锐角三角函数练习题初三

合集下载

九年级中考数学专题练习锐角三角函数的增减性(含解析)

九年级中考数学专题练习锐角三角函数的增减性(含解析)

九年级中考数学专题练习锐角三角函数的增减性(含解析)中考数学专题练习-锐角三角函数的增减性(含解析)一、单选题1.已知sinα<0.5,那么锐角α的取值范围是()A. 60°<α<90°B. 30°<α<90°C. 0°<α<60°D. 0°<α<30°2.如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD的面积S 的最大值是()A. s=B. s=()A. <cosα<B. <cosα< C.<cosα<D. <cosα<6.梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越大,梯子越陡B. co sA的值越大,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关7.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanα B. sinα<tanα<cosα C. tanα<sinα<cosα D. tanα<cosα<sinα8.已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是()A. tanα<t anβB. sinα<sinβC. cosα<cosβD. cosα>cosβ9.α是锐角,且cosα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°10.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡B. co sA的值越小,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关11.在Rt△ABC中,∠C=90°,下列结论:(1)sinA<1;(2)若A>60°,则cosA>;(3)若A>45°,则sinA>cosA.其中正确的有()A. 0个B. 1个C. 2个D. 3个12.三角函数sin30°、cos16°、cos43°之间的大小关系是()A. cos43°>cos16°>sin30°B.cos16°>sin30°>cos43°C. cos16°>cos43°>sin30°D.cos43°>sin30°>cos16°13.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A. 都扩大2倍B. 都扩大4倍C. 没有变化D. 都缩小一半14.如图,△ABC是锐角三角形,sinC= ,则sinA的取值范围是()A.0B.C.D.15.α是锐角,且sinα>,则α()A. 小于30°B. 大于30°C. 小于60°D. 大于60°二、填空题16.比较大小:sin44°________cos44°(填>、<或=).17.若∠A是锐角,cosA>,则∠A的取值范围是________ .18.若α是锐角,且sinα=1﹣3m,则m的取值范围是________ ;将cos21°,cos37°,sin41°,cos46°的值,按由小到大的顺序排列是________ .19.若∠A是锐角,cosA>,则∠A应满足________ .三、解答题20.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.21.已知:在Rt△ABC中,∠C=90°,sinA、sinB 是方程x2+px+q=0的两个根.(1)求实数p、q应满足的条件(2)若p、q满足(1)的条件,方程x2+px+q=0的两个根是否等于Rt△ABC中两锐角A、B的正弦?22.设a、b、c是直角三角形的三边,c为斜边,n为正整数,试判断a n+b n与c n的关系,并证明你的结论.四、综合题23.如图①②,锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化.试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(1)根据你探索到的规律,试比较18°,34°,50°,62°,88°这些锐角的正弦值的大小和余弦值的大小.(2)比较大小(在横线上填写“<”“>”或“=”):若α=45°,则sin α________cos α;若α<45°,则sin α________cos α;若α>45°,则sin α________cos α.(3)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.24.如图(1)如图中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律;(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.答案解析部分一、单选题1.已知sinα<0.5,那么锐角α的取值范围是()A. 60°<α<90°B. 30°<α<90°C. 0°<α<60°D. 0°<α<30°【答案】D【考点】锐角三角函数的增减性【解析】【解答】解:由sinα=0.5,得α=30°,由锐角函数的正弦值随锐角的增大而增大,得0°<α<30°,故选:D.【分析】根据锐角函数的正弦值随锐角的增大而增大,可得答案.2.如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD的面积S 的最大值是()A. s=B. s=C. s=D. s=【答案】D【考点】锐角三角函数的增减性【解析】【解答】解:S=CO•ODsin∠COD,△COD∵CO=OD=1,=sin∠COD,∴S△COD∵△AOC为等边三角形,∴∠COB=120°,∴0°<∠COD<120°,∴当∠COD=90°时,sin∠COD最大,最大值是1,∴△COD的面积S的最大值是.故选D.=【分析】根据三角形的面积公式S△COD CO•ODsin∠COD,因为ab都是圆的半径1,所以sin∠COD的值越大,面积越大进行解答.3.若sinA=,则A的取值范围是()A. 0°<∠A<30° B. 30°<∠A<45° C. 45°<∠A<60° D. 60°<∠A<90°【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵sin30°=,sin45°=.又<<,正弦值随着角的增大而增大,∴30°<∠A<45.故选B.【分析】首先明确sin30°=,sin45°=;再根据正弦值随着角的增大而增大,进行分析.4.