13.3全等三角形的判定(1)
课件人教版《等边三角形》课件1

(2) ∠APE= 60 °
A
PE
B
DC
课外补充题
1.已知:D,E是△ABC中BC上的两点,
且BD=DE=EC=AD=AE. 相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,
13.3.2 等边三角形(一)
复习: 等腰三角形有哪些性质和判定方法?
名 称图 形概 念
性质
判定方法
等 腰 三 角B 形
A
1.等边对等角 1.定义
有两边
相等的
三角形 2. 三线合一
是等腰
2.等角对等边
C 三角形 3.是轴对称图形
b
b
a
a>b a=b
1. 等边三角形b的定义: b 三条边都相等的三角形叫做 等边三角a<形b 。
0 【答案】C
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
∵ ∠ B=60 60° (2)试说明:△AEO≌△BEC; ∴ ∠C = 60 B 0
C
∴ ∠ A=600
∴ ∠ A= ∠B=∠C
∴ △ ABC是等边三角形
有一个角是60°的等腰 三角形是等边三角形。
E
∴ ∠ A=∠B=∠C
∵ DE//BC
B
C
∴ ∠ADE = ∠B, ∠AED = ∠C
∴∠ A= ∠ADE = ∠AED ∴ △ ADE是等边三角形
本题还有其他 证明方法吗?
新华东师大版八年级数学上册《13章 全等三角形 13.3 等腰三角形 等腰三角形的判定》优质课教案_19

等腰三角形的判定教学设计一、教材分析本课是华东师大版数学八年级上册第十三章第三节第二课时的内容,是学生在已有的全等的证明、命题、轴对称以及等腰三角形的性质基础上的进一步探究,等腰三角形的判定揭示了同一个三角形的边、角关系,与等腰三角形的性质定理互为逆定理,它为我们提供了证明两条线段相等的新方法,为以后的学习提供了新的证明和计算依据,是解题论证的必备知识,因此,本节内容至关重要。
二、学情分析学生在学习了全等的证明,轴对称及等腰三角形的性质的基础上,对等腰三角形已有了一定的了解和认识,会利用全等来证明边、角相等,为验证判定定理奠定了基础。
初二学生观察、操作、猜想能力较强,但推理、归纳、运用数学的意识和思想比较薄弱,思维的广阔性、敏捷性、严密性、灵活性比较缺乏,自主探究和合作学习能力也需要在课堂教学中进一步的加强和引导。
三、教学目标(一)知识与能力:1、会阐述、推证等腰三角形的判定定理。
2、学会比较等腰三角形的性质定理与判定定理的联系与区别。
3、了解等边三角形的判定。
(二)过程与方法:通过学习等腰三角形的判定,进一步发展学生的抽象概括能力。
(三)情感、态度与价值观:经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。
四、教学重难点重点:等腰三角形的判定定理的探索和应用。
难点:等腰三角形的判定与性质的区别。
五、教学过程Ⅰ、知识回顾等腰三角形的性质有哪些?那么一个三角形满足了什么样的条件就是一个等腰三角形呢?设计意图:复习等腰三角形的性质为判定作铺垫。
情境导入:如图,位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B。
如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?Ⅱ、探究新知——实践探究“等腰三角形的两个底角相等”的逆命题是否为真命题(学生画图、测量)1、操作一:画△ABC.使∠B=∠C=30°。
2、操作二:量一量,线段AB与AC的长度。
第五讲 ASA全等三角形的判定

A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。
书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。
书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。
规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。
无论这个一边是“对边”还是“夹边”,只要对应相等即可。
(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。
求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。
人教版八年级数学上册《12-2 三角形全等的判定(第1课时)》教学课件PPT初二优秀公开课

分析:要证∠BAC=∠DAE,而这两个角所在 三角形显然不全等,我们可以利用等式的性质 将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明 △ABD≌ △ACE,根据全等三角形的性质可得∠BAD=∠CAE.
探究新知
这说明有三个角对应相等的两个三角形不一定全等.
探究新知
②三条边
已知两个三角形的三条边都分别为3cm、4cm、6cm .它 们一定全等吗?
