煤层气吸附解吸机理研究

合集下载

煤对多元气体的吸附与解吸

煤对多元气体的吸附与解吸

煤对多元气体的吸附与解吸唐书恒1,韩德馨2(11中国地质大学,北京 100083;21中国矿业大学(北京校区),北京100083)摘 要:论述了用纯甲烷气体的等温吸附资料进行煤层气开发潜力的评价可能会产生错误的结论,利用多元气体的吸附-解吸资料,可以正确评价煤层气的开发潜力,预测产出气体的成分变化,为煤层气开发的经济评价提供依据。

关键词:多元气体;吸附-解吸;煤层气开发;经济评价中图分类号:71213 文献标识码:B 文章编号:0253-2336(2002)01-0058-03 Adsorption and desorption of multi element gas by coalT ANG Shu2heng1,H AN De2xin2(11China University o f G eosciences,Beijing 100083,China;21China University o f Mining and Technology,Beijing 100083,China)1问题的提出 中国煤田地质总局在进行全国煤层气资源评价时[1],根据煤层气参数井取得的实测含气量、储层压力、纯甲烷气体等温吸附曲线等资料,计算了部分煤层的含气饱和度和临界解吸压力。

并且发现,有些矿区的煤储层实测饱和度与临界解吸压力很低,临储比很小,导致气井采收率较低。

根据这些参数进行评价这些矿区都没有经济开发意义,但煤层气试验井的排采资料表明,气井的实际临界解吸压力要高于根据等温吸附曲线所计算的值。

如铁法DT-3井,液面降到85m处时就开始产气,上煤组深度为532m,实际临界解吸压力4147MPa,要比计算的临界解吸压力高得多。

寿阳HG-6井和屯留T L-003井也有类似情况。

作者认为,造成上述情况的主要原因是,所采用的等温吸附曲线,都是用纯甲烷气体测定的,而没有考虑煤层气中存在的其他气体成分。

本研究对晋城目标区施工的甲、乙2口煤层气勘探试验井的含气量测定资料和煤层气成分数据进行了分析。

煤吸附气体的固气作用机理Ⅱ煤吸附气体的物理过程与理论模型

煤吸附气体的固气作用机理Ⅱ煤吸附气体的物理过程与理论模型

煤吸附气体的固气作用机理Ⅱ煤吸附气体的物理过程与理论模型天然气工业 ,,,,年,月煤吸附气体的固气作用机理,(?) ——煤吸附气体的物理过程与理论模型桑树勋朱炎铭张井张晓东唐家祥 (中国矿业大学资源与地球科学学院) 桑树勋等(煤吸附气体的固气作用机理(?)(天然气工业,,,,,;,,(,):,,,,, 摘要以沁水盆地等煤样品煤孔隙分析和等温吸附试验研究为基础,通过煤吸附气体动力学过程和吸附理论模型分析,从物理化学层面对煤吸附气体的固气作用机理进行了深入探讨。

认为:煤吸附气体动力学过程包括渗流阶段、表面扩散阶段、体扩散阶段和吸着阶段;煤一煤层气吸附体系的吸附力和吸附能决定了不同煤级煤对不同气体吸附量的大小;扩散对煤吸附气体的动力学过程有重要控制作用;煤一甲烷吸附体系应存在多元化的吸附模型,当压力,,,, ,,,以上时,,,,,,,,,单分子层吸附模型的适应性受到限制,凝聚一吸附孔隙发育和气体凝聚是制约,,,,,,,,单分子层吸附模型的主要原因。

主题词煤吸附气体物理学过程固气作用机理理论模型沁水盆地原位煤储层是由煤、煤层气、水构成的固一液一气三相耦合体系。

煤层吸附气体的固气作用是煤储层固一液一气相间作用的重要内容,同时也是进一步研究液态水对煤层吸附气体影响的基础。

研究工作从吸附现象和地质规律深入到了表面与界面物理、表面化学和煤化学的层面。

本文试图应用物理吸附和煤的大分子结构等物理、化学理论来解释煤层吸附气体的规律和实验现象,进一步认识煤层吸附气体的表面物理本质和过程,深入探讨煤层吸附气体,,,,,,,,理论模型的适用性,为新模型的建立提供理论基础和思路。

一、煤层吸附气体的表面物理本质和过程 ,(吸附力与吸附能吸附能(热)较小、吸附速率快、吸附与解吸可逆等证据显示煤吸附气体基本上为物理吸附。

物理吸附力主要为,,, ,,, ,,,,,力,是吸附剂、吸附质分子(原子)电矩间的耦合作用力,不产生电子的转移,,,有时还会有库仑作用力。

第五章 煤层气储层压力、吸附、解吸特征

第五章 煤层气储层压力、吸附、解吸特征

第二节 煤储层的吸附特征
吸附方式:物理吸附,范德华力 吸附方式:物理吸附, 吸附模型:单层吸附,多层吸附, 吸附模型:单层吸附,多层吸附,容积充填理论 一、朗格缪尔理论
Vm bp VL p abp V= = = 1 + bp 1 + bp p + p L
VL或Vm或a—最大吸附量; 最大吸附量; 最大吸附量 VL 、PL——朗格缪尔体积 朗格缪尔体积 和压力, 等于1 和压力,PL等于1/b
C D A Fv 恒 温 水浴 B
加湿器
水 浴 温度 显 示 器 数 据 采 集 系统
四、多相介质煤岩体的吸附特征
(一) 气相多组分吸附特征
Q/cm ·g 24 16 8 0 0 6 12 18 p/MPa 24 30
3 -1
CH4+CO2+N2
CO2 CH4+CO2 CH4 CH4+N2 N2
(二) 多相介质的吸附特征
V实—实测甲烷含量; 实测甲烷含量; 实测甲烷含量 S实—含气饱和度。 含气饱和度。 含气饱和度 V—理论含气量,m3/t 理论含气量, 理论含气量 VL—Langmuir体积,m3/t; 体积, 体积 ; PL—Langmuir压力,MPa;; 压力, 压力 ;; P—煤储层压力,MPa; 煤储层压力, 煤储层压力 ;
40 35 30 VL,daf /m 3 . t-1 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 R o , max /% y 1 = 7.9593x + 3.9913 r = 0.89 y 2 = -6.5863x + 61.122 r = 0.97
第三节 等温吸附曲线的应用
二、储层压力状态

煤体瓦斯吸附解吸动力学特征及其应用

煤体瓦斯吸附解吸动力学特征及其应用

煤体瓦斯吸附解吸动力学特征及其应用
煤体瓦斯吸附解吸动力学特征是指煤体与瓦斯之间吸附和解吸过程的速率和特征。

煤体中存在大量的孔隙和微孔,这些孔隙和微孔能够吸附和储存大量的瓦斯。

煤体瓦斯吸附解吸动力学特征的研究可以帮助我们了解煤体中瓦斯的吸附和解吸过程,从而更好地控制和利用煤层气资源。

煤体瓦斯吸附解吸动力学特征主要包括吸附速率、解吸速率和吸附解吸平衡时间。

吸附速率是指煤体吸附瓦斯的速率,它受到煤体孔隙结构、瓦斯分子与煤体表面相互作用的影响。

解吸速率是指煤体释放瓦斯的速率,它受到煤体孔隙压力和温度的影响。

吸附解吸平衡时间是指煤体吸附和解吸达到平衡所需的时间,它受到煤体孔隙结构和温度的影响。

煤体瓦斯吸附解吸动力学特征的研究对于煤层气资源的开发和利用具有重要意义。

首先,了解煤体瓦斯吸附解吸动力学特征可以帮助我们预测煤层气的产量和释放速率,为煤层气的开采和利用提供科学依据。

其次,煤体瓦斯吸附解吸动力学特征的研究可以帮助我们设计和改进煤层气开采技术和设备,提高煤层气的开采效率和安全性。

此外,煤体瓦斯吸附解吸动力学特征的研究还可以帮助我们评估煤层气的储量和资源潜力,为煤层气资源的评估和开发提供依据。

煤体瓦斯吸附解吸动力学特征的研究对于煤层气资源的开发和利用具有重要意义,它可以帮助我们了解煤层气的产量和释放速率,设
计和改进煤层气开采技术,评估煤层气的储量和资源潜力。

