所用的时间差为:222=s s bs a b a b a b--+-. 故答案为:222bs a b -. 【点睛】本题考查理解题意的能力,时间差为,逆水航行的时间-顺水航行的时间,时间=路程÷速度.可列出代数式.15.34【解析】【分析】把小括号内分式通分并把分母分解因式,然后根据分式的乘法运算进行计算,再把x=3y 代入进行计算即可得解.【详解】2221?y x y x y x-+-(), =22222•x y y x y x y x-+--, =()()2•x x y x y x y x-+-,=+x x y, ∵x-3y=0,且y≠0,∴x=3y ,∴原式=3334y y y =+. 故答案为34. 【点睛】本题考查了分式的化简求值,一般分子、分母能因式分解的先因式分解,本题先计算然后再对分母分解因式更简便.16.. 【解析】试题解析:小华每小时分拣x 个物件,则小王每小时分拣(x +8)个物件, 根据题意得:6045.8x x=+ 故答案为6045.8x x=+ 17.(1)-1;(2)-221x ;(3) 1x . 【解析】【分析】(1)根据负整数指数幂和零次幂的运算法则进行计算即可得解;(2)按照异分母的分式加减法则进行计算即可;(3)原式利用除法法则变形,约分即可得到结果.【详解】(1)原式=3-1×4=-1. (2)原式=2112(1)(1)(1)(1)1x x x x x x x -+-=-+-+--. (3)2221 211x x x x x x -+÷-+-=2(1)(1)11(1)(1)x x x x x x x +--⨯=-+.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.x =3【解析】【分析】观察可得最简公分母是x-2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x -2),得-2=x -5(x -2),解得x =3.检验:将x =3代入x -2,得x -2=1≠0,∴x =3是原方程的解.【点睛】此题考查了分式方程的求解方法.注意掌握转化思想的应用,注意解分式方程一定要验根.19.m 与n 互为相反数.【解析】【分析】把x 、y 的相反数代入分式中,然后化简计算可得到n 的表达式,进而得到m 、n 的关系.【详解】由题意得:n=()() 11x y x y x y xy--+=-----=-m , 则m 与n 互为相反数.【点睛】此题主要考查了分式的基本性质,关键是正确理解题意,正确对题目进行变形. 20.13. 【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x 的值代入计算即可求出值.【详解】(x-2+32x+)÷2212x xx+++=()()2 2(2)32 []?221 x x xx x x+-+++++=()()2 1(1)2•21 x x xx x+-+++=1 +1 xx-.x=(π-2019)0+(13)-1=1-2+3=2,当x=2时,原式=2121-+=13.【点睛】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.21.1 6 .【解析】【分析】要求abcab bc ca++的值,可先求出其倒数的值,根据13aba b=+,14bcb c=+,15cac a=+,分别取其倒数即可求解.【详解】∵13aba b=+,14bcb c=+,15cac a=+,∴a+b=3ab,b+c=4bc,c+a=5ca,∴abcab bc ca++=2222abcab bc ca++=2()()()abcab bc bc ca ab ca +++++=2()()()abcb ac c b a a b c+++++=212 abc abc=16. 【点睛】本题考查了分式的化简求值,难度不大,关键是通过先求其倒数再进一步求解. 22.(1)9万元 (2)共有5种进货方案 (3)购买A 款汽车6辆,B 款汽车9辆时对公司更有利【解析】分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆.(3)方案获利相同,说明与所设的未知数无关,让未知数x 的系数为0即可;多进B 款汽车对公司更有利,因为A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,所以要多进B 款.详解:(1)设今年5月份A 款汽车每辆售价m 万元.则:901001m m =+, 解得:m =9.经检验,m =9是原方程的根且符合题意.答:今年5月份A 款汽车每辆售价9万元;(2)设购进A 款汽车x 辆,则购进B 款汽车(15﹣x )辆,根据题意得: 99≤7.5x +6(15﹣x )≤105.解得:6≤x ≤10.∵x 的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W 万元,购进A 款汽车x 辆,则:W =(9﹣7.5)x +(8﹣6﹣a )(15﹣x )=(a ﹣0.5)x +30﹣15a .当a =0.5时,(2)中所有方案获利相同.此时,购买A 款汽车6辆,B 款汽车9辆时对公司更有利.点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。