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A的余切值()A. 扩大为原来的两倍B. 缩小为原来的C. 不变D. 不能确定【答案】C【考点】锐角三角函数的增减性【解析】【解答】因为△ABC三边的长度都扩大为原来的2倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的余切值也不变.故答案为:C.【分析】根据相似三角形的性质可知三角形的边长扩大,角度不会发生改变,即锐角A的大小没改变,所以锐角A的余切值也不变.5.已知30°<α<60°,下列各式正确的是()A. <cosα<B. <cosα< C.<cosα<D. <cosα<【答案】C【考点】锐角三角函数的增减性【解析】【解答】解:∵cos30°=,cos60°=,余弦函数是减函数,∴<cosα<.故选C.【分析】根据特殊角的三角函数值及余弦函数随角增大而减小解答.6.梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越大,梯子越陡B. co sA的值越大,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关【答案】A【考点】锐角三角函数的增减性【解析】【解答】解:根据锐角三角函数值的变化规律,知sinA的值越大,∠A越大,梯子越陡.故选A.【分析】锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小.7.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanα B. sinα<tanα<cosα C. tanα<sinα<cosα D. tanα<cosα<sinα【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵0<α<30°,∴0<sinα<, 0<tanα<,<cosα<1,∴sinα<cosα,tanα<cosα,又∵<cosα<1,∴tanα=,∴sinα<tanα<cosα.故选:B.【分析】首先根据0<α<30°,可得0<sinα<, 0<tanα<,<cosα<1,据此判断出sinα<cosα,tanα<cosα;然后判断出sinα<tanα,即可判断出sinα,cosα,tanα的大小关系.8.已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是()A. tanα<tanβB. sinα<sinβC. cosα<cosβD. cosα>cosβ【答案】C【考点】锐角三角函数的增减性【解析】解:根据题意,得α>β.根据锐角三角函数的变化规律,只有C正确.故选C.【分析】若甲坡比乙坡更陡些,则α>β;再根据锐角三角函数的变化规律解答:正弦和正切都是随着角的增大而增大,余弦和余切都是随着角的增大而减小.9.α是锐角,且cosα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵在锐角三角函数中,余切值都是随着角的增大而减小,又知cos30°=,cos45°=,故30°<α<45°,故选B.【分析】在锐角三角函数中,余切值都是随着角的增大而减小.cos30°=,cos45°=,故知α的范围.10.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡B. co sA的值越小,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:sinA的值越小,∠A越小,梯子越平缓;cosA的值越小,∠A就越大,梯子越陡;tanA的值越小,∠A越小,梯子越平缓,所以B正确.故答案为:B.【分析】根据锐角三角函数的增减性可判断正误。

初中数学九年级下锐角三角函数练习题含答案

初中数学九年级下锐角三角函数练习题含答案

初中数学九年级下锐角三角函数练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 在Rt△ABC中,∠B=90∘.若AC=2BC,则sin C的值是( )A.1 2B.2C.√32D.√32. 在Rt△ABC中,∠A=90∘,AB=3,BC=4,则cos B=()A.3 4B.√74C.35D.453. 在Rt△ABC中,∠C=90∘,若△ABC的三边都缩小5倍,则sin A的值( )A.放大5倍B.缩小5倍C.不变D.无法确定4. 当∠A为锐角,且cos A的值大于√32时,∠A()A.小于30∘B.大于30∘C.小于60∘D.大于60∘5. 已知cos A>12,则锐角∠A的取值范围是()A.0∘<∠A<30∘B.30∘<∠A<90∘C.0∘<∠A<60∘D.60∘<∠A<90∘6. 在Rt△ABC中,若各边长都扩大5倍,则sin A的值()A.变大B.变小C.不变D.不能确定7. 当锐角A>45∘时,下列不等式不成立的是()A.sin A>√22B.cos A<√22C.tgA>1D.ctgA>18. 在△ABC中,∠C=90∘,若cos A=√32,则sin A的值是()A.√3B.√33C.√32D.129. 若tanа=2,则3sinα−cosα4sinα+2cosα的值为()A.13B.56C.12D.110. 在Rt △ABC 中,∠C =90∘,下列式子不一定成立的是( ) A.tan A =cot BB.sin 2A +cos 2A =1C.sin 2A +sin 2B =1D.tan A ⋅cot B =111. 在Rt △ABC 中,∠C =90∘,sin A =513,则cos A =________,cos B =________,tan A =________.12. 如果∠A 是锐角,cos A =0.618,那么sin (90∘−A)的值为________.13. 计算:sin 230∘+tan 44∘tan 46∘+sin 260∘=________.14. Rt △ABC 中,∠C =90∘,3AC =√3BC ,则∠A =________.15. 因为cos 30∘=√32,cos 210∘=−√32,所以cos 210∘=cos (180∘+30∘)=−cos 30∘=−√32; 因为cos 45∘=√22,cos 225∘=−√22,所以cos 225∘=cos (180∘+45∘)=−cos 45∘=−√22; 猜想:一般地,当a 为锐角时,有cos (180∘+a)=−cos a ,由此可知cos 240∘的值等于________.16. 一般地,当α为锐角时sin (180∘+α)=−sin α,如sin 210∘=sin (180∘+30∘)=−sin 30∘=12,由此可知:sin 240∘的值为________.17. 