煤体瓦斯吸附解吸动力学特征及其应用

煤体瓦斯吸附解吸动力学特征及其应用

煤体瓦斯吸附解吸动力学特征及其应用
煤体瓦斯吸附解吸动力学特征及其应用是一个复杂且重要的研究领域,主要涉及煤层瓦斯的吸附动力学模型、解吸动力学模型、吸附解吸动力学影响因素、以及吸附解吸特征的应用等方面的内容。

在煤层瓦斯的吸附动力学模型方面,研究主要关注煤的物理和化学性质对瓦斯吸附的影响,以及吸附动力学过程的机理和规律。

解吸动力学模型则是研究瓦斯在煤体中的解吸过程,包括解吸速率、解吸量以及影响因素等。

这部分的研究有助于理解煤层瓦斯的生成和运移规律,为矿井瓦斯治理和利用提供理论支持。

同时,吸附解吸动力学的影响因素也是研究的重点,这些因素包括温度、压力、煤的孔隙结构、煤的表面性质等。

对这些因素的理解有助于更好地控制和利用煤层瓦斯。

此外,吸附解吸特征的应用也是该领域的一个重要方向。

这些应用包括矿井瓦斯抽采、煤层气开发利用、瓦斯灾害防治等。

通过对吸附解吸特征的研究,可以提高对瓦斯灾害的预警和防治能力,保障矿工的生命安全和煤炭生产的顺利进行。

总的来说,煤体瓦斯吸附解吸动力学特征及其应用是一个涉及多个学科领域的复杂问题,需要从理论和实践两个方面进行深入研究和探索。

吸附解吸迟滞现象机理及其对深部煤层气开发的影响

吸附解吸迟滞现象机理及其对深部煤层气开发的影响

吸附解吸迟滞现象机理及其对深部煤层气开发的影响王公达;REN Tingxiang;齐庆新;王凯;张浪【摘要】针对瓦斯在煤中的解吸与吸附过程并非完全可逆,吸附解吸迟滞现象非常普遍,分析了以往研究中存在的问题,提出了关于吸附解吸迟滞程度的定量评价指标,通过等温吸附解吸实验考察了最高吸附压力和煤体粒径与迟滞程度的关系,并讨论了吸附解吸迟滞现象的发生机理及其对于深部煤层气开发的影响.结果表明:新的定量评价指标可以反映吸附解吸迟滞从完全可逆至完全非可逆的程度;随着最高吸附压力和煤体粒径的增加,吸附解吸迟滞程度随之增强;吸附解吸实验结果是综合了扩散作用的扩散-吸附及解吸-扩散结果,且这两个过程很难区分开来;实验发现的该现象是由于气体分子在高压作用下嵌入连通性较差的微孔中并引起孔隙变形,被吸附的气体分子受窄小的孔隙通道限制,无法从孔隙中解吸并扩散出来而导致的,即本文提出的“扩散受限”假说;深部煤层气的气体含量可能会很高,但受解吸迟滞现象影响,其真正的可采储量和产出规律需要利用等温解吸线而非等温吸附线进行评估;除了通过增透措施提升煤体的渗透率外,如何促进微尺度下的气体解吸与扩散也应该成为深部煤层气开发需要着重考虑的问题之一.【期刊名称】《煤炭学报》【年(卷),期】2016(041)001【总页数】8页(P49-56)【关键词】吸附解吸迟滞;气体压力;深部煤层气;扩散受限【作者】王公达;REN Tingxiang;齐庆新;王凯;张浪【作者单位】煤炭科学技术研究院有限公司安全分院,北京100083;School of Civil,Mining and Engineering,University of Wollongong,Wollongong,NSW 2500,Australia;中国矿业大学(北京)资源与安全工程学院,北京100083;煤炭资源高效开采与洁净利用国家重点实验室(煤体科学研究总院),北京100013;School of Civil,Mining and Engineering,University of Wollongong,Wollongong,NSW 2500,Australia;煤炭科学技术研究院有限公司安全分院,北京100083;煤炭资源高效开采与洁净利用国家重点实验室(煤体科学研究总院),北京100013;中国矿业大学(北京)资源与安全工程学院,北京100083;煤炭科学技术研究院有限公司安全分院,北京100083;煤炭资源高效开采与洁净利用国家重点实验室(煤体科学研究总院),北京100013【正文语种】中文【中图分类】P618.11随着浅部煤层气、煤炭资源的日趋减少,陆上埋深1 500~3 000 m的深部煤层气资源逐渐受到人们的重视。