八年级数学下册第16章分式16.2分式的运算1分式的乘除作业课件新版华东师大版

八年级数学下册第16章分式16.2分式的运算1分式的乘除作业课件新版华东师大版

10.化简aa2+-1a÷a2-a2-2a1+1的结果是 A
A.1a B.a C.aa+-11 D.aa-+11
11.若 x 等于它的倒数,则分式x2+x-x-2 6÷x2-x+3x3+1的值为 C
A.-1
B.5
C.-1 或 5
D.-1或 4 4
12.计算下列各式:①2mn·4mn;②xy÷23xy;③ba÷2qp;④xy32÷35xy23.其结果是分式的有 ③.(填序号)
第16章 分式
16.2 分式的运算
16.2.1 分式的乘除
1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的 分母.如果得到的不是最简分式,应该通过约分进行化简.用式子表示为a×c=ac.
b d bd 练习 1:计算:3b2·a=3b.
ab
2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式 相乘.用式子表示为a÷c=a×d=ad.
(2)π(4R5-0 1)2÷π(4R52-0 1)=RR+ -11,
∴高的单位面积产量是低的单位面积产量的R+1倍. R-1
16.课堂上李老师出了这样一道题:当 x=3,5- 2,7+ 3时,分别求代数式 x2-x22-x+1 1÷2xx+-12的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这 个问题吗?请你写出具体过程.
b d b c bc 练习 2:计算:2ac2b÷4acb2 2=a2cb. 3.分式的乘方法则:分式乘方要把分子、分母分别乘方.用式子表示为(ab)n=abnn(n 为整数,且 n≥2). 练习 3:计算:(23ba)2=49ba22.
知识点 1:分式的乘法 1.计算bac·ca22的结果是 B A. c2 B. c C. c2 D. a2

八年级数学下册第16章分式16.2分式的运算第2课时分式的混合运算练习新版华东师大版

八年级数学下册第16章分式16.2分式的运算第2课时分式的混合运算练习新版华东师大版
8.化简:( + )÷ .
解:( + )÷
= ·
= · = .
9.先化简: · + ,再在-3,-1,0, ,2 中选择一个合适的x值代入求值.
解: · +
= · +
= + =
= =x,
为使原分式有意义 x≠-3,0,2,
所以x只能取 -1或 .
当x=-1时 ,原式=-1.
或当x= 时,原式= .(选择其中一个即可)
10.(分类讨论题)若a的立方等于它的本身,求( + )÷ · 的值.
解:原式= ÷ ·
= ·(a+2)(a-2)·
=a3.
因为a的立方等于它的本身,
所以a=0或1或-1.
所以当a=0时,原式=03=0;
当a=1时,原式=13=1;
当a=-1时,原式=(-1)3=-1.
所以( + )÷ · 的值是0或1或-1.
八年级数学下册第16章分式16.2分式的运算第2课时分式的混合运算练习新版华东师大版
编 辑:__________________
时 间:__________________
第2课时 分式的混合运算
1.化简:( - )·(x-3)的结果是( B )
(A)2(B)
(C) (D)
2.计算:(1+ )÷(1+ )的结果是( C )
(A代数式( + )· 的值是( C )
(A)2(B)3(C)6(D)9
4.化简(y- )÷(x- )的结果是( D )
(A)- (B)- (C) (D)
5 .若x=-1,则 ÷ -2+x的值是0.
6.化简: · ÷ + = .

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册 第16章 分式 章节检测题一、选择题1.下列分式是最简分式的是( )A 。

错误!B 。

错误!C.a +b a 2+b 2D.错误! 2.使分式错误!有意义,x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠23.若分式x -2x +3的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .24.下列各式中,与分式错误!相等的是( )A.错误! B 。

错误!C.错误!(x ≠y ) D 。

错误!5.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=错误!C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a=a +b 6.分式方程3x =4x +1+1的解是( ) A .x =-3 B .x =1C .x 1=3,x 2=-1D .x 1=1,x 2=-37.若关于x 的分式方程错误!=2-错误!的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38.已知a 2+a -2=7,则a +a -1的值( )A .49B .47C .±3D .39.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )A.错误!=错误!B.错误!=错误!C 。