在△ABC 中,∠C =90∘,若sin A =1213,tan A =________.18. 利用计算器计算sin 29.5∘−cos 58∘30″+tan 52∘30′=________.(精确到0.01)19. 已知∠α=36∘,若∠β是∠α的余角,则∠β=________度,sin β=________.(结果保留四个有效数字)20. 计算:√2−2sin45∘−32.温馨提示:你只需选择下列一种方式来解答本题.如果两种方式都做,我们将根据做得较好的一种来评分,但你有可能会浪费一部分时间!方式一:(用计算器计算)计算的结果是________.按键顺序为:方式二:(不用计算器计算)21. 如图①,图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A,B,C在小正方形的顶点上.(1)在图①中画出一个四边形ABCD,点D在小正方形的顶点上,且此四边形为轴对称图形;(2)在图②中画出一个四边形ABCE,点E在小正方形的顶点上,且tan∠AEC=2.22. 如图,已知△ABC三个顶点的坐标分别为A(−2, −4),B(0, −4),C(1, −1). (1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(−3, −3),连接PC,则tan∠BCP=________.23. 如图,已知在平面直角坐标系中,△ABC的三个顶点坐标分别是A(0,2),B(−3,−2),C(−2,−4).(1)将△ABC向右平移4个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;(3)连接OA2,求sin∠OA2C2的值.,求cos A,sin B,cos B.24. 在Rt△ABC中,∠C=90∘,若sin A=121325. 如图,方格纸中每个小正方形的边长均为1,线段AB的端点A,B均在小正方形的顶点上.(1)在图中画出△ABC,∠BAC=90∘,且△ABC的面积为5,点C在小正方形的顶点上;(2)在(1)的基础上,在图中画出等腰三角形BCD,使∠CBD=∠BDC,点D在小正方形的顶点上.请直接写出tan∠CDB的值.26. 用计算器计算下列各式的值.(1)sin 20∘(2)cos 20∘(3)tan 48∘(4)sin 15∘32′(5)cos 49∘18′(6)tan 75∘3′.27. 在△ABC中,∠C=90∘,BC=8cm,tan A=4,求AC的长.328. 如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D点,DE⊥AC于点E.(1)判断DE与⊙O的位置关系,并证明;(2)连接OE交⊙O于F,连接DF,若cos∠DEF=4,求∠EDF的正切值.529. 如图,矩形ABCD中,BC=2,AB=m,将矩形ABCD绕点D顺时针旋转90∘,点A,B,C分别落在点A′,B′,C′处.(1)直接填空:当m=1时,点B所经过的路径的长为________;(2)若点A′,C′,B在同一直线上,求tan∠ABA′ 的值.30. 已知一次函数y=−2x+b(b为常数,b>0)的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=−4x的图象交于C,D两点(点C在第二象限内),过点C作CE⊥x 轴于点E.(1)求tan∠ACE的值;(2)记S1为四边形CEOB的面积,S2为△OAB的面积,若S1S2=79,求b的值.31. 计算:2cos30∘−(sin45∘+cos45∘)2−3tan60∘32. 如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且BC是⊙O的切线.(1)判断△CBP的形状,并说明理由;(2)若OA=6,OP=2,求CB的长;(3)设△CBP的面积是S1,△BCP的面积是S2,且S1S2=25,若⊙O的半径为6,BP=4√5,求tan∠APO.33. 如图,△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4),以点O为位似中心,在y轴的右侧,画出△A1B1C1,使它与△ABC是位似图形,并且相似比为1:2,并求出∠A1C1B1的正弦值.34. 如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO∼△DCA;(2)如图2,当AD=AO时,①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出PQCQ 的值;若不存在,请说明理由.35. 如图,在△ABC中,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连结AF并延长交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.36. 如图,在△ABC中,∠C=150∘,AC=4,tan B=1.求BC的长.837. 已知三角函数值,求锐角(精确到1″).(1)已知sinα=0.5018,求锐角α;(2)已知tanθ=5,求锐角θ.38. 在Rt△ABC中,∠C=90∘,已知AC=8,BC=17,分别求∠A、∠B的四个三角函数值.x2+bx+c和直线BC相交于坐标轴上39. 如图,在平面直角坐标系中,抛物线y=−12B(4,0),C(0,2)两点,与x轴的另一个交点是A,连接AC,BC.(1)求抛物线的解析式;(2)点P,Q是BC上方的抛物线上的动点,①若点E是OB的中点,点G是y轴正半轴上一点,是否存在四边形EGPQ是正方形?若存在,求出P,Q两点的坐标,若不存在,请说明理由.②过点P做PD⊥BC,垂足为D,当△CPD和△ACO相似时,直接写出此时点P坐标.40. 如图,在平面直角坐标系中,点A(−5,−1),B(0,−2).(1)将线段AB绕点B顺时针旋转90∘,使点A落在点C处,作出△ABC.(2)作出(1)中的△ABC关于原点O对称的△A1B1C1.(3)在(2)的条件下,连接AB1,直接写出tan∠AB1B的值.参考答案与试题解析初中数学九年级下锐角三角函数练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答2.