变压吸附法提纯煤层气中甲烷研究进展

变压吸附法提纯煤层气中甲烷研究进展

㊀第25卷第6期洁净煤技术Vol 25㊀No 6㊀㊀2019年11月CleanCoalTechnologyNov.㊀2019㊀变压吸附法提纯煤层气中甲烷研究进展张进华1ꎬ2ꎬ3ꎬ4ꎬ曲思建2ꎬ3ꎬ4ꎬ王㊀鹏2ꎬ3ꎬ4ꎬ李雪飞2ꎬ3ꎬ4ꎬ李兰廷2ꎬ3ꎬ4ꎬ车永芳2ꎬ3ꎬ4ꎬ李小亮2ꎬ3ꎬ4(1.中国矿业大学(北京)化学与环境工程学院ꎬ北京㊀100083ꎻ2.煤炭科学技术研究院有限公司煤化工分院ꎬ北京㊀100013ꎻ3.煤基节能环保炭材料北京市重点实验室ꎬ北京㊀100013ꎻ4.煤炭资源高效开采与洁净利用国家重点实验室ꎬ北京㊀100013)摘㊀要:低浓度煤层气直接排放既造成能源浪费ꎬ又带来严重的温室效应ꎬ变压吸附法提纯低浓度煤层气是解决煤层气排放的有效利用途径ꎮ总结了变压吸附技术对CH4/N2体系煤层气中CH4分离的研究进展ꎬ包括变压吸附分离机理和相应的变压吸附提纯工艺路线ꎬ分析了2种工艺的优缺点ꎬ讨论了多孔吸附材料ꎬ如活性炭㊁碳分子筛㊁沸石分子筛和金属有机骨架材料对CH4/N2吸附分离效果的研究进展和存在的问题ꎮ基于平衡效应分离的变压吸附技术ꎬ在CH4/N2体系分离实际应用中遇到瓶颈ꎬ原因在于现有吸附剂平衡分离系数太小ꎬ提浓幅度有限ꎻ其次ꎬCH4在平衡效应里作为强吸附组分被优先吸附ꎬ产品气必须通过抽真空的方式解吸获得ꎬ必须采取多级压缩和增加置换步骤ꎬ因而能耗相对较高ꎮ基于动力学效应的分离ꎬ可在塔顶直接获得富集的带压产品气ꎻ同时免去多级压缩的能量消耗ꎬ相对平衡效应分离具有显著优势ꎬ但需要在第一级加压ꎬ处理接近爆炸限浓度煤层气有一定安全隐患ꎮ活性炭吸附容量大ꎬ处理能力强ꎬ价格低廉ꎬ是一种典型的平衡分离型吸附剂ꎬ但分离系数较低ꎬ存在气体循环量大㊁效率低ꎬ提浓幅度窄等缺点ꎬ如何通过孔径调控和表面改性提高活性炭的平衡分离系数将是今后研究的重点ꎮ现有报道效果较好的动力学吸附剂主要以碳分子筛为主ꎬ但价格高昂ꎬ工业推广受限ꎬ选择合适的廉价原料㊁改变现有间歇式生产工艺㊁进一步开发高效㊁廉价的动力学选择型吸附剂将是今后变压吸附分离CH4/N2的重要方向ꎮ沸石分子筛会优先吸附CH4ꎬ与动力学效应优先吸附N2相反ꎬ降低了分子筛对CH4/N2的分离选择性ꎮ所以硅铝分子筛/钛硅分子筛多在分离高浓度CH4含量的天然气㊁油田气方面表现优异ꎬ针对低浓度煤层气CH4的提纯应用较少ꎬ未见工业应用报道ꎮ金属有机骨架材料的出现提供了新的发展思路ꎬ但其在CH4/N2的吸附平衡和动力学研究以及变压吸附分离方面研究较少ꎬ还有待进一步深入研究ꎬ解决材料的稳定成型和放大仍是需要突破的技术瓶颈ꎮ未来变压吸附提纯工艺将是平衡效应和动力学效应的组合工艺ꎬ开发低压下变压吸附分离工艺将具有更好的经济性和安全性ꎻ低成本㊁大容量㊁高选择性吸附剂开发仍是未来吸附剂的重点发展方向ꎻ同时吸附剂寿命以及再生性能有待深入研究ꎮ关键词:煤层气ꎻ甲烷ꎻ变压吸附ꎻ吸附剂中图分类号:P618㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1006-6772(2019)06-0078-10移动阅读收稿日期:2019-01-18ꎻ责任编辑:白娅娜㊀㊀DOI:10.13226/j.issn.1006-6772.19011802基金项目:国家重点研发计划资助项目(2018YFB0605604)ꎻ国家科技重大专项资助项目(2016ZX05045-005)作者简介:张进华(1987 )ꎬ男ꎬ安徽蒙城人ꎬ助理研究员ꎬ博士研究生ꎬ主要从事炭材料开发和气体分离应用研究ꎮE-mail:ccrizjh@163.com引用格式:张进华ꎬ曲思建ꎬ王鹏ꎬ等.变压吸附法提纯煤层气中甲烷研究进展[J].洁净煤技术ꎬ2019ꎬ25(6):78-87.ZHANGJinhuaꎬQUSijianꎬWANGPengꎬetal.Researchprogressontherecoveryofmethanefromcoalbedmethanebypres ̄sureswingadsorption[J].CleanCoalTechnologyꎬ2019ꎬ25(6):78-87.ResearchprogressontherecoveryofmethanefromcoalbedmethanebypressureswingadsorptionZHANGJinhua1ꎬ2ꎬ3ꎬ4ꎬQUSijian2ꎬ3ꎬ4ꎬWANGPeng2ꎬ3ꎬ4ꎬLIXuefei2ꎬ3ꎬ4ꎬLILanting2ꎬ3ꎬ4ꎬCHEYongfang2ꎬ3ꎬ4ꎬLIXiaoliang2ꎬ3ꎬ4(1.SchoolofChemicalandEnvironmentalEngineeringꎬChinaUniversityofMining&Technology(Beijing)ꎬBeijing㊀100083ꎬChinaꎻ2.CoalChemistryBranchofChinaCoalResearchInstituteꎬBeijing㊀100013ꎬChinaꎻ3.BeijingKeyLabofCoalBasedEnergyConservationandEnviromentProtectiveCarbonMaterialꎬBeijing㊀100013ꎬChinaꎻ4.StateKeyLaboratoryofCoalMiningandCleanUtilizationꎬBeijing㊀100013ꎬChina)Abstract:Thedirectemissionoflow-concentrationcoalbedmethanenotonlycausesenergywasteꎬbutalsobringsseriousenvironmentalharmsuchasgreenhouseeffect.ThepurificationoflowconcentrationcoalbedmethanebyPSAisaneffectivewaytosolvetheemission87张进华等:变压吸附法提纯煤层气中甲烷研究进展2019年第6期ofcoalbedmethane.InthispaperꎬtheresearchonseparationofmethanefromCH4/N2systemincoalbedmethaneusingthetechnologyofpressureswingadsorptionwassummarizedꎬincludingseparationmechanismandthecorrespondingpressureswingadsorptionpurificationtechnologyꎻtheadvantagesanddisadvantagesoftwokindsoftechnologywereanalyzedꎬandtheresearchprogressandexistingproblemsofCH4/N2adsorptionseparationeffectonporousadsorptionmaterialswerediscussedsuchasactivatedcarbonꎬcarbonmolecularsieveꎬzeo ̄litemolecularsieveandmetalorganicskeletonmaterials.PressureswingadsorptiontechnologybasedonequilibriumeffectseparationhasencounteredabottleneckinthepracticalapplicationofCH4/N2systemseparationsincetheequilibriumseparationcoefficientofexistingadsorbentsistoosmallandtheconcentrationenhancementislimited.SecondlyꎬCH4ispreferentiallyadsorbedasastrongadsorptioncom ̄ponentintheequilibriumeffect.Theproductgasmustbeobtainedbyvacuumdesorptionꎬandmultistagecompressionandadditionaldis ̄placementstepsmustbetakenꎬsotheenergyconsumptionisrelativelyhigh.Theenrichedproductgaswithpressurecanbedirectlyob ̄tainedatthetopofthetowerbasedontheseparationofdynamiceffectꎬmeanwhileꎬtheenergyconsumptionofmulti-stagecompressionisavoidedꎬandithasasignificantadvantagecomparingwiththeequilibriumeffectseparation.Howeverꎬsincethefirststageisrequiredtobepressurizedꎬtherearesomesafetyrisksinthetreatmentofcoal-bedmethaneneartheexplosionlimitconcentration.Activatedcarbonisatypicalequilibriumseparationadsorbentwithlargeadsorptioncapacityꎬstrongprocessingcapacityꎬandlowpriceꎬbuttheseparationcoeffi ̄cientislowꎬandactivatedcarbonhasthedisadvantagesoflargegascirculationvolumeꎬlowefficiencyꎬandnarrowconcentrationrange.Howtoimprovetheequilibriumseparationcoefficientofactivatedcarbonthroughporesizecontrolandsurfacemodificationwillbethefocusoffutureresearch.Currentlyꎬcarbonmolecularsieveshavebeenreportedtobethemainkineticadsorbentswithgoodresults.HoweverꎬduetotheirhighpriceandlimitedindustrialpromotionꎬitwillbeanimportantdirectionforpressureswingadsorptiontoseparateCH4/N2inthefuturebyselectingappropriateandcheaprawmaterialsꎬchangingthecurrentintermittentproductionprocessꎬandfurtherdevelopingeffi ̄cientandcheapkineticselectiveadsorbents.ZeolitespreferentiallyadsorbmethaneꎬincontrasttokineticeffectswhichpreferentiallyadsorbnitrogenꎬwhichreducetheseparationselectivityofCH4/N2.ThereforeꎬSi-Alzeolites/Ti-SizeolitesmostlyperformwellintheseparationofnaturalgasandoilfieldgaswithhighconcentrationofCH4ꎬwhileitisrarelyappliedinthepurificationofCH4withlowconcentrationofCBMꎬandthereisnoindustrialapplicationreport.Theemergenceofmetal-organicframeworkmaterialsprovidesanewdevelopmentideaꎬbuttherearethefewresearchonCH4/N2adsorptionbalanceandkineticsaswellaspressureswingadsorptionseparationꎬwhichneedtobefurtherstudied.Thereforeꎬthesolutionofstableformingandamplificationofmaterialsisstillatechnicalbottlenecktobebrokenthrough.Theauthorbelievesthatthefuturepressureswingadsorptionpurificationprocesswillbeacombinationofequilibriumeffectandkineticeffectꎬandthedevelopmentofseparationprocessunderlowpressurewillhavebettereconomyandsafety.Thedevelopmentoflowcostꎬhighcapacityandhighselectivityadsorbentisstillthekeydevelopmentdirectionofadsorbentinthefuture.Theadsorbentlifeandregener ̄ationperformanceneedtobefurtherstudied.Keywords:coalbedmethaneꎻmethaneꎻpressureswingadsorptionꎻadsorbent0㊀引㊀㊀言煤层气是指以吸附态赋存在煤层中的非常规天然气ꎬ其主要成分为CH4ꎮ我国煤层气资源丰富ꎬ资源量位居世界第三ꎬ仅次于俄罗斯和加拿大[1]ꎻ全国共有东部㊁中部㊁南部和西部4大煤层气聚集区ꎬ42个聚煤盆地及119个煤层气评价区块ꎮ截至2015年ꎬ国土资源部发布新一轮全国油气资源评价成果[2]ꎬ全国埋深2000m以浅的煤层气资源量30万亿m3ꎬ可采资源量12.5万亿m3ꎬ可见煤层气储量巨大ꎮ据统计ꎬ2015年我国煤层气抽采量136亿m3ꎬ利用量48亿m3ꎬ利用率仅35.3%ꎬ开发量和利用率均处于较低水平ꎬ仍有待进一步开发[3]ꎮ能源局印发的«煤层气开发利用 十三五 规划»强调在 十三五 期间需进一步加大煤层气的开发力度ꎬ在我国 煤改气 和天然气供应紧缺的大背景下ꎬ预期煤层气的开采和利用将得到迅速发展ꎮ煤层气抽采方式包括地面抽采和井下抽采ꎬ地面抽采的煤层气ꎬCH4含量高ꎬ浓度多在90%以上ꎬ类似于常规天然气ꎬ可通过天然气管道直接输送利用ꎮ我国这种高品质煤层气资源较少ꎬ约占煤层气总量的1%左右[4]ꎻ目前开采的煤层气主要以井下抽采为主ꎬCH4浓度多在3%~80%ꎬ此外ꎬ还有大量无法直接利用的乏风瓦斯(CH4浓度低于1%)ꎮ煤层气的爆炸极限为5%~16%ꎬ因此ꎬ为了安全起见ꎬCH4浓度低于20%的煤层气较难利用ꎬ20%~60%中低浓度煤层气是未来开发利用的重点ꎮ为了利用中低浓度煤层气ꎬ迫切需要解决抽放煤层气中CH4的浓缩净化问题[5]ꎮ目前煤层气中CH4提浓技术主要有低温深冷分离㊁变压吸附分离㊁膜分离和气体水合物分离等[6-8]ꎬ其中变压吸附分离技术发展较快ꎬ运行成本低ꎬ适用于大中小规模ꎬ正处于工业推广阶段ꎮ煤层气的主要成分是CH4㊁N2㊁CO2等ꎬ其中CH4/N2的分离是变压吸附提浓CH4的难点之一ꎮ972019年第6期洁净煤技术第25卷本文主要综述变压吸附分离CH4/N2原理和所采用吸附剂的研究进展ꎮ1㊀变压吸附分离原理变压吸附分离技术(PSAꎬpressureswingadsorp ̄tion)是基于吸附剂对气体混合物中各组分气体平衡吸附量㊁颗粒内外动力学扩散速率或微孔对各组分分子的位阻效应的不同来实现分离ꎬ不断循环改变压力ꎬ实现吸附剂的吸附和再生ꎬ保证待分离组分能够连续浓缩或纯化ꎮ20世纪60年代ꎬSkarstrom设计了第一套PSA系统ꎬ并将其应用于空气分离[9]ꎮ经过几十年的发展ꎬPSA已成为气体分离领域的主流技术之一ꎬ广泛应用于石油化工㊁冶金㊁轻工及环保等领域ꎬ并在焦炉煤气㊁裂解气中H2的提纯ꎬ合成气㊁水煤气㊁黄磷尾气等气体中CO提纯ꎬ空气中N2和O2的分离等领域成功实现工业应用和普及[10-13]ꎮ由于PSA工艺一般无需外加热ꎬ在室温和低压(0.1~3.0MPa)下操作ꎬ具有操作灵活方便㊁自动化程度高㊁能耗低等优点ꎬCH4/N2体系的变压吸附分离成为近十年以来的研究热点ꎮCH4/N2体系的变压吸附分离主要基于平衡效应和动力学效应分离ꎮ1 1㊀基于平衡效应分离平衡效应分离是利用不同气体组分在吸附剂上的平衡吸附量的差异实现混合气体中不同组分间的分离ꎮ强吸附组分吸附在吸附塔内ꎬ弱吸附组分从塔顶排出ꎮ若强吸附分子是产品气ꎬ则需要进行脱附才能完成产品的回收ꎮ一般弱吸附组分为产品气ꎬ这样塔顶可获得高纯度产品气ꎬ直接回收利用ꎬ回收率高ꎬ可降低能耗ꎮ典型气体在吸附剂上的平衡吸附容量排序为H2﹤O2﹤N2﹤CH4﹤CO﹤CO2[14]ꎬCH4/N2单一组分气体的平衡吸附等温线如图1所示ꎮ因此ꎬ平衡效应机理分离CH4/N2是基于CH4在吸附剂上的吸附量大于H2ꎬCH4优先被吸附ꎬN2从塔顶排出ꎬ产品气需要经过抽真空再生的VPSA(VacuumPres ̄sureswingadsorption)工艺才能获取ꎬ其具体工艺流程如图2所示ꎮ1986年ꎬ西南化工研究院[15]首次报道了变压吸附法富集煤矿瓦斯气中CH4的专利方法ꎬ在吸附压力最高为1.0MPa下ꎬ经多次置换步骤后可将煤层气中CH4浓度提高到95%以上ꎮ利用该工艺方法ꎬ当期在河南焦作矿务局建立首套处理气量为1.2万m3/d的煤层气变压吸附装置ꎬ但由于市场前景不明朗㊁置换步骤较多等因素导致成本回收期较长ꎬ图1㊀CH4/N2平衡吸附等温线Fig.1㊀Equilibriumadsorptionisothermofmethaneandnitrogen图2㊀平衡效应机理富集甲烷的工艺流程Fig.2㊀Processflowdiagramofmethaneenrichmentbasedonequilibriumeffect未得到迅速的推广应用ꎮ重庆大学的鲜学福[16-17]院士课题组对基于平衡效应变压吸附法提纯煤层气中CH4进行了大量理论和试验研究ꎮ辜敏等[18]采用T103活性炭(CH4/N2平衡分离系数为2.9)作为吸附剂ꎬ在自主设计研制的单柱变压吸附装置上ꎬ采用充压㊁高压吸附㊁并流减压㊁逆向减压㊁抽真空5个程序步骤ꎬ在吸附压力0.9MPa下基于平衡效应机理将30%左右的CH4/N2提高到49%左右ꎮOlajossy等[19]以活性炭为吸附剂提纯煤层气中CH4ꎬ对VPSA工艺进行试验和电脑计算模拟研究ꎬ278K下可将煤层气中CH4浓度从55.2%提高到96%~98%ꎬ在置换步骤CH4回流比1.80~2.12时ꎬCH4回收率可达86%~91%ꎮUOP公司Davis等[20]在1992年公布了五床变压吸附净化含氮天然气工艺ꎬ在实施案例5最优条件下ꎬ可将含CH470%的天然气提高到CH4含量96.4%ꎬCH4回收率达到85%ꎮ1998年ꎬNitrotec公司Huber等[21]公开了一种三塔变压吸附工艺ꎬ在工艺装置上将含70%CH4的天然气提纯到CH4含量98%ꎬ烃类回收率保持在70%左右ꎮ2008年ꎬ日本燃气电力投资有限公司[22]在辽宁阜新煤矿建设了一套处理气量1000Nm3/h的低浓度煤层气CH4提纯的PSA中试装置ꎮ该装置的吸附剂为OsakaGas公司生产的高选择性活性炭ꎬ采用双床VPSA工艺可以将CH4浓度从21%提高到48%ꎬ回收率达到93%ꎮ2014年ꎬ上海汉兴能源科技有限公司以活性炭为吸附剂ꎬ采用VPSA技术提纯低浓度煤矿瓦斯已在山西晋城成庄矿实现了工业性试运行ꎬ将CH4浓度为12%的低浓度煤矿瓦斯提纯到30%用于瓦08张进华等:变压吸附法提纯煤层气中甲烷研究进展2019年第6期斯发电[23]ꎮ目前ꎬ基于平衡效应分离的PSA技术ꎬ在CH4/N2体系分离实际应用中遇到瓶颈ꎬ原因在于ꎬ首先现有吸附剂平衡分离系数太小ꎬ很难实现2种气体的高效分离ꎬ因而提浓幅度有限ꎻ其次ꎬCH4在平衡效应里作为强吸附组分被优先吸附ꎬ产品气必须通过抽真空的方式解吸获得ꎬ若想获得高浓度CH4ꎬ必须采取多级压缩和增加置换步骤ꎬ因而能耗相对较高ꎮ现有平衡分离型吸附剂主要以活性炭为主ꎬ开发新型吸附剂或对活性炭进行改性ꎬ提高吸附剂CH4/N2平衡分离系数将是以后的研究方向ꎮ1 