错误!=错误!D 。

错误!=错误!二、填空题10.若分式错误!(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2+5mn _______.11.已知错误!与错误!互为倒数,则x 的值为________.12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-错误!,其中“( )"处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.13.若关于x 的分式方程错误!-2=错误!有增根,则m 的值为______.14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2。

达标测试华东师大版八年级数学下册第十六章分式章节测试试卷(精选含答案)

华东师大版八年级数学下册第十六章分式章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x 的一元一次不等式组()213221x x x a ⎧-≤-⎪⎨->⎪⎩的解集为5x ≥,且关于y 的分式方程2322y a y y+=---有非负整数解,则符合条件的所有整数a 的和为( ) A .1- B .2- C .3- D .4-2、下列计算正确的是( )A .x 2•x 4=x 6B .a 0=1C .(2a )3=6a 3D .m 6÷m 2=m 3 3、如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变4、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x +3x =60B .1603x x -= C .6013x x -= D .x =3(60-x )5、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .22a a b b =D .22a a b b= 6、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 7、当x =﹣2时,下列分式没有意义的是( )A .22x x -+B .2x x -C .22x x +D .22x x-- 8、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯9、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6-10、若关于x 的不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩有且仅有3个整数解,且关于y 的方程2135a y a y --=+的解为负整数,则符合条件的整数a 的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、腊味食品是川渝人民的最爱,去年12月份,某销售商出售腊肠、腊舌、腊肉的数量之比为3:5:3,腊肠、腊舌、腊肉的单价之比为3:3:2.今年1月份,该销售商将腊肠单价上调20%,腊舌、腊肉的单价不变,并加大了宣传力度,预计今年1月份的营业额将会增加,其中腊肉增加的营业额占总增加营业额的14,今年1月份腊肉的营业额将达到今年1月份总营业额的730.若腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,则今年1月份出售腊肠与腊肉的数量之比是__________.2、(1)(﹣2020)0=_____;(2)(x 3y )2=_____;(3)3a 2•2a 4=_____.3、方程12131x x =-+的解为___. 4、若分式99x x--的值为0,则x 的值为__________. 5、若()0211x -=,则x ≠______.6、计算:(232x y-)3=___;(9x 2y ﹣6xy 2+3xy )÷3xy =_____. 7、若230x x +-=,则代数式211x x x x ⎛⎫-⋅ ⎪-⎝⎭的值是______.8、计算:201(2π-⎛⎫-= ⎪⎝⎭__________. 9、如果分式(1)x x x+的值为零,那么x 的值是________. 10、若关于x 的分式方程133x a x x +=---有增根,则a=________. 三、解答题(5小题,每小题6分,共计30分)1、化简: (1)2236932a a a a a a +++⋅+ (2)111(1)m m m +++ 2、计算:(1)(2a ﹣b )2﹣b (2a +b );(2)(2a a 1-﹣a ﹣1)÷221-a a .3、化简分式2344(1)11x x x x x ,并从1、2、3这三个数中取一个合适的数作为x 的值代入求值.4、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地.(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?(2)已知甲的速度为12/km h,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到2km,判断乙能否在途中超过甲,请说明理由.5、观察下列等式:①1111212--=-⨯;②1111 23434--=-⨯;③1111 35656--=-⨯;④1111 47878--=-⨯;……根据上述规律回答下列问题:(1)第⑤个等式是;(2)第n个等式是(用含n的式子表示,n为正整数).-参考答案-一、单选题1、D【解析】【分析】由一元一次不等式组的解集可知a <3,由y 的分式方程知a =-3,a =-1时满足方程有非负整数解,故符合条件的所有整数a 的和为4-.【详解】()213221x x x a ⎧-≤-⎪⎨->⎪⎩ 化简21362x x x a -≤-⎧⎨->⎩ 解得25ax x >+≥⎧⎨⎩ 故2+a <5即a <32322y a y y+=--- 通分得2322y a y y -=--- 合并得232y a y -=-- 两边同乘y -2得236y a y -=-+ 移向得32y a =+ 32y a =+若有非负整数解且y ≠2, 则a =-3时,y =0,符合题意,a =-1时y =1,符合题意,a =1时y =2,舍去,a =3时y =3,但a <3,不符合题意,故舍去,其余a 的取值同理均舍去.综上所述a=-1,a=-3满足条件,故符合条件的所有整数a的和为-4.故选:D.【点睛】本题考查了一元一次不等式组的解集,分式方程的性质,非负整数集的定义,一元一次不等式组的解集取两个式子解集的公共部分,分式方程的分母不能为0,否则方程无意义,非负整数指的是0和正整数.熟练掌握这些性质是解题的关键.2、A【解析】【分析】根据零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则求解即可.【详解】解:A、x2•x4=x6,故选项正确,符合题意;a 时,0a无意义,故选项错误,不符合题意;B、当0C、(2a)3=8a3,故选项错误,不符合题意;D、m6÷m2=m4,故选项错误,不符合题意.