【答案】A【考点】锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】锐角三角函数的增减性特殊角的三角函数值【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】锐角三角函数的增减性【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】锐角三角函数的增减性【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】同角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答9.【答案】C【考点】同角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答10.【答案】D互余两角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】1213,513,512【考点】同角三角函数的关系互余两角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答12.【答案】0.618【考点】互余两角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答13.【答案】2【考点】特殊角的三角函数值互余两角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答14.【答案】60∘【考点】特殊角的三角函数值【解析】此题暂无解析此题暂无解答15.【答案】−1 2【考点】特殊角的三角函数值【解析】此题暂无解析【解答】此题暂无解答16.【答案】−√3 2【考点】特殊角的三角函数值【解析】此题暂无解析【解答】此题暂无解答17.【答案】125【考点】同角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答18.【答案】0.81【考点】计算器—三角函数【解析】此题暂无解析【解答】此题暂无解答19.【答案】54,0.8090【考点】计算器—三角函数【解析】此题暂无解析【解答】此题暂无解答20.【答案】−9【考点】计算器—三角函数特殊角的三角函数值【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)如图①.(2)如图②.【考点】锐角三角函数的定义--利用网格勾股定理作图-轴对称变换【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)作出点B1,C1连接即可;(2)因为直线CD将△ABC分成面积相等的两部分,且与线段AB相交于点D,故点D为线段AB的中点,画出直线CD,可知点D坐标为(−1, −4);1【考点】锐角三角函数的定义--利用网格网格中点的坐标三角形的面积关于原点对称的点的坐标勾股定理的逆定理等腰直角三角形【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:(1)△A 1B 1C 1如图所示.(2)△A 2B 2C 2如图所示.(3)连结OC 2.∵ OA 22=OC 22=22+42=20,A 2C 22=22+62=40, ∴ OA 22+OC 22=A 2C 22,∴ △OA 2C 2为等腰直角三角形,∴ ∠OA 2C 2=45∘,∴ sin ∠OA 2C 2=√22. 【考点】锐角三角函数的定义--利用网格作图-轴对称变换作图-平移变换【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:∵ ∠C =90∘,sin A =1213,∴ cos A =√1−(1213)2=513,∵ ∠A +∠B =90∘,∴ sin B =cos A =513,cos B =sin A =1213.【考点】互余两角三角函数的关系同角三角函数的关系【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)如图所示,△ABC 即为所求.(2)如图所示,△BCD 即为所求.由图知,tan ∠CDB =2.【考点】作图—几何作图锐角三角函数的定义--利用网格【解析】此题暂无解析【解答】此题暂无解答26.【答案】解:(1)sin 20∘≈0.3420;(2)cos 20∘≈0.9397;(3)tan 48∘≈1.1106;(4)sin 15∘32′≈0.2678;(5)cos 49∘18′≈0.6521;(6)tan 75∘3′≈3.745.【考点】计算器—三角函数【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵tan A=43,∴BCAC =43,∵BC=8cm,∴AC=6cm.【考点】锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:(1)DE与⊙O相切,理由:如图1,连接OD,AD,∵AB为⊙O的直径,∴AD⊥BC.∵AB=AC,∴BD=CD.∵AO=BO,∴OD//AC.∵DE⊥AC,∴OD⊥DE,∴DE与⊙O相切.(2)如图2,延长EO,交⊙O与N,连接DN,OD,∵DE与⊙O相切,∴∠ODE=90∘.∵cos∠DEF=45,∴DEOE =45.设DE=4x,则OE=5x,∴OD=3x=OF,∴EF=OE−OF=5x−3x=2x. 易证△EDF∼△END,∴DFND =EFED,∴tan∠EDF=tan∠N=DFDN =EFED=2x4x=12,即∠EDF的正切值为12.【考点】锐角三角函数的定义--利用三角形相似比例相似三角形的性质与判定切线的判定勾股定理【解析】此题暂无解析【解答】此题暂无解答29.【答案】√52π(2)由题意AB=m=CD,根据旋转的性质可知C′D=m,A′C=2+m. ∵AD // BC,∴C′DBC =A′DA′C,即m2=22+m,解得m=−1−√5(舍去)或−1+√5,∴C′D=−1+√5. ∵AB // CD,∴∠ABA′=∠BA′C,∴tan∠ABA′=tan∠BA′C=DC′A′D =−1+√52.【考点】旋转的性质矩形的性质弧长的计算锐角三角函数的定义--利用三角形相似比例【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)一次函数y=−2x+b的图象分别与x轴、y轴交于A,B两点,令x=0,则y=b,令y=0,则求得x=b2,∴A(b2,0),B(0,b),∴OA=b2,OB=b.在Rt△AOB中,tan∠ABO=OAOB =b2b=12,∵CE⊥x轴于点E,∴CE//y轴,∴∠ACE=∠ABO,∴tan∠ACE=12.(2)根据题意得S△AOBS△AEC =916=OB2CE2,∴OBCE =34.设点C的坐标为(x,−2x+b),则OB=b,CE=−2x+b,∴{b−2x+b=34,−2x+b=−4x,解得b=3√2或b=−3√2(舍去). 