2㊀基于动力学效应分离采用动力学效应机理PSA分离CH4/N2ꎬ主要基于CH4㊁N2两种气体分子动力学直径不同(CH4分子动力学直径为0.382nmꎬN2分子动力学直径0.364nm)ꎬ在孔径比较均一的吸附剂上扩散速率的不同而实现混合气分离ꎮ吸附剂一般为碳分子筛(CMSꎬcarbonmolecularsieves)㊁沸石分子筛ꎮ由于在分子筛吸附剂上ꎬN2的扩散速率大于CH4的扩散速率(图3)ꎬ在较短的时间内ꎬN2将优先被吸附ꎬ而CH4气体由于竞争吸附的关系ꎬ被排除在外ꎻ通过PSA程序调节ꎬ控制合理的吸附时间ꎬ将可在塔顶排出气处直接获取提纯后CH4ꎬ直接作为产品气ꎮ此种工艺不需额外步骤就可以获得高压产品气ꎬ有利于进一步变压吸附提纯ꎬ不需额外增压ꎬ有利于降低能耗ꎮ利用此机理ꎬ煤层气变压吸附工艺流程如图4所示ꎮ图3㊀CH4/N2动力学曲线Fig.3㊀Kineticadsorptionisothermofmethaneandnitrogen图4㊀动力学效应富集CH4的工艺流程Fig.4㊀Processflowdiagramofmethaneenrichmentbasedonkineticeffect章川泉等[24]以浙江长兴中泰分子筛有限公司生产的ZTCMS-185型CMS为吸附剂ꎬ对浓度40%CH4-60%N2的模拟煤层气进行分离研究ꎬ探讨了低温下煤层气分离的可行性ꎮ结果表明ꎬ低温下CH4/N2吸附分离特性和常温有显著差异ꎬ在压力1.0㊁2.0㊁3.0MPa三种不同吸附压力下ꎬ常温下可将原料气CH4浓度提高65%以上ꎬ低温下均未将CH4浓度提高到50%以上ꎮYang等[25]对国内长兴山立化工材料科技有限公司生产的CMS静力学㊁动力学性能进行详细评价ꎮ结果表明ꎬ在303Kꎬ700kPa条件下ꎬCH4和N2吸附量分别为1.91和1.01mol/kgꎬ吸附速率受微孔孔口势能阻力和微孔内部扩散阻力双重控制ꎬ动力学分离对比明显ꎬ分离系数Sk达到5.3ꎬ通过固定床穿透曲线可看出该吸附剂可将CH4浓度从30%提高到45%ꎮ郭昊乾等[26]以自制CMS为吸附剂ꎬ采用四塔PSA工艺对25%低浓度煤层气进行试验研究ꎬ考察了吸附压力㊁吸附时间等工艺参数对提浓效果的影响ꎬ结果表明ꎬ在最佳工艺条件下ꎬ可将CH4浓度提高到62.8%ꎮ2015年ꎬ煤科院以自主开发的CMS为吸附剂ꎬ基于动力学效应分离ꎬ采用三级变压吸附工艺提纯低浓度煤层气ꎬ在山西阳泉建立一套1万Nm3/d的工业示范装置ꎬ并进行了试运行ꎬ可将CH4含量30%左右的煤层气提纯至90%ꎬ最终经制冷压缩生产液化天然气(LNG)ꎮAckley等[27]以德国BF(Bergbau-Forschung)公司生产的CMS为吸附剂ꎬ采用Skarstrom循环对CH4/N2二元气体分离过程进行研究ꎬ变压吸附基于碳分子筛的动力学效应ꎬCH4作为产品气直接在塔顶富集ꎮ研究结果表明该分子筛上N2的扩散速率明显高于CH4ꎬN2/CH4的扩散时间常数之比可达27ꎬ采用该商品CMSꎬ可将混合气体中体积分数为50%的CH4利用基于动力学效应的变压分离技术提纯到80%ꎬ回收率可达55%ꎮFatehi等[28]采用两塔变压吸附装置ꎬ研究了德国BF公司生产的CMS的CH4/N2分离性能ꎬ结果表明ꎬ分离过程中ꎬ该吸附剂受晶体表面势能阻力和晶体内部扩散阻力双阻力影响ꎬ可将原料气CH4体积分数为60%和92%的2种CH4/N2混合气分别提纯到76%和96%ꎮ此PSA工艺由于基于动力学效应分离ꎬ可在塔顶直接获得富集的带压产品气ꎻ同时免去多级压缩的能量消耗ꎬ相对平衡效应分离具有显著优势ꎬ受到了普遍关注ꎮ国外对基于动力学效应分离CH4/N2研究多基于CH4含量较高的中高浓度混合气ꎬ针对30%左右的低浓度CH4/N2体系的研究较少ꎬ相应研究主要集中在国内ꎬ但国内在动力学分离方面的研究较少ꎬ仅有少数机构进行技术突破ꎮ现有报道的182019年第6期洁净煤技术第25卷动力学吸附剂主要以CMS和沸石分子筛为主ꎬ但价格高昂ꎬ工业推广受限ꎬ进一步开发高效㊁廉价的动力学选择型吸附剂将是今后PSA分离CH4/N2的重要方向ꎮ2㊀CH4/N2体系PSA分离用吸附剂PSA分离技术的核心在于高效的吸附剂ꎬ目前在低浓度煤层气提纯领域ꎬ该技术工业推广应用较慢的主要原因在于吸附剂选择性不高ꎬ导致吸附剂用量大ꎬ价格高ꎬ高浓度CH4气的获得需多级PSA提浓ꎬ使得项目投资回收期较长ꎮ开发出合适的专用吸附剂是该技术突破的重要途径ꎮ由于CH4和N2的动力学直径非常接近ꎬ且均属于非极性气体ꎬ具体物理性质见表1ꎮ2种气体差异性较小ꎬ使得吸附剂设计较为困难ꎮCH4/N2选择性和吸附容量的提高是研究重点ꎬ吸附剂对气体组分的平衡选择性或扩散速率差异决定了PSA工艺的选择㊁分离的难易程度ꎻ吸附容量决定了PSA工艺处理的能力和效率ꎬ从而影响工艺的经济性ꎮ近年来ꎬ报道CH4/N2分离的吸附材料主要有活性炭㊁碳分子筛㊁沸石分子筛及金属有机骨架材料ꎮ表1㊀CH4/N2部分物理性质对比Table1㊀ComparisonofpartialphysicalpropertiesofCH4/N2物理性质CH4N2分子临界直径/nm0.440.4ˑ3.0分子动力学直径/nm0.3820.364偶极矩/(C m)00四极矩/(C m2)1.5´10-260极化率/(C m3)25.9´10-2517.4´10-252 1㊀活性炭活性炭是一种疏水㊁表面为非极性的多孔炭质吸附剂ꎬ具有比表面积高㊁吸附容量大㊁抗酸碱能力强㊁热稳定性好等特点ꎬ常用于溶剂回收㊁烟气中脱硫脱硝等气体净化和高能量密度气体储存领域[29]ꎮ活性炭应用于PSA工艺分离CH4/N2主要是基于平衡效应分离ꎬCH4的吸附量大于N2ꎬCH4优先被吸附ꎬ通过抽真空解吸获得富CH4的浓缩气体ꎮ刘克万[30]以无烟煤为原料ꎬ采用炭化-活化-气相沉积工艺制备了变压吸附浓缩CH4用成型活性炭ꎬ样品平衡分离系数达到3.41ꎬ对样品采用单循环五步真空变压吸附评价ꎬ在解吸气中可使CH4的浓度较原料气提高30.0%左右ꎬCH4回收率为29.1%ꎮ刘应书等[31]对5种活性炭进行筛选ꎬ考察了不同温度条件下吸附剂对CH4/N2的平衡吸附等温线ꎬ采用Langmuir方程进行了拟合ꎬ结果表明298K下AC-1平衡分离系数4.6ꎬCH4平衡吸附容量3.98mol/kgꎬ更适合CH4/N2分离ꎮ杨雄等[32]筛选出了一种比表面积为1706m2/g的活性炭ꎬ利用真空变压吸附的方法ꎬ可将体积分数20%的模拟煤层气提纯到30%以上ꎬ且产率超过80%ꎮZhou等[33-34]利用单柱穿透曲线方法ꎬ测定了9种不同吸附剂针对CH4/N2的分离系数ꎬ其中一种高比表面积活性炭的分离系数最大达20ꎬ是迄今为止报道平衡分离系数最高的活性炭吸附剂ꎬ但未见变压吸附评价结果报道ꎮBaksh等[35]以Br2(或ICl)采用气相沉积法对活性炭表面进行改性研究ꎬ结果表明ꎬ改性后的活性炭对CH4的吸附量保持不变ꎬ但对N2的吸附减少ꎬ这可能与Br2(或IC1)的占位有关ꎻ经过改性ꎬCH4/N2的平衡分离系数可提高到4ꎬ可用于CH4/N2分离ꎮ活性炭原料来源广泛㊁价格低廉ꎬ是PSA分离技术研究较多的材料ꎬ但针对CH4/N2体系分离的研究主要集中在国内ꎬ国外研究主要停留在早期天然气净化领域ꎮ常规活性炭吸附容量大ꎬ处理能力强ꎬ但平衡分离系数较低ꎬ存在气体循环量大㊁效率低ꎬ提浓幅度窄等缺点ꎬ如何通过孔径调控和表面改性提高活性炭的平衡分离系数将是今后研究的重点ꎮ2 