故选:A.【点睛】此题考查了零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则,解题的关键是熟练掌握零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则.3、A【解析】【分析】将x,y用3x,3y代入化简,与原式比较即可.解:将x,y用3x,3y代入得233y3233x xyx y x y⨯⨯⨯=++,故值扩大到3倍.故选A.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.4、A【解析】【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)①故D正确;将①两边同时除以3得:60-x=13x,则B正确;将①两边同时除以3x得:60xx-=13,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.5、C【解析】【分析】由a b ,令3a =,4b =再逐一通过计算判断各选项,从而可得答案.【详解】解:当3a =,4b =时,34a b =,2526a b +=+,故A 不符合题意; 2122a b -=-,故B 不符合题意; 而2,2a a b b = 故C 符合题意; 22916a b =.故D 不符合题意 故选:C .【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.6、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A .方程分母中不含未知数,故不是分式方程,不符合题意;B .方程分母中不含未知数,故不是分式方程,不符合题意;C .方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D .方程分母中含未知数x ,故是分式方程,符合题意.故选:D .【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).7、A【解析】【分析】根据分式的分母为0时,分式无意义即可解答.【详解】解:A .分式22x x -+没有意义时,x =-2,故A 符合题意; B .分式2x x -没有意义时,x =2,故B 不符合题意; C .分式22x x +没有意义时,x =0,故C 不符合题意; D .分式22x x--没有意义时,x =0,故D 不符合题意; 故选:A .【点睛】本题考查了分式无意义的条件,熟练掌握分式的分母为0时,分式无意义是解题的关键.8、C【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.9、B【解析】【分析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.10、C【解析】【分析】 解不等式组得到227x a x <⎧⎪+⎨≥⎪⎩,利用不等式组有且仅有3个整数解得到169a -<≤-,再解分式方程得到152a y +=-,根据解为负整数,得到a 的取值,再取共同部分即可. 【详解】 解:解不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩得:227x a x <⎧⎪+⎨≥⎪⎩,∵不等式组有且仅有3个整数解, ∴2217a +-<≤-, 解得:169a -<≤-, 解方程2135a y a y --=+得:152a y +=-, ∵方程的解为负整数, ∴1502a +-<, ∴15a >-,∴a 的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a 为:-13,-11,-9,共3个,故选C .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.二、填空题1、20:21【解析】【分析】设去年12月份腊肠的单价为3x ,则去年12月份腊舌,腊肉的单价分别为3x ,2x ,今年1月份腊肠的单价为3.6x ,去年12月份腊肠的销售数量为3y ,则腊舌,腊肉的销售数量分别为5y 、3y ,1月份腊肉增加的营业额为z ,则总增加营业额为4z ;先求出去年12月份的销售额为30xy ,1月份腊肉的销售额为6xy z +,从而得到今年1月份的总销售额为304xy z +,再由今年1月份腊肉的营业额将达到今年1月份总营业额的730,推出15z xy =,即可求出今年1月份的总销售额为90xy ,腊肉的销售额21xy ,则腊肠今年1月份的营业额为90332136xy xy xy xy --=,设今年1月份出售腊肠与腊肉的数量分别为a 和b ,可以得到 3.636221ax xy bx xy=⎧⎨=⎩,由此求解即可. 【详解】解:设去年12月份腊肠的单价为3x ,则去年12月份腊舌,腊肉的单价分别为3x ,2x ,今年1月份腊肠的单价为3.6x ,去年12月份腊肠的销售数量为3y ,则腊舌,腊肉的销售数量分别为5y 、3y ,1月份腊肉增加的营业额为z ,则总增加营业额为4z ,∴去年12月份的销售额为33532330x y x y x y xy ⋅+⋅+⋅=,1月份腊肉的销售额为236x y z xy z ⋅+=+, ∴今年1月份的总销售额为304xy z +,∵今年1月份腊肉的营业额将达到今年1月份总营业额的730, ∴6730430xy z xy z +=+, ∴15z xy =(经检验,符合分式方程有意义的条件),∴今年1月份的总销售额为90xy ,腊肉的销售额21xy∵腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,∴腊舌今年1月份增加的营业额为18xy ,∴腊舌今年1月份的营业额为351833x y xy xy ⋅+=,∴腊肠今年1月份的营业额为90332136xy xy xy xy --=,设今年1月份出售腊肠与腊肉的数量分别为a 和b ,∴ 3.636221ax xy bx xy=⎧⎨=⎩, ∴3.636221a b =, ∴2021a b =, 故答案为:20:21.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够根据题意设出相应的未知量,然后推导出对应的关系式.2、 1 x6y2 6a6【解析】【分析】(1)根据非零数的零次幂等于1求解;(2)根据积的乘方法则计算;(3)根据单项式与单项式的乘法法则计算;【详解】解:(1)(﹣2020)0=1;(2)(x3y)2=x6y2;(3)3a2•2a4=6a6.故答案为:(1)1;(2)x6y2;(3)6a6.【点睛】本题考查了零次幂的意义、积的乘方计算、以及单项式与单项式的乘法计算,单项式与单项式的乘法法则是,把它们的系数相乘,字母部分的同底数的幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.3、x=-3【解析】【分析】先去分母,然后再求解方程即可.