【考点】锐角三角函数的定义--利用三角形相似比例解分式方程——可化为一元二次方程反比例函数与一次函数的综合相似三角形的性质锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答31.【答案】−2−2√3.【考点】特殊角的三角函数值【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:(1)△CBP是等腰三角形;证明:连接OB,如图,∵BC是⊙O的切线,∴∠OBC=90∘,∴∠OBA+∠CBP=90∘,∵OP⊥OA,∴∠AOP=90∘,∴∠A+∠APO=90∘,∵OA=OB,∴∠A=∠ABO,∵∠APO=∠CPB,∴∠CBP=∠CPB,∴△CBP是等腰三角形;(2)设BC=x,则PC=x,在中,OB=OA=6,OC=CP+OP=x+2,∵OB2+BC2=OC2,∴62+x2=(x+2)2,解得x=8,即BC的长为8.(3)如图,作CD⊥BP于D,∵PC=PB,∴PD=BD=12PB=2√5,∵∠PDC=∠AOP=90∘,∠APO=∠CPD,∴△AOP∼∼PCD,∵S1S2=25,S△CPD=12S BCP=12S2,∴S1S△CPD =45,∴OACD =2√55,∵OA=6,∴CD=3√5,∴tan∠APO=tan∠CPD=CDPD =√52√5=32.【考点】锐角三角函数的定义--利用三角形相似比例相似三角形的性质与判定切线的性质勾股定理等腰三角形的判定【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:如图所示:△A1B1C1即为所求.过A作AD⊥BC交CB的延长线于D,则AD=2,CD=6,∴AC=√22+62=2√10,∴sin∠A1C1B1=sin∠ACB=ADAC =210=√1010.【考点】锐角三角函数的定义--利用网格作图-位似变换【解析】此题暂无解析【解答】此题暂无解答34.【答案】(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90∘.∵CD⊥PB,∴∠CEP=90∘,∴∠CEP=∠CDA,∴PB // AD,∴∠POA=∠CAD,∴△APO∼△DCA.(2)解:如图2,连结OD,①∵AD=AO,OD=AO,∴△OAD是等边三角形,∴∠OAD=60∘.∵PB // AD,∴∠POA=∠OAD=60∘.∵∠PAO=90∘,∴∠P=90∘−∠POA=90∘−60∘=30∘.②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连结PQ,BC,CQ,由①得:∠POA=60∘,∠PAO=90∘,∴∠BOC=∠POA=60∘.∵OB=OC,∴∠ACB=60∘,∴∠BQC=∠BAC=30∘.∵BQ⊥AC,∴CQ=BC.∵BC=OB=OA,∠BQC=∠CBQ=∠OAB=∠OBA. ∴△CBQ≅△OBA(AAS),∴BQ=AB.∵∠OBA=∠OPA=30∘,∴AB=AP.∴BQ=AP.∵PA⊥AC,∴BQ // AP,∴四边形ABQP是平行四边形,∵AB=AP,∴四边形ABQP是菱形,∴PQ=AB.∴PQCQ =ABBC=tan∠ACB=tan60∘=√3.【考点】锐角三角函数的定义--与圆有关圆与相似的综合等边三角形的性质与判定全等三角形的性质与判定相似三角形的判定圆周角定理特殊角的三角函数值切线的性质菱形的判定【解析】此题暂无解析【解答】此题暂无解答35.【答案】(1)证明:连结AD,OD,如图.∵AB是⊙O的直径,∴∠ADB=90∘.∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD // AC.又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD⊥DE,DE⊥AC,∴四边形OAED为矩形.而OD=OA,∴四边形OAED为正方形,∴AE=AO,∴tan∠ABE=AEAB =12;(3)解:∵AB是⊙O的直径,∴∠AFB=90∘,∴∠ABF+∠FAB=90∘.而∠EAP+∠FAB=90∘,∴∠EAP=∠ABF,∴tan∠EAP=tan∠ABE=12. 在Rt△EAP中,AE=OA=2.∵tan∠EAP=EPAE =12,∴EP=1,∴AP=√AE2+EP2=√5.【考点】锐角三角函数的定义--与圆有关圆周角定理解直角三角形切线的判定与性质正方形的判定与性质【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:过A作AD⊥BC,交BC的延长线于点D,如图1所示:在Rt△ADC中,AC=4,∵∠C=150∘,∴∠ACD=30∘,∴AD=12AC=2,CD=AC⋅cos30∘=4×√32=2√3.在Rt△ABD中,tan B=ADBD =2BD=18,∴BD=16,∴BC=BD−CD=16−2√3.【考点】锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答37.【答案】(1)∵sinα=0.5018,∴α≈30.1191∘.∴a≈30∘7′9″;(2)∵tanθ=5,∴θ=78.6900∘≈78∘41′24″.【考点】计算器—三角函数【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵在Rt△ABC中,∠C=90∘,AC=8,BC=17,∴AB2=AC2+BC2=353,∴AB=√353,∴sin A=BCAB =√353=17√353353=cos B,cos A=ACAB =√353=8√353353=sin B,tan A=BCAC =178=cot B,cot A=ACBC =817=tan B.【考点】锐角三角函数的定义【解析】此题暂无解析【解答】此题暂无解答39.【答案】解:(1)将B(4,0),C(0,2)分别代入y=−12x2+bx+c,得:{−8+4b+c=0,c=2,解得b=32,c=2,∴抛物线的解析式为y=−12x2+32x+2.(2)①存在,P(1,3),Q(3,2).理由如下:∵点E为OB中点,∴OE=2.设P点横坐标为m,过点P作PM⊥y轴,垂足为M,如图,当四边形EGPQ为正方形时,GE=GP,∠PGE=90∘,可证△MPG≅△OGE,∴ GM=OE=2,OG=m,∴ OM=m+2,∴−12m2+32m+2=m+2,解得m=1,∴ P(1,3).过点Q作QN⊥x轴,垂足为N,可证△NEQ≅△OGE,∴ QN=OE=2.设点Q的纵坐标为n,得−12n2+32n+2=2,解得n=3,∴ Q(3,2).