2㊀碳分子筛CMS是一种高选择性的非极性炭质吸附剂ꎬ主要由微孔和一定数量的大孔组成ꎬ基本不含有中孔ꎬ孔径分布相对均一ꎬ微孔特征介于沸石分子筛和活性炭之间ꎬ其作为吸附剂已经商业化应用于变压吸附空分制氮工业中ꎮ商业化空分CMS国际领先厂家主要有德国BF㊁日本Takeda化学工业公司和Kuraray化学品公司ꎬ国外学者[22-23]对商业空分CMS应用到CH4/N2体系的变压吸附应用进行了大量研究ꎮGrande等[36]以日本Takeda公司生产的CMS-3K为吸附剂ꎬ基于4步Skarstrom循环工艺ꎬ在单柱变压吸附装置上ꎬ研究了吸附剂对CH4/N2二元体系的变压吸附提纯效果ꎮ结果表明ꎬ在吸附压力0.5MPa㊁吸附时间140s条件下ꎬ可将CH4浓度从90%的CH4/N2混合气提纯到96.58%ꎬ回收率为28.82%ꎮCavenati等[37]对日本Takeda公司CMS-3K进行了吸附平衡和动力学研究ꎬ结果表明:CH4/N2两种气体在CMS上的扩散受表面孔口势能阻力以及微孔扩散的双重阻力影响ꎬ采用bi-LDF模型可以预测气体在CMS的固定床扩散行为ꎬ在308K下ꎬ2种气体的动力学分离比为1.9ꎬ通过13X沸石和CMS-3K复合床层ꎬ28张进华等:变压吸附法提纯煤层气中甲烷研究进展2019年第6期对CH4/N2/CO2的变压吸附分离试验ꎬ常温下可将CH4浓度60%的混合气浓缩至86%ꎬ回收率为52.6%ꎮ国外学者对CMS的研究工作ꎬ验证了CMS在CH4/N2分离领域的可行性ꎬ也取得较好的效果ꎬ但多针对高浓度CH4含量的混合气ꎬ如天然气㊁油田气(CH4含量多高于70%)ꎮ低浓度CH4含量的煤层气的研究主要集中在国内ꎬ这可能与国家油气资源分布不同有关ꎮ由于O2㊁N2㊁CH4三者动力学直径不同ꎬ针对低浓度煤层气CH4/N2的分离ꎬ商业空分CMS效果不佳[19-20]ꎬ有必要对孔径进行调整ꎬ以适应CH4/N2体系的分离ꎮ张进华[38]采用碳沉积方法ꎬ在先驱体煤基活性炭上进行孔径调整ꎬ制备了BM1404碳分子筛ꎬ并在5Nm3/h四塔变压吸附装置上模拟煤层气进行了工艺研究ꎬ结果表明:吸附时间150s㊁吸附压力0.6MPa㊁成品气排气流量4.20mL/min时ꎬ分离效果最佳ꎬ可将混合气的CH4含量从35%提纯到68.10%ꎬ回收率达到67.30%ꎻ体积分数71%CH4平均提纯到86.80%ꎬ回收率为85.69%ꎮ李兰廷[39]以酚醛树脂废料为主要原料ꎬ通过添加助剂ꎬ采用炭化-气相沉积一体化工艺ꎬ制备出性能优良的CMS样品ꎬ该样品经变压吸附装置测试ꎬ可将煤层气中CH4浓度提高25.6个百分点ꎮ聂李红[40]以丙烯酰胺为黏结剂ꎬ利用多种调孔工艺制备出CMSꎬ考察了CH4㊁N2及其混合气体在CMS上的穿透曲线ꎬ结果表明该CMS适于动力学扩散分离CH4/N2混合气体ꎬ模拟了19.3%的原料气ꎬ经过固定床吸附后ꎬ出口气体CH4含量最高可达56.9%ꎬ但未评价变压吸附分离性能ꎮCMS应用于CH4/N2体系的分离主要基于动力学效应ꎬN2的扩散速率远大于CH4ꎬ属于N2选择型吸附剂ꎬ这与炭质吸附剂的平衡效应相反ꎬPSA应用过程中存在一定程度的抵消ꎬ降低选择性ꎮ目前CMS研究已取得较好的分离效果ꎬ但CMS在保证选择性的同时ꎬ降低了微孔孔容ꎬ导致吸附剂用量较大ꎬ加之CMS吸附剂成本较高ꎬ使得该工艺吸附剂成本占比较大ꎮ选择合适的廉价原料㊁改变现有间歇式生产工艺㊁开发大容量高选择性CMS将是重要的研究方向ꎮCMS和活性炭均属于炭质吸附剂ꎬ只是分离机理不同ꎮ活性炭吸附容量大ꎬ但平衡分离比目前较低ꎻCMS动力学分离比较大ꎬ但吸附容量较低ꎬ如何共同提高2种吸附剂的分离比和吸附容量以及明晰两者之间的关联规律值得进一步研究ꎮ2 3㊀沸石分子筛沸石分子筛是一种离子型极性吸附剂ꎬ孔径大小均一ꎬ晶穴内部存在强大的库伦场和极性ꎬ对极性强㊁极化率大的分子选择性强ꎻ通过离子交换或改变硅铝比可以改善其表面极性和调节孔口尺寸ꎬ从而将分子直径或极性有差异的气体分子分离开[41]ꎮ硅铝分子筛是国内外较早用于CH4/N2分离的吸附剂ꎬ常用的有斜发沸石㊁丝光沸石㊁A型㊁X型等ꎮAckley等[42]对CH4/N2在斜发沸石上平衡吸附和动力学吸附进行研究ꎬ研究表明ꎬCH4和N2的平衡分离系数为1.3ꎬ2种气体的平衡选择性相当ꎻ但N2/CH4的动力学扩散速率之比为55ꎬ表现出对N2优良的动力学选择性ꎬ可利用动力学机理ꎬ采用变压吸附工艺对CH4/N2进行分离ꎬ在0.7MPa下ꎬ可将CH4体积分数占85%的CH4/N2混合气提高到95%ꎬ回收率为73%ꎮHaq等[43]对4A分子筛上CH4/N2/CO的亨利常数和扩散系数进行研究ꎬ发现温度0~40ħꎬN2/CH4扩散系数之比在9~18ꎮHabgood[44]对4A分子筛的动力学性能进行表征ꎬ发现N2在4A分子筛扩散速度快于CH4ꎬ扩散系数的计算受气体浓度的影响ꎬCH4影响较小ꎬ但混合气中N2扩散系数远大于纯组分N2的扩散系数ꎮCampo等[45]研究了CO2㊁CH4㊁N2在13X沸石上的平衡吸附ꎬ单组分和双组分的穿透曲线ꎬ并利用工业级的真空变压吸附过程ꎬ将产品气中CO2含量降低到2%以下ꎬCH4回收率达96%ꎬ能耗为4.27Wh/mol(以CH4计)ꎮZSM-5是一种含有机胺阳离子的新型高硅疏水沸石分子筛ꎬ其基本结构单元是由8个五元环组成ꎬ孔道由特殊的空腔结构形成ꎬ孔径在0.5nm左右ꎮ刘海庆等[46]对ZSM-5沸石的吸附平衡㊁吸附动力学和真空变压吸附分离进行了理论和试验研究ꎬ结果表明ZSM-5对CH4具有较好的选择性ꎬ通过真空变压吸附工艺可将模拟煤层气中20%的CH4提高至31%~41%ꎬ回收率为93%~98%ꎮ常见的钛硅分子筛产品主要有ETS-1㊁ETS-4㊁ETS-10等ꎬ其中ETS-4表现最为突出ꎬ分离效果较好ꎬ其孔径在0.3~0.4nmꎮKuznicki等[47]通过离子交换ꎬ修改孔宽ꎬ开发出适于CH4/N2的Sr-ETS-4ꎬ允许小分子N2通过而将相对较大的CH4排除在外的分子筛ꎮ美国的Engelhard公司利用此吸附剂在天然气纯化上实现商业化应用ꎬ将天然气中82%的CH4提高到95%以上ꎮETS-4浓缩CH4的评价结果见表2ꎮ382019年第6期洁净煤技术第25卷表2㊀ETS-4浓缩CH4的评价结果[48]Table2㊀EvaluationresultsofenrichmentofmethaneusedbyETS-4原料气气体组分含量/%CH4N2产品气CH4纯度/%CH4回收率/%55457983604090768020967285159674研究发现硅铝分子筛和钛硅分子筛的平衡选择性均不明显ꎬ很难基于平衡效应机理实现CH4/N2的分离ꎻ大都基于CH4/N2扩散速率不同ꎬ利用动力学效应进行分离ꎮ本质上ꎬ由于分子筛中晶穴内部存有强大的库伦场ꎬ表现出较强的极性ꎬ而CH4的极化率(2.59ˑ10-24cm3)比N2(1.74ˑ10-24cm3)大ꎬ因而沸石分子筛会优先吸附CH4ꎬ与动力学效应优先吸附N2相反ꎬ降低了分子筛对CH4/N2的分离选择性ꎮ所以硅铝分子筛/钛硅分子筛多在分离高浓度CH4含量的天然气㊁油田气方面表现优异ꎬ针对低浓度煤层气CH4的提纯应用较少ꎬ未见工业应用报道ꎬ原因主要在于现有沸石类分子筛分离系数太低ꎮ2 4㊀金属有机骨架材料金属有机骨架材料(MOFsꎬmetal-organicframe ̄works)是由含氧㊁氮等多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物ꎮ自20世纪90年代中期ꎬ第1类MOFs合成后ꎬ该种材料由于种类多样㊁孔道可调节㊁结构易功能化㊁具有高的孔隙率和大的比表面积ꎬ已在吸附领域表现出广阔的应用前景[49-50]ꎮCu-BTC㊁Al-BDC㊁ZIF-8和MOF-5是研究较为广泛的MOFs材料ꎬ在吸附分离方面相对有较多研究ꎮLiu等[51]采用分子模拟计算方法研究了沸石和包括Cu-BTC在内的7种MOFs材料在298K㊁0~2.0MPa下对CH4/N2的分离选择性ꎬ结果表明Cu-BTC㊁MIL-47(V)㊁IRMOF-11㊁IRMOF-13的选择性介于2.5~5.0ꎮMöllmer等[52]研究了不同温度条件下CH4㊁N2纯组分气体和混合双组分气体在Basolite®A100(又名Al-BDC)上的吸附等温线ꎬ并计算了相应分离因子ꎬ298K下CH4/N2分离因子为3.4~4.4ꎮ胡江亮等[53]以三乙胺(TEA)为导向剂ꎬZnSO4为金属离子源ꎬ水为溶剂ꎬ采用水热合成法进行了ZIF-8吸附剂ꎬ考察了对CH4/N2的吸附分离性能和热力学参数ꎬ并与活性炭㊁分子筛进行对比ꎮ研究表明ꎬ298K下ꎬZIF-8对CH4/N2的分离因子达到了3.4ꎬ与活性炭相当ꎬ但吸附热比活性炭低20%左右ꎮJia等[54]介绍了MOF-5的合成方法ꎬ并对MOF-5在不同压力下的CH4存储功能进行研究ꎬ结果表明增加压力可提高CH4存储密度ꎬ在3.69MPa下ꎬCH4的有效体积存储容量达到81V(STP)/VꎮKitagawa等[55]研究表明其研制成功的[Cu(dhbc)2(4ꎬ4ᶄ-bpy)] H2O(dhbc为2ꎬ5-二羟基苯甲酸)骨架中具有穿插的结构ꎬ测试了该材料对常见气体的吸附性能ꎬ通过吸附等温线可发现在较低压力下ꎬ材料只对CO2和CH4有吸附ꎬ而对O2和N2的吸附几乎为0(图5)ꎮ当压力升高到5066kPa时ꎬ才对N2有微弱吸附ꎮYang等[56]研究了298㊁273㊁203K不同温度条件下[Cu(dhbc)2(4ꎬ4ᶄ-bpy)]对CO2㊁CH4和N2的吸附性能ꎬ当压力0.1MPa㊁温度203K条件下ꎬ该材料对CH4㊁N2的吸附量分别为80.2和1.9cm3/gꎬꎬ吸附量之比高达42ꎬ表现较好的吸附选择性ꎮ随着温度的增加ꎬ分离性能严重下降ꎬ在温度为298K时ꎬ吸附量之比降低到2.2ꎬ如何在常温下保持较好性能仍需进一步研究ꎮ图5㊀[Cu(dhbc)2(4ꎬ4ᶄ-bpy)] H2O对常见气体的吸附等温线Fig.5㊀Adsorptionisothermsof[Cu(dhbc)2(4ꎬ4ᶄ-bpy)] H2Oonseveralcommongases目前超过2万种MOFs被开发ꎬ也具有表面积大ꎬ孔道结构规则㊁孔容高等优点ꎬ为CH4/N2的高效分离提供了新的发展思路ꎻ但MOF依然停留在实验室阶段ꎬ且吸附领域主要集中在CH4和N2的储存ꎬ在CH4/N2的吸附平衡和动力学研究以及变压吸附分离方面研究较少ꎬ还有待进一步深入研究ꎮ作为工业化应用吸附剂的前提需要解决简单稳定的MOFS成型和放大技术瓶颈ꎮ3㊀结语与展望基于我国煤层气资源丰富和天然气供需缺口较大的现状ꎬ大力开发煤层气提纯利用技术不仅可以解决我国天然气来源问题ꎬ亦可以减少温室气体的排放和能源的浪费ꎮ变压吸附提纯技术提供了很好48。