【详解】解:12131x x =-+ 去分母得:()3121x x +=-,去括号得:3122x x +=-,移项、合并同类项得:3x =-,经检验:3x =-是原方程的解,故答案为3x =-.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.4、-9【解析】【分析】分式值为0的条件:分式的分子为0且分母不为0,据此求解即可得.【详解】解:由题意得:9090⎧-=⎨-≠⎩x x , 解得:9x =-,故答案为:9-【点睛】本题考查了分式值为0,解题的关键是熟练掌握分式值为0的条件.5、12##0.5【解析】【分析】直接利用零指数幂的底数不为0可得出答案.【详解】解:∵(2x ﹣1)0=1,∴2x ﹣1≠0,解得:x ≠12. 故答案为:12.【点睛】此题主要考查了零指数幂,正确掌握零指数幂的底数不为0是解题关键.6、 36278x y - 3x ﹣2y +1 【解析】【分析】根据分式的乘方法则和分式的约分方法计算即可.【详解】解:(232x y -)3=323(3)(2)x y -=36278x y -=﹣36278x y; (9x 2y ﹣6xy 2+3xy )÷3xy =229633x y xy xy xy-+ =()33213xy x y xy -+=3x ﹣2y +1;故答案为:﹣36278x y;3x ﹣2y +1. 【点睛】本题考查了分式的乘方和分式的约分,分式的乘方是把分子、分母分别乘方,分式的约分是把分式分子、分母中除1以外的公因式约去.7、3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 2+x =3整体代入计算即可求出值.【详解】解:∵x 2+x -3=0,∴x 2+x =3, ∴211x x x x ⎛⎫-⋅ ⎪-⎝⎭ 2211x x x x -=⋅- 2(1)(1)1x x x x x +-=⋅- (1)x x =+=x 2+x=3,故答案为:3.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.8、3【解析】【分析】根据实数的运算法则即可求出答案.【详解】解:原式41=-3=.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.9、1-【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:(1)0x x +=且0x ≠,解得1x =-.故答案为:1-.【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10、3【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a 的值即可.【详解】 解:133x a x x+=---, 去分母得: x −a =3-x ,由分式方程有增根,得到x −3=0,即x =3,代入整式方程得:3−a =3-3,解得:a =3.故答案为:3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题1、 (1)12 (2)1m 【解析】【分析】(1)根据分式的乘法计算法则化简即可;(2)根据异分母分式的加法计算法则化简即可.(1) 解:2236932a a a a a a +++⋅+ ()()23323a a a a a =⋅+++12=; (2) 解:111(1)m m m +++ ()11(1)m m m m m =+++ ()11m m m +=+ 1m=. 【点睛】本题主要考查了分式的化简,熟知相关计算法则是解题的关键.2、 (1)4a 2-6ab (2)12a a+- 【解析】【分析】(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;(2)先将小括号内的式子进行通分计算,然后再算括号外面的.【小题1】解:原式=4a 2-4ab +b 2-2ab -b 2=4a 2-6ab ;【小题2】原式=()()()()21111112a a a a a a a a +-+-⎡⎤-⋅⎢⎥--⎣⎦=()()2211112a a a a a a-+--+⋅- =12a a+- 【点睛】本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.3、22x x +-,当x =3时,5. 【解析】【分析】先将分子分母因式分解,再进行计算,即可求解.【详解】 解:原式=(21311x x x ----)÷2(2)1x x -- =2(2)(2)11(2)x x x x x +--⨯-- x 2x 2+=-, ∵x ≠1且x ≠2,∴当x =3时,原式=3232+-=5. 【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.4、 (1)甲的速度是12.5千米/时,乙的速度是50千米/时;(2)乙能在途中超过甲.理由见解析【解析】(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到2km,列不等式组求得乙的速度范围,进步计算即可判断.(1)解:设甲的速度是x千米/时,乙的速度是4x千米/时,由题意,得25251.54x x-=,解得x=12.5,经检验x=12.5是分式方程的解,12.5×4=50.答:甲的速度是12.5千米/时,乙的速度是50千米/时;(2)解:乙能在途中超过甲.理由如下:设乙的速度是y千米/时,由题意,得0.52120 2120.52yy-⨯<⎧⎨⨯-<⎩,解得:44<y<48,甲走完全程花时间:2512小时,则乙的时间为:2571.51212-=小时,∴乙712小时走的路程s为:712×44<s<712×48,即2523<s<28,∴乙能在途中超过甲.本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组.5、 (1)1111 5910910 --=-⨯(2)11112122(21) n n n n n--=---【解析】【分析】(1)观察前4个等式可以得出等式左边第1 个减数的分母是被减数的2倍减1,第2个减数的分母是被减数分母的2倍,右边的分母是等式左边第1个减数与第2个减数的分母乘积,且结果为负数,由此可得结论;(2)由(1)可得结论.(1)第⑤个等式是:1111 5910910--=-⨯,故答案为:1111 5910910--=-⨯;(2)由(1)以及所给等式可以得出,第n个等式为:11112122(21)n n n n n--=---,故答案为:11112122(21) n n n n n--=---【点睛】本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.学生很容易发现各部分的变化规律.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.2分式运算测试
一、选择题(每小题4分,共24分
)
1.有理式①2x,②x+y5,③12-a,④1π-1中,是分式的为( )
A.①② B.③④ C.①③ D.①②③④