②P(3,2)或P(32,258),理由如下:分情况进行讨论:若△CPD∼△ACO,过点P作PF⊥x轴交BC于E,交x轴于F,过点C作CG⊥PF交PF于G,如图,由(1)知y=−12x2+32x+2,∴A(−1,0),∵tan∠CAO=tan∠OCB=2,∴∠CAO=∠OCB=∠FEB=∠PEC,又∠CAO=∠PCD,∴∠PCE=∠PEC,∴△CPE是等腰三角形,又PD⊥BC,∴CD=DE,设CD的长为a,则DE=a,∴DP=2a,PE=PC=√5a,∴CG=CE⋅DPPE =√5a,即OF=4√5a,∴PG=√PC2−CG2=3√5a,∴P点坐标为(√5a,2+√5a),代入y=−12x2+32x+2,化简得−85a2+3√55a=0,∵a≠0,∴85a=3√55,解得a=3√58,∴P(32,258);若△CPD∼△CAO,则∠PCD=∠ACO=∠CBO,∴CP//OB,即P点的纵坐标为2,代入y=−12x2+32x+2,解得x=3或x=0(舍去),∴P(3,2).综上,当△CPD和△ACO相似时,P(3,2)或P(32,25 8).【考点】锐角三角函数的定义--利用三角形相似比例二次函数综合题待定系数法求二次函数解析式勾股定理【解析】此题暂无解析【解答】此题暂无解答40.【答案】解∶(1)如图所示,△ABC即为所求.(2)如图所示,△A1B1C1即为所求.(3)由图可知:tan∠AB1B=5.3【考点】锐角三角函数的定义--利用网格作图-旋转变换坐标与图形变化-旋转关于原点对称的点的坐标【解析】此题暂无解析【解答】此题暂无解答。

专题22 锐角三角函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题22 锐角三角函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题22锐角三角函数及其应用(30题)一、单选题1.(2023·江苏南通·统考中考真题)如图,从航拍无人机A 看一栋楼顶部B 的仰角α为30︒,看这栋楼底部C 的俯角β为60︒,无人机与楼的水平距离为120m ,则这栋楼的高度为()A .1403mB .1603mC .1803mD .2003m2.(2023·湖南益阳·统考中考真题)如图,在平面直角坐标系xOy 中,有三点()0,1A ,()4,1B ,()5,6C ,则sin BAC ∠=()A .12B .135C .22D .323.(2023·山东日照·统考中考真题)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=︒,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=︒,15.3m BC =,则灯塔的高度AD 大约是()(结果精确到1m ,参考数据:2 1.41≈,3 1.73≈)A .31mB .36mC .42mD .53mA.32sin25二、解答题5.(2023·辽宁盘锦两点时,一架无人机从空中的6.(2023·辽宁鞍山·统考中考真题)某商店窗前计划安装如图面图中,墙面BC垂直于地面CE∠=∠所在墙面BC垂直,即ABC∠线恰好照射在地面点D处,则ADE7.(2023·辽宁阜新·统考中考真题)如图,小颖家所在居民楼高AB 为46m ,从楼顶A 处测得另一座大厦顶部C 的仰角α是45︒,而大厦底部D 的俯角β是37︒.(1)求两楼之间的距离BD .(2)求大厦的高度CD .(结果精确到0.1m .参考数据:sin 370.6︒≈,cos370.8︒≈,tan 370.75︒≈)8.(2023·陕西·统考中考真题)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得2.4m DF =;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为266︒..已知爸爸的身高 1.8m CD =,小明眼睛到地面的距离 1.6m EF =,点F 、D 、B 在同一条直线上,EF FB ⊥,CD FB ⊥,AB FB ⊥.求该景观灯的高AB .(参考数据:sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50)︒≈10.(2023·山东济南·统考中考真题)图1是某越野车的侧面示意图,BC=,1230.6mAO=.如图2,打开后备箱,车后盖ABC∠=︒,该车的高度 1.7m(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.位于码头A北偏东60︒方向.一艘勘测船从海岛C沿北偏西30︒方向往灯塔B行驶,沿线勘测石油资源,勘测发现位于码头A北偏东15︒方向的D处石油资源丰富.若规划修建从D处到海岸线的输油管道,则输油管道的最短长度是多少千米?(结果保留根号)12.(2023·浙江·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能OA=,识别的最远水平距被识别),其示意图如图2,摄像头A的仰角、俯角均为15︒,摄像头高度160cm OB=.离150cm(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据︒≈︒≈︒≈︒≈︒≈︒≈)sin150.26,cos150.97,tan150.27,sin200.34,cos200.94,tan200.3613.(2023·江苏宿迁·统考中考真题)【问题背景】由光的反射定律知:反射角等于入射角(如图,即【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图)动至1E处,小军恰好通过镜子看到广告牌顶端到广告牌的底端A,测出2DE告牌AG的高度.【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔①让小军站在斜坡的底端D处不动(小军眼睛离地面距离面上)位置至E处,让小军恰好能看到塔顶(即8tan15ADG∠=).通过他们给出的方案,请你算出信号塔14.(2023·辽宁·统考中考真题)小亮利用所学的知识对大厦的高度大厦底部的俯角是30︒,测得大厦顶部的仰角是37︒,已知他家楼顶B 处距地面的高度BA 为40米(图中点A ,B ,C ,D 均在同一平面内).(1)求两楼之间的距离AC (结果保留根号);(2)求大厦的高度CD (结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈)15.(2023·江苏泰州·统考中考真题)如图,堤坝AB 长为10m ,坡度i 为1:0.75,底端A 在地面上,堤坝与对面的山之间有一深沟,山顶D 处立有高20m 的铁塔CD .小明欲测量山高DE ,他在A 处看到铁塔顶端C 刚好在视线AB 上,又在坝顶B 处测得塔底D 的仰角α为2635︒'.求堤坝高及山高DE .