差异成因无烟煤储层煤层气解吸实验研究

差异成因无烟煤储层煤层气解吸实验研究

第1 期
邓广弘等 : 差异成 因无烟煤储层煤层气解吸实验研究
寺河 3
2 9
微 孔 小 孔 2中孔 口 大 孔
1 : 0 0
分析认 为, 汝箕沟 2 煤受岩浆热作用 , 大量的挥发性 物质逸出, 产生中孔及其以下的逸 出孔 , 煤层气储层 以微 孔 小 孔为 主 , 有 利 于煤 层 气 的 吸 附 I 6 J , 发 育 中孔 , 有 利
的8 8 %( 仅汝箕沟 2 中孔含量突出) 。但是深成变质为主的 w Y小孔 以下孔隙 比例 占 9 6 %以上 ; 深成变 质为主寺河 3 与塘冲 3 W Y 比表面积相当, 而岩浆变质为主的汝箕沟 2 煤的比表面积仅为另外 2 个样品
的1 / 2 0左 右 ; 汝箕 沟 2 煤样 品 的孔 容也 最小 , 占另外 2个样 品的 1 / 4~1 / 8左 右 。
于煤 层气 运移 。
1 . 2 吸 附/ 解 吸 实验 仪器 与实 验设计
汝 箕 沟 塘冲 3
0. O O O . 2 0 O- 4 0 0. 6 0 O . 8 O
实验采用 A S T一 2 0 0 0型大样量煤层气吸 附/ 解吸仿 F i g . 1
真实 验仪 , 原 理如 图 2所示 。
表 2 煤 样 孔 隙特 征
图1 3种 wY孔径分布 比例
P o r e s i z e d i s t r i b u t i o n r a t i o o f t h r e e k i n d s o f WY
Ta b . 2 Co a l s a mp l e c h a r a c t e r i s i t c s o f t h e p o r e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤层气吸附解吸机理研究
【摘要】随着社会的发展,开拓新能源已是各国政府努力发展的方向,煤层气因为具有新能源效应、环保效应、煤炭生产安全效应及领域广阔的商业效应,而成为各国的主要发展对象,煤层气的勘探、开发受到了世界各国能源部门以及研究人员的高度重视。