2.分式x-2(x-1)2,2x-3(1-x)3,5x-1的最简公分母是( )
A.(x-1)2 B.-(x-1)3 C.x-1 D.(x-1)2(1-x)3
3.a箱苹果重m千克,3箱苹果重( )

A.m3a千克 B.3am千克 C.3ma千克 D.3ma千克
4.下列运算错误的是( )

A.(a-b)2(b-a)2=1 B.-a-ba+b=-1 C.0.5a+b0.2a-0.3b=5a+10b2a-3b D.a-ba+b=b-ab+a
5

有下列说法:①对于分式

x-1

x+1,当x=1时它的值是0;②不论 a取何值,分式1a2+1

总有意义;③计算2ba÷b-2a2的结果是-3a2b;④当m=3时,分式1m与2 m+2的值相等.其中
正确的说法有(
)

A.4个 B.3个 C.2个 D.1个

6.已知两个分式:A
=-4x2-4,B=1x+2+

1

2-x
,其中x≠±2,
则A与B的关系是(
)

A.相等 B.互为倒数 C.互为相反数 D.A大于B
二、填空题(每小题4分,共24分
)

7.当x________时,分式13-x有意义.
8.若分式|x|-1x+1的值为零,则x的值为________.
9.计算:2mm2-9-1m+3=________.
10

下面是从小斌作业本上摘抄的一道计算题:ab22cd÷■=


3ax

4cd

则“■”处应为______.