3cm
4cm
6cm
6cm 4cm
4cm 6cm
3cm
3cm
探究新知
做一做 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′= AB ,B′C′
=BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,它们全
D HC
课堂小结
边边边
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
应用
思路分析 书写步骤
结合图形找隐含条件和现有 条件,找准备条件
四步骤
注意
1.说明两三角形全等所需的条件应按对 应边的顺序书写 2.结论中所出现的边必须在所证明的两 个三角形中
课后作业
作 业 内 容
教材作业
从课后习题中选 取 自主安排 配套练习册练 习
3.已知△ABC ≌ △DEF,找出其中相等的边与角.
A
D
B
①AB=DE
④ ∠A=∠D
C
E
② BC=EF
⑤ ∠B=∠E
F
③ CA=FD
⑥ ∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角形全等.
2022年八年级数学上册第十三章全等三角形13.3全等三角形的判定3教案新版冀教版

13.3全等三角形的判定(3)教学目标【知识与能力】1.掌握“角边角”及“角角边”的内容.2.能初步应用“角边角”及“角角边”判定两个三角形全等.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度价值观】通过探究三角形全等的活动,培养学生敢于面对困难、克服困难的能力.教学重难点【教学重点】“角边角”及“角角边”的内容.【教学难点】分析问题,寻找判定两个三角形全等的条件.课前准备多媒体课件教学过程一、新课导入:导入一:教师讲解:前面,我们已经知道,当两个三角形的两条边及其夹角分别对应相等时,两个三角形一定全等,而当两个三角形的两条边及其中一边的对角分别对应相等时,两个三角形不一定全等.这节课,我们将讨论以下情况:如图所示,一种情况是已知两个角及这两角的夹边;另一种情况是已知两个角及其中一角的对边.[设计意图]让学生明确本节课要研究的主要内容,并明确三角形中边与角的位置关系,理解“两角夹一边”和“两角一对边”的含义.导入二:1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?(三个角、三个边、两边一角、两角一边)(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.师:在三角形中,已知三个元素的四种情况中,我们研究了两种,我们接着探究已知两角一边是否可以判定两三角形全等.导入三:【课件1】如图所示,小明不小心把一块三角形的玻璃打碎成四块,现在要去玻璃店配一块完全一样的玻璃,那么最省事的办法是什么?你能帮小明出出主意吗?要想最省事,就要带块数最少且要满足它能够确定该三角形的形状和大小,这就是本节课要学到的判定三角形全等的知识.学完本节,你就会知道为什么应该带第2块去.[设计意图]激趣设疑,让学生产生学习的兴趣,积极地投入到本节课的学习之中.二、新知构建:活动一:“角边角”基本事实和“角角边”定理的探究思路一做一做:【课件2】三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下来.同伴比较,观察它们是不是全等,你能得出什么结论?【学生活动】自己动手操作,然后与同伴交流,得出结论.【教师活动】检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形放在一起,发现完全重合,这说明这些三角形全等.提炼结论:两角和它们的夹边对应相等的两个三角形全等(可以简记为“角边角”或“ASA”).师:我们刚才作的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个ΔA'B'C',使∠A=∠A',∠B=∠B',AB=A'B'呢?生:能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.生:(1)先用量角器量出∠A与∠B的度数,再用直尺量出AB边的长;(2)画线段A'B',使A'B'=AB;(3)分别以A',B'为顶点,A'B'为一边在同侧作∠DA'B',∠EB'A',使∠DA'B'=∠CAB,∠EB'A'=∠CBA;(4)射线A'D与B'E交于一点,记为C',即可得到ΔA'B'C'.将ΔA'B'C'与ΔABC放到一起,发现两三角形全等.教师出示图形:于是我们发现规律:两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA ”). 这又是一个判定两个三角形全等的方法.[知识拓展] “ASA ”中的“S ”必须是两个“A ”所夹的边.书写格式:在ΔABC 和ΔA'B'C'中,{∠A =∠A ',AB =A 'B ',∠B =∠B ',所以ΔABC ≌ΔA'B'C'.出示探究问题:【课件3】 如图所示,在ΔABC 和ΔDEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,ΔABC 与ΔDEF 全等吗?能利用角边角条件证明你的结论吗?〔解析〕 如果能证明∠C =∠F ,就可以利用“角边角”证明ΔABC 和ΔDEF 全等,由三角形内角和定理可以证明∠C =∠F.证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°,∠A =∠D ,∠B =∠E ,∴∠A +∠B =∠D +∠E∴∠C =∠F.