本文试图对当前制约煤层气开发的因素和能源需求的分析,指出了研究煤层气的解吸吸附机理的意义。

通过分析国内外解吸吸附机理的研究历史和现状,例如煤层中的水分含量以及地层压力条件和温度条件等作了大量研究,希望为我国的煤层气实际开采提供可靠的理论依据。

【关键词】煤层气解吸吸附影响因素
非常规天然气中煤层气(CBM)的储量占世界天然气总储量的30%以上。

煤层气(CBM)是成煤过程中生成,并以吸附和游离状态赋存于地下煤层及围岩的自储式天然气体。

由于我国的特殊国情,在不同学术时期或者因为外文资料的翻译原因等,造成CBM有不同的名字或者定义,比如煤层甲烷、瓦斯、煤层气等。

为方便表述,统一命名为煤层气,即CBM。

1 中国煤层气勘探开发问题分析
众所周知,目前我国的沁水盆地中南部地区的煤层气的勘探开发利用发展较为快速,但其他地区的开发利用还停留在比较基础的阶段,因为:
(1)由于起步较晚,我国的CBM基础理论一般是从美国的技术学习而来,虽然美国的技术相对成熟,但是中国的地质结构特殊,结合中国煤层自身特点的赋存条件的指导理论研究尚且不足;
(2)石油天然气开发技术一直影响我国CBM的开发,我国的CBM开发工艺没有考虑到CBM独特的生储特性,没有做到具体问题具体分析。

资料显示,地质的演化或者现阶段地质的构造状况对CBM的开采影响十分巨大。

由于我国的含煤岩系是经历了多期构造作用的影响而保存,与其他国家大为不同。

煤体结构较为特殊,降低了煤层气的渗透性能且影响产能输出;同时,由于煤是自生自储,它与石油天然气的储层截然不同,多种因素制约着它的产能,例如CBM的勘探理论或者开采工艺技术,以及国家能源政策制约了对外合作,科技人才的短缺等。

CBM产业属于新型能源行业,其国内的总体趋势是大步向前发展的。

2 CBM 理论的国内外研究现状
经历数十年的发展,目前世界各国对C BM解吸吸附机理的研究突飞猛进。

但是,我国对煤储层的渗透性无法做到准确评价,且其形成机理研究也相对落后,尤其是具有极低渗、高应力等地质条件的研究还处于起步阶段。

开采理论无法适
应实际生产的应用,这也成为制约我国煤层气利用的一大障碍。

3 煤层气的解吸吸附理论
在CBM研究初期,一直认为CBM是以游离态和溶解态赋存于煤层中,但是后来研究发现煤层的自身孔隙的总容积要远远小于CBM总含量,所以可以明确的指出CBM肯定还有另外一种存在状态,即吸附态,也就是说在某种多孔介质中容纳了以累液态或凝聚态存在的气体,其存在方式分为化学吸附和物理吸附。

通过各种理论和大量的实验证明,煤岩中的煤层气主要是以物理吸附的方式存在;此外,解吸是指CBM分子在其被煤岩等介质吸附后,受到了在热运动或者是某种振动的影响下,使CBM分子重新活跃,且足以摆脱吸附介质的吸附力,这样CBM分子又能以游离状态返回到CBM分子群中。

研究发现,CBM的解吸/吸附在一定条件下可以相互转换。

3.1 CBM的解吸过程
(1)压力对CBM的赋存状况影响极大,煤岩裂隙中会产生气或者水,这些都能改变煤岩的压力状况,使煤基质块中的CBM分子因为压力变化而从新回到分子群中,使得其煤层气含量(煤层气浓度)大大降低。

在条件合适的情况下,解吸与吸附可以说是互为逆过程,能相互转换。

(2)由于被吸附的CBM分子浓度的降低,使得煤介质表面微孔隙中CBM 浓度相对内部微孔隙系统浓度较低,这时有种CBM浓度梯度存在于煤基质块的内部和表面微孔隙系统间。

存在于内部微孔隙中的CBM分子会穿过微孔隙系统,按照浓度梯度的变化,从比较低的方向发生运移现象,其方向大致是由内至外,学术上一般认为这种现象是Knudson型扩散等多种扩散现象共同作用的结果。

(3)如果CBM排采井采用排水降压时,在压力梯度的作用下,储层的裂隙系统中的水和CBM分子会出现以遵守流动Darcy定律,即压力梯度与流体流速成正比,的流动的现象以层流方式向井筒方向涌动。

由于煤基质块的表面解吸能力比较强大,所以完全可以保持吸附气和自由气之间的均衡,而在其内部的自由气与吸附气则处于不均衡状态。

3.2 CBM吸附过程
(1)以往的研究表明CBM吸附先是渗流过程,即由于强大的外部压力使甲烷的气体分子渗流到大孔系统中流动,并且在煤基质外的表面产生一种煤层气气膜。

(2)吸附的全过程第二步是扩散过程,它主要包括内扩散过程和外扩散过程。

其中前一个过程是指在图3中,甲烷气体分子通过2这个点,进入煤介质的微孔隙中然后慢慢渗透到介质的每一个部分的过程;而后一个过程是指图3中,处于煤介质的外部甲烷气体分子从1这个点横穿煤介质的气膜然后遍及其表
面的全部过程。

(3)吸附的全过程第三步是吸附过程。

Ruppel等研究发现当气体分子经过介质颗粒外时,有一部分气体分子会被介质外表面强力吸附,并且被吸附的气体分子会通过介质的微孔隙向煤介质内部扩散;同时另一部分会通过往介质颗粒内的孔道向内扩散。

由此可知,吸附的完成过程包括了外扩散、内扩散以及表面扩散。

而最慢阶段,一般是内扩散阶段的速率,决定了吸附过程的总速率。

4 煤层气解吸吸附的影响因素
4.1 CBM受压力的影响
由上述结论可知CBM的吸附/解吸理论大多和吸附/解吸压力密切相关,所以国内外对CBM的研究尤其重视对压力的研究。

理论上来说煤的吸附能力与压力在一定值内呈正比。

同理类推,压力的降低使煤的吸附性下降,解吸出CBM 分子,实验表明,只要当压力降低到一定的数值时,煤体就会大量解吸甲烷。

呈高度非线性的吸附等温线决定了甲烷的解吸量取,例如实验压力下降40%~50%,甲烷的解吸量通常不到三成,通常情况下,要想煤体中的吸附甲烷全部解吸和扩散出来,必须当档压力降到接近大气压时才能出现。

4.2 温度
大量实验研究表明,温度总是能增加气体分子的脱附作用,即温度的高低与游离气的多少呈正比,与吸附气的多少呈反比(图1)。

例如,介质温度每提升1摄氏度,那么煤的吸附能力就会下降8%左右。

其机理是因为温度的改变能为气体分子提供不同的能量,使其分子的活跃程度产生变化,从而影响甲烷的解吸。

4.3 水分
影响甲烷吸附/解吸能力的又一因素是煤中的水含量。

研究表明水分含量对吸附性呈反比(图2所示),即水分的增加会使吸附能力下降,因为煤吸附了水分子后,必定有一部分表面积被占,使得甲烷的吸附面积减少。

图2?煤样不同水分含量的吸附等温线4.4 不同的气体成分
由于不同气体成分的不同,使得煤对不同的气体的吸附力也有很大差异,各种气体在煤表面的吸附热能力也各有不同,例如,煤对甲烷的吸附能力低于二氧化碳,但高于氮气。

5 结论
随着我国的经济发展,能源需求量的大幅度提升,煤层气的战略地位与日俱增。

本文分析了国内外解吸吸附机理的研究现状,对影响CBM解吸吸附的因素,例如水分含量、组分、压力条件和温度条件等进行了大致研究,希望本文能为以
后煤层气的实际开采提供可靠的理论依据,为我国的煤层气发展做出应有的贡献。

参考文献
[1] 刘红林,王红岩,张建博.煤层气吸附时间计算及其影响因素分析[J].石油实验地质,2000,23 ( 4 ):365-367
[2] 辜敏,陈昌国,鲜学福.抽放煤层气变压吸附过程的数学模拟团.煤炭学报,2001,23(4):406-411
[3] 欧成华,李士伦,郭平,等.储层孔隙介质气体吸附理论模型研究探讨[J].西南石油学院学报,2002,24 ( 4 ):53-56。

相关文档
最新文档