11.小浩用2a元买了3b本笔记本,小佳用a元买了2b
支碳素笔.小浩买的笔记本的

单价是小佳买的碳素笔的单价的________倍.

12.若x+y=1,且x≠0,则x+2xy+y2x ÷x+yx的值为________.
三、解答题(共52分
)
13.(10分)不改变分式的值,把下列分式各项的系数化为整数.

(1)0.1x+0.050.03x-0.4; (2)13x+1234x-y.

14.(15分)计算:
(1)xx-2·x-4x; (2)1+2x-x+1x-2÷x+4x2-2x; (3)2a-1+a2-4a+4a2-1÷a-2a+1.
15.(8分)
已知分式

x-n
x+m
,当x=-2时,分式无意义;当x=2时,分式的值为0,

当x=1时分式的值.

16.(9分)先化简,再求值:xx2+x-1÷
x2-1
x2+2x+1

其中x的值从不等式组




-x≤
1

2x-1<4

整数解中选取.
17.(10分)
老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分

形式如下:

(1)求所捂部分化简后的结果;
(2)原代数式的值能等于-1吗?为什么?
详解详析
1.C [解析]
分式是分母中含有字母的式子,且分子、分母都是整式.π是常数,因

而1π-1不是分式.
2.B [解析] (1-x)3=-(x-1)3.

3.C [解析] 每箱苹果重ma千克,故3箱苹果重3ma千克.故选C.
4.D [解析] A项,(a-b)2(b-a)2=(a-b)2(a-b)2=1,正确; B
项,-a-ba+b=-(a+b)a+b=

-1,正确;C项,0.5a+b0.2a-0.3b=10(0.5a+b)10(0.2a-0.3b)=5a+10b2a-3b,正确;D项,a-ba+b=-
b-a
b+a

错误.

5.C [解析] 当x=1时,x-1x+1的分子为0且分母不为0,故其值为0

①正确;∵不

论a取何值都有a2+1>0,故②正确;③的计算结果应为
8a
b
,故③不正确;当m=3时,

中两分式值不相等,故④不正确.

6.A [解析] B
=1x+2+12-x=1x+2-1x-2=x-2(x+2)(x-2)-x+2(x+2)(x-2)=

x-2-x-2
(x+2)(x-2)

-4(x+2)(x-2)=-
4
x2-4

所以A=B.故选
A.

7.≠3
8.1 [解析] 由分式值为0,得|x|-1=0且x+1≠0,故x=1.

9.1m-3 10.-2b23x 11.43
12.1 [解析] 原式=x2+2xy+y2x·xx+y=x+y=1.
13.解:(1)0.1x+0.050.03x-0.4=(0.1x+0.05)×100(0.03x-0.4)×100=10x+53x-40.
(2)13x+1234x-y=(13x+12)×12(34x-y)×12=4x+69x-12y.
14. 解:(1)原式=xx-2·x2-4x

x
x-2
·(x+2)(x-2)x

=x+
2.

(2)原式=x(x-2)+2(x-2)-x(x+1)x(x-2)·x(x-2)x+4
=-
x+4x(x-2)·x(x-2

x+4

=-
1.

(3)原式=2a-1+(a-2)2(a+1)(a-1)·a+1a-2
=2a-1+
a-2
a-1


a
a-1
.

15.解:由题意知-2+m=0,2-n=0,2+m≠0,解得m=2,n=2,
∴当x=1时,x-nx+m=1-21+2=-
1
3
.

16.解:原式=-x2x(x+1)÷(x+1)(x-1)(x+1)2=-xx+1·x+1x-1=-xx-1.
解-x≤1,2x-1<4得-1≤
x<
5
2
,∴不等式组的整数解为-1,0,1,
2.

若保证分式有意义,则x只能取
2,
∴原式=-22-1=-
2.
17.解:(1)设所捂部分为A,

则A=x+1x-1·xx+1+x2-1x2-2x+1=xx-1+x+1x-1=x+x+1x-1=
2x+1
x-1
.

即所捂部分化简后的结果为
2x+1
x-1
.

(2)不能.

理由:若原代数式的值为-1,则x+1x-1=-
1,
即x+1=-x+1,解得x=
0,

当x=0时,除式xx+1=0,无意义

故原代数式的值不能等于-
1.

相关文档
最新文档