(sin 26350.45'︒≈,cos 26350.89'︒≈,tan 26350.50'︒≈,小明身高忽略不计,结果精确到1m )16.(2023·湖南娄底·统考中考真题)几位同学在老师的指导下到某景区进行户外实践活动,在登山途中发17.(2023·黑龙江大庆·统考中考真题)某风景区观景缆车路线如图所示,缆车从点AB=米,达山顶P,其中400与水平方向的夹角为30︒,求垂直高度︒≈)tan150.26818.(2023·宁夏·统考中考真题)如图,粮库用传送带传送粮袋,大转动轮的半径为成30︒角.假设传送带与转动轮之间无滑动,当大转动轮转19.(2023·湖北恩施·统考中考真题)小王同学学习了锐角三角函数后,通过观察广场的台阶与信号塔之间的相对位置,他认为利用台阶的可测数据与在点A ,B 处测出点D 的仰角度数,可以求出信号塔DE 的高.如图,AB 的长为5m ,高BC 为3m .他在点A 处测得点D 的仰角为45︒,在点B 处测得点D 的仰角为38.7︒,A B C D E ,,,,在同一平面内.你认为小王同学能求出信号塔DE 的高吗?若能,请求出信号塔DE 的高;若不能,请说明理由.(参考数据:sin 38.70.625︒≈,cos38.70.780︒≈,tan 38.70.80︒≈,结果保留整数)20.(2023·辽宁营口·统考中考真题)为了丰富学生的文化生活,学校利用假期组织学生到素质教育基地A 和科技智能馆B 参观学习,学生从学校出发,走到C 处时,发现A 位于C 的北偏西25︒方向上,B 位于C 的北偏西55︒方向上,老师将学生分成甲乙两组,甲组前往A 地,乙组前往B 地,已知B 在A 的南偏西20︒方向上,且相距1000米,请求出甲组同学比乙组同学大约多走多远的路程(参考数据:2 1.41≈,6 2.45≈)21.(2023·山东·统考中考真题)如图,某育苗基地为了能够最大限度地遮挡夏季炎热的阳光和充分利用冬天的光照,计划在苗圃正上方搭建一个平行于地面的遮阳蓬.已知苗圃的(南北)宽 6.5AB =米,该地区一(1)求登山缆车上升的高度DE ;(2)若步行速度为30m/min ,登山缆车的速度为60m/min ,求从山底A 处到达山顶D 处大约需要多少分钟(结果精确到0.1min )(参考数据:sin 530.80cos530.60tan 53 1.33︒≈︒≈︒≈,,)24.(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,2 1.41≈)25.(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A 级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G 处挂一条大型竖直条幅到点E 处,挂好后,小明进行实地测(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)甘肃兰州·统考中考真题)如图127.(2023·内蒙古·统考中考真题)为了增强学生体质、图,A点为出发点,途中设置两个检查点,分别为的南偏东25︒方向32km处,C点在A点的北偏东45︒.的度数;(1)求行进路线BC和CA所在直线的夹角BCA(2)求检查点B和C之间的距离(结果保留根号).28.(2023·吉林·统考中考真题)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用α=________.AB=.1.54mBD=.10m三、填空题m .(精确到1m .参考数据:tan 50 1.2tan 26.60.5︒≈︒≈,)30.(2023·内蒙古赤峰·统考中考真题)为发展城乡经济,建设美丽乡村,某乡对A 地和B 地之间的一处垃圾填埋场进行改造,把原来A 地去往B 地需要绕行到C 地的路线,改造成可以直线通行的公路AB .如图,经勘测,6AC =千米,60CAB ∠=︒,37CBA ∠=︒,则改造后公路AB 的长是千米(精确到0.1千米;参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈).。

专题22 锐角三角函数及其应用(共60题)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题22 锐角三角函数及其应用(共60题)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题22锐角三角函数及其应用(60题)一、解答题1.(2023·河南·统考中考真题)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).2.(2023·四川宜宾·统考中考真题)渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD ,如图2.在桥面上点A 处,测得A 到左桥墩D 的距离200AD =米,左桥墩所在塔顶B 的仰角45BAD ∠=︒,左桥墩底C 的俯角15CAD ∠=︒,求CD 的长度.(结果精确到1米.参考数据:2 1.41≈,3 1.73≈)3.(2023·辽宁·统考中考真题)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m 高的山峰,由山底A 处先步行300m 到达B 处,再由B 处乘坐登山缆车到达山顶D 处.已知点A ,B .D ,E ,F 在同一平面内,山坡AB 的坡角为30︒,缆车行驶路线BD 与水平面的夹角为53︒(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE ;(2)若步行速度为30m/min ,登山缆车的速度为60m/min ,求从山底A 处到达山顶D 处大约需要多少分钟(结果精确到0.1min )(参考数据:sin 530.80cos530.60tan 53 1.33︒≈︒≈︒≈,,)4.(2023·甘肃兰州·统考中考真题)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD 高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD 位于垂直地面的基座BC 上,在平行于水平地面的A 处测得38BAC ∠=︒、53BAD ∠=︒,18m AB =.求“龙”字雕塑CD 的高度.(B ,C ,D 三点共线,BD AB ⊥.结果精确到0.1m )(参考数据:sin 380.62︒≈,cos380.79︒≈,tan 380.78︒≈,sin 530.80︒≈,cos530.60︒≈,tan 53 1.33︒≈)5.