在ΔABC 和ΔDEF 中,{∠B =∠E ,BC =EF ,∠C =∠F ,∴ΔABC ≌ΔDEF (ASA).于是得规律:两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).[知识拓展] “角角边”(AAS)可以看成是“角边角”(ASA)的推论.由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等,无论这一边是“对边”还是“夹边”,只要对应相等即可.思路二一、体验已知两角及夹边的三角形的唯一性1.利用刻度尺、量角器、小刀等工具制作符合如下条件的三角形:(1)ΔABC ,其中∠A =35°,∠B =65°,AB =5cm;(2)ΔDEF ,其中∠D =70°,∠E =50°,∠E 的对边DF =4cm .注意:(2)题学生可能感觉难度较大,教师可提示学生先求出∠F=60°,再利用(1)的作法进行作图.2.如果“两角及一边”条件中的边是两角所夹的边,那么你画的三角形与同伴画的一定完全重合吗?试试看.结论:有两角和夹边对应相等的两个三角形全等,简写成“ASA”或“角边角”.3.如果“两角及一边”条件中的边是其中一角的对边,以你所画的ΔDEF为例,你画的三角形与同伴画的一定完全重合吗?试试看.结论:有两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”.二、证明“ASA”定理教师出示已知条件:如图所示,在ΔABC和ΔA'B'C'中,已知AB=A'B',∠A=∠A',∠B=∠B'.求证ΔABC≌ΔA'B'C'.教师给出证明方法:由于AB=A'B',我们移动其中的ΔABC,使点A与点A'、点B与点B'重合,且使点C与点C'分别位于线段AB,A'B'的同侧,因为∠A=∠A',因此可以使∠A与∠A'的边AC 与A'C'重叠在一起;同样因为∠B=∠B',可以使∠B与∠B'的边BC与B'C'重叠在一起,由于两条直线相交只有一个交点,因此点C与点C'重合,这就说明这两个三角形全等,由此可得判定三角形全等的又一种简便方法:如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等,简记为“ASA”(或角边角).三、证明“AAS”定理教师出示应用“ASA”证明三角形全等的问题:【课件4】如图所示,已知∠ABC=∠DCB,∠A=∠D,求证ΔABC≌ΔDCB.教师要求学生应用“ASA”定理证明本题,学生思考后教师提问,并根据学生的回答加以引导后由教师板书.证明结束后教师提出问题:如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等?教师要求学生思考这个问题,并提醒学生利用三角形内角和为180°这一公理来考虑问题,一般学生都会得出正确结论,教师再加以总结:因为三角形的内角和为180°,所以有两个角对应相等,那么第三个角必对应相等,于是问题就由“角角边”转化为“角边角”,这样便可证得这两个三角形全等.教师要求学生自己证明“AAS”定理:如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等.简记为“AAS ”(或角角边).学生证明后,教师边讲解边板书.教师提问:我们已经讨论了两个三角形有两边一角以及两角一边分别对应相等,这两个三角形能否全等的情况.我们很容易发现,如果两个三角形有三个角分别对应相等,那么这两个三角形未必全等,如图所示,这两个三角形三个角分别相等,它们并不全等,只是形状相同. 活动二:例题讲解【课件5】已知:如图所示,AD =BE ,∠A =∠FDE ,BC ∥EF.求证:ΔABC ≌ΔDEF.[师生共析] 根据AD =BE ,得到AB =DE ;由两直线平行,得到同位角相等,然后利用“ASA ”即可得到ΔABC ≌ΔDEF.证明:∵AD =BE (已知),∴AB =DE (等式的性质).∵BC ∥EF (已知),∴∠ABC =∠E (两直线平行,同位角相等).在ΔABC 和ΔDEF 中,∵{∠A =∠FDE ,AB =DE ,∠ABC =∠E ,∴ΔABC ≌ΔDEF (ASA).师:到目前为止,在三角形中已知三个条件探索两个三角形全等的问题已全部结束,请同学们把两个三角形全等的判定方法作一个小结.【学生活动】 自我回忆总结,然后小组讨论交流、补充.三、课堂小结:知识点一:“角边角”判定三角形全等两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“ASA ”.这是我们学习的第三个判定三角形全等的方法,这里的两角和夹边,是指同一个三角形的边和角,边是两个角的夹边.知识点二:“角角边”判定三角形全等两角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS ”).该判定是通过“ASA ”推导得出的,今后可以直接用“AAS ”来判定两个三角形全等,它是“ASA ”的一个推论.。
人教版八年级上数学课件 13.3.2 等边三角形的性质与判定 (共两课时) 课件

性质
判定
课堂总结
底=腰
边 角 轴对称性 三边法 三角法
三边相等
三个角都等于60 ° 轴对称图形, 每条边上都具 有“三线合一” 性质
等腰三角形法
13.3.2 等边三角形
第2课时 含30°角的直角三角形的性质
性质
A 如图,△ADC是△ABC的轴对称图形, 因此AB=AD, ∠BAD=2×30°=60°,
13.3.2 等边三角形
第1课时 等边三角形的性质与判定
性质
等边三角形的三个内角之间有什么关系?
A
A
内角和 为180°
B
C
等腰三角形
AB=AC ∠B=∠C
AC=BC
∠A=∠B
B
C
等边三角形
AB=AC=BC
∠A=∠B=∠C =60°
结论: 等边三角形的三个内角都相等,并且每
一 个角都等于60°.
已知:AB=AC=BC , 求证:∠A= ∠ B=∠C= 60°.
证明方法: 倍长法
A
延长BC 到D,使BD =AB,连结AD,
则△ABD 是等边三角形.
又∵AC⊥BD, ∴
1
BC =
BD.
2
∴
1
BC =
AB.
2
B
C
D
【证法2】 在BA上截取BE=BC,连结EC.
∵ ∠B= 60° ,BE=BC,
∴ △BCE是等边三角形,
∴ ∠BEC= 60°,BE=EC.
∵ ∠A= 30°,
注意:运用含30°角的直角三角形的性质求线段长时,要 分清线段所在的直角三角形.
例2 如图,∠AOP=∠BOP=15°,PC∥OA交OB
新华东师大版八年级数学上册《13章 全等三角形 13.3 等腰三角形 等腰三角形的判定》优质课教案_14
等腰三角形的判定教学设计一、教材分析本课是华师大版数学八年级上册第十三章第三节第二课时的内容,是学生在已有的全等的证明、命题、轴对称以及等腰三角形的性质基础上的进一步探究,等腰三角形的判定揭示了同一个三角形的边、角关系,与等腰三角形的性质定理互为逆定理,它为我们提供了证明两条线段相等的新方法,为以后的学习提供了新的证明和计算依据,是解题论证的必备知识,因此,本节内容至关重要。
二、学情分析学生在学习了全等的证明,轴对称及等腰三角形的性质的基础上,对等腰三角形已有了一定的了解和认识,会利用全等来证明边、角相等,为验证判定定理奠定了基础。
初二学生观察、操作、猜想能力较强,但推理、归纳、运用数学的意识和思想比较薄弱,思维的广阔性、敏捷性、严密性、灵活性比较缺乏,自主探究和合作学习能力也需要在课堂教学中进一步的加强和引导。
三、教学目标(一)知识与能力1.会阐述、推证等腰三角形的判定定理。
2.使学生探究并掌握识别一个三角形是等腰三角形和等边三角形的方法。
(二)过程与方法掌握等腰三角形判定定理的运用;通过自主探究性的学习,提高学生的逻辑思维能力及分析问题解决问题的能力。
(三)情感、态度与价值观经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。
提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。
四、教学重难点重点:理解并掌握识别等腰三角形和等边三角形的方法。
难点:对边、角关系互相转化的理解及应用。
四、教学方法三探三疑五、教学用具三角板,多媒体,展台六、教学过程第一环节:设疑自探如图,位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B,如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?欣赏《泰坦尼克号》这部电影,轮船遇难时场面,引出课题——《等腰三角形的判定》设计意图:由学生感兴趣的情境问题入手,设置问题情境,导入本课的主题,为学生提供参与活动的时间和空间,调动学生的主观能动性。
人教版八年级数学(上)课件:13_3_2 等边三角形(第1课时)
探究新知 知识点 1 等边三角形的性质
小明想制作一个三角形的相框,他有四根木条,长度分 别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状 的三角形?
10cm
10cm
10cm
10cm
6cm
10cm
探究新知 在等腰三角形中,有一种特殊的情况,就是底与腰相
等,即三角形的三边相等,我们把三条边都相等的三角形 叫做等边三角形.
巩固练习 根据条件判断下列三角形是否为等边三角形.
不 是
(1) 不 一 定 是
(4)
是
是
(2) 是
(3) 是
(5)
(6)
探究新知
素养考点 等边三角形的判定的应用
例1 如图,在等边三角形ABC中,DE∥BC,求证:△ADE是
等边三角形.
证明:∵ △ABC是等边三角形,
∴ ∠A= ∠B= ∠C. ∵ DE//BC, ∴ ∠ADE= ∠B, ∠ AED= ∠C. ∴ ∠A= ∠ADE= ∠ AED. ∴ △ADE是等边三角形.
解:∵△ABC是等边三角形, ∴∠ABC=∠ACB=60°. ∵∠ABE=40°, ∴∠EBC=∠ABC–∠ABE=60°– 40°=20°. ∵BE=DE, ∴∠D=∠EBC=20°, ∴∠CED=∠ACB–∠D=40°.
探究新知 方法点拨
解决与等边三角形有关的计算问题,关键是注意 “每个内角都是60°”这一隐含条件,一般需结合 “等边对等角”、三角形的内角和与外角的性质解答.
(1)证明:∵△ABC为等边三角形, ∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°, 在△ABE和△CAD中, ∴△ABE≌△CAD(SAS). (2)解:∵∠BFD=∠ABE+∠BAD, 又∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∴∠BFD=∠CAD+∠BAD=∠BAC=60°.
2020年人教版数学八年级上册学案13.3.2《等边三角形》(含答案)
13.3.2等边三角形第1课时等边三角形的性质与判定学习目标理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法.预习阅读教材“思考及例4”,完成预习内容.知识探究1.等边三角形的性质:(1)定义:等边三角形的________都相等;(2)等边三角形的三个内角都________,并且每一个角都等于________.2.等边三角形的判定:(1)定义:________都相等的三角形为等边三角形;(2)三个角都________的三角形是等边三角形;(3)有一个角是60°的____________为等边三角形.自学反馈1.在等边三角形ABC中,∠______=∠______=∠______=______.2.在三角形ABC中,AB=AC=2,∠A=60°,则BC=________.3.课本练习第1、2小题.活动1小组讨论如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.解:(1)证明:∵△ABC为等边三角形∴∠BAE=∠DCA=60°,AB=AC.在△ABE与△CAD中,∵AB=AC,∠BAE=∠ACD,AE=CD,∴△ABE≌△CAD.(2)∵△ABE≌△CAD,∴∠ABE=∠DAC.∵∠BAF+∠DAC=∠BAC=60°,∠BFD=∠ABE+∠BAF,∴∠BFD=∠BAF+∠DAC=60°.点拨:由等边三角形的性质,根据SAS证全等,然后利用全等的性质求∠BFD的度数.课堂小结对于等边三角形,它属于特殊的等腰三角形,特殊到三条边相等,三个角都等于60°,“三线合一”的性质就更能不受限制,淋漓尽致地发挥了.第2课时 含30°角的直角三角形的性质学习目标掌握含30°角的直角三角形的性质,并会运用.预习阅读教材P80~81“探究及例5”,完成预习内容.知识探究在直角三角形中,如果一个锐角等于30°,那么它所对的________等于________________. 自学反馈1.在Rt △ABC 中,若∠BCA=90°,∠A=30°,AB=4,则BC=________.2.Rt △ABC 中,∠C=90°,∠B=2∠A ,∠B 和∠A 各是多少度?边AB 与BC 之间有什么关系?活动1 小组讨论如图,∠ACB=90°,∠B=30°,CD ⊥AB.求证:AD=14AB.证明:∵∠ACB=90°,∠B=30°,∴AC=12AB.∵CD ⊥AB ,∴∠CDB=90°.∴∠DCB=60°. ∵∠ACB=90°,∴∠ACD=30°.在Rt △ACD 中,∠ACD=30°.∴AD=12AC=14AB. 课堂小结含30°角的直角三角形中存在线段的比例关系,是证明线段倍数关系的重要途径.课堂小练一、选择题1.如图,在△ABC 中,D 、E 在BC 上,且BD=DE=AD=AE=EC ,则∠BAC 的度数是( )A.30°B.45°C.120°D.15°2.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E ,垂足为D.若ED=5,则CE 的长为( )A.10B.8C.5D.2.54.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cmB.2cmC.1cmD.0.5m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=ABB.BD=ABC.BD=ABD.BD=AB6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5mB.8mC.10mD.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米B.9米C.12米D.15米8.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°9.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是( )A.100°B.80°C.60°D.40°10.下列推理错误的是( )A.在△ABC中,∵∠A=∠B=∠C,∴△ABC为等边三角形B.在△ABC中,∵AB=AC,且∠B=∠C,∴△ABC为等边三角形C.在△ABC中,∵∠A=60°,∠B=60°,∴△ABC为等边三角形D.在△ABC中,∵AB=AC,∠B=60°,∴△ABC为等边三角形二、填空题11.如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,若AB=8 cm,BD=________,BE=________.12.等腰三角形的底角为15°,腰长是2 cm,则腰上的高为________.13.等腰三角形一底角是30°,底边上的高为9 cm,则其腰长为________,顶角为________.14.在Rt△ACB中,∠C=90°,∠A=30°,AB=10,则BC=________.15.如图,将边长为5 cm的等边△ABC,沿BC向右平移3 cm,得到△DEF,DE交AC于M,则△MEC是________三角形,DM=________cm.参考答案1.答案为:C2.答案为:D3.答案为:A4.答案为:C5.答案为:C6.答案为:A7.答案为:B8.答案为:A9.答案为:A10.答案为:B.11.答案为:4 cm 2 cm12.答案为:1 cm13.答案为:18 cm 120°14.答案为:515.答案为:等边 3。
新华东师大版八年级数学上册《13章 全等三角形 13.3 等腰三角形 等腰三角形的判定》优质课教案_21
13.3等腰三角形第2课时等腰三角形的判定教学目的1.通过探索一个三角形是等腰三角形的条件,培养学生的探索能力.2.能利用一个三角形是等腰三角形的条件,正确判断某个三角形是否为等腰三角形.重点、难点重点:让学生掌握一个三角形是等腰三角形的条件和正确应用.难点:一个三角形是等腰三角形的条件的正确文字叙述.教学过程一、复习引入等腰三角形的概念及各部分名称等腰三角形具有哪些性质?二、新课对于一个三角形,怎样识别它是不是等腰三角形呢?我们已经知道的方法是看它是否有两条边相等.这一节,我们再学习另一种识别方法.我们已学过,等腰三角形的两个底角相等,反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?为了回答这个问题,请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:1.在半透明纸上画一个线段BC.2.以BC为始边,分别以点B和点C为顶点,用量角器画两个相等的角,两角终边的交点为A.3.用刻度尺找出BC的中点D,连接AD,然后沿AD对折.问题1:AB与AC是否重合?问题2:本实验的条件与结论如何用文字语言加以叙述?如果一个三角形有两个角相等,那么这两个角所对的边也相等,简写成“等角对等边”.也就是说,如果一个三角形中有两个角相等,那么它就是等腰三角形.一个三角形是等腰三角形的条件,可以用来判定一个三角形是否为等腰三角形.例1.在△ABC中,已知∠A=45°,∠B=90°,求证:AB=AC.解∵∠C=180°-∠A-∠B=180°-45°-90°=45°∴∠C=∠A.∴△ABC是等腰三角形等腰直角三角形的概念:顶角是直角的等腰三角形叫做等腰直角三角形B C你能说出等腰直角三角形各个角的大小吗?∠A= ,∠B= ,∠C= 。
三、练习巩固1.若一个等腰三角形的两边长分别为4和6,那么这个等腰三角形的周长为2已知:等腰三角形的一个角为140°,那么另外两个角的度数为3等腰三角形有一个角是70,那么它的顶角为4等腰三角形的周长为30,其中一边长为14,那么底边的长5等腰三角形,它的两条边长分别为2和8,那么它的周长为四、小结这节课,我们学习了一个三角形是等腰三角形的条件:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),此条件可以做为判断一个三角形是等腰三角形的依据.因此,要牢记并能熟练应用它.另外要了解等腰直角三角形的概念。