(2023·内蒙古通辽·统考中考真题)如图,一艘海轮位于灯塔P 的北偏东72︒方向,距离灯塔100nmile 的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东40︒方向上的B 处.这时,B 处距离灯塔P 有多远(结果取整数)?(参考数据:sin 720.95,cos720.31,tan 72 3.08,sin 400.64,c os 400.77,tan 400.84︒≈︒≈︒≈︒≈︒≈︒≈.)6.(2023·湖北·统考中考真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米,18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)7.(2023·湖南张家界·统考中考真题)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB 的高度,测量方案如图:先将无人机垂直上升至距水平地面225m 的P 点,测得奇楼顶端A 的俯角为15︒,再将无人机沿水平方向飞行200m 到达点Q ,测得奇楼底端B 的俯角为45︒,求奇楼AB 的高度.(结果精确到1m ,参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)8.(2023·辽宁大连·统考中考真题)如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m ?(结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)9.(2023·广东·统考中考真题)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈,cos500.643︒≈,tan50 1.192︒≈)10.(2023·湖南·统考中考真题)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F 运载火箭托举神舟十六号载人飞船跃入苍穹中国空间站应用与发展阶段首次载人发射任务取得圆满成功,如图(九),有一枚运载火箭从地面O 处发射,当火箭到达P 处时,地面A 处的雷达站测得AP 距离是5000m ,仰角为23︒.9s ,火箭直线到达Q 处,此时地面A 处雷达站测得Q 处的仰角为45︒.求火箭从P 到Q 处的平均速度(结果精确到1m/s ).(参考数据:sin 230.39,cos230.92,tan 230.42︒≈︒≈︒≈)11.(2023·浙江绍兴·统考中考真题)图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上,2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos 320.85,tan 320.62︒≈︒≈︒≈)12.(2023·浙江台州·统考中考真题)教室里的投影仪投影时,可以把投影光线CA ,CB 及在黑板上的投影图像高度AB 抽象成如图所示的ABC ,90BAC ∠=︒.黑板上投影图像的高度120cm AB =,CB 与AB 的夹角33.7B ∠=︒,求AC 的长.(结果精确到1cm .参考数据:sin 33.70.55︒≈,cos33.70.83︒≈,tan 33.70.67︒≈)13.(2023·湖南怀化·统考中考真题)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD (碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A 点用测角仪测得碑顶D 的仰角为30︒,在B 点处测得碑顶D 的仰角为60︒,已知35m AB =,测角仪的高度是1.5m (A 、B 、C 在同一直线上),根据以上数据求烈士纪念碑的通高CD .(3 1.732≈,结果保留一位小数)14.(2023·新疆·统考中考真题)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A 处,测得烽燧BC 的顶部C 处的俯角为50︒,测得烽燧BC 的底部B 处的俯角为65︒,试根据提供的数据计算烽燧BC 的高度.(参数据:sin500.8︒≈,cos500.6︒≈,tan50 1.2≈,sin650.9︒≈,cos650.4︒≈,tan65 2.1︒≈)15.(2023·四川遂宁·统考中考真题)某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到角的度数边的长度数据处理组得到上面数据以后做了认真分析.距离.于是数据处理组写出了以下过程,请补全内容.已知:如图,在ABC求:线段AB的长.(为减小结果的误差,若有需要,果保留整数.)16.(2023·四川成都·统考中考真题)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为16︒,且靠墙端离地高BC 为4米,当太阳光线AD 与地面CE 的夹角为45︒时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.29︒≈︒≈︒≈)17.(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,2 1.41≈)18.(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A 级风景区,元明塔造型独特,是莲花山风景区(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)19.(2023·山东东营统考中考真题)一艘船由A30°方向航行40km至C港,则A,C两港之间的距离为多少统考中考真题)超速容易造成交通事故.高速公路管理部门在某隧道内的装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A D B F 、、、在同一直线上.点C 、点E 到AB 的距离分别为CD EF 、,且7m,895m CD EF CE ===,在C 处测得A 点的俯角为30︒,在E 处测得B 点的俯角为45︒,小型汽车从点A 行驶到点B 所用时间为45s .(1)求,A B 两点之间的距离(结果精确到1m );(2)若该隧道限速80千米/小时,判断小型汽车从点A 行驶到点B 是否超速?并通过计算说明理由.(参考数据:2 1.4,3 1.7≈≈)21.(2023·内蒙古·统考中考真题)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A 点为出发点,途中设置两个检查点,分别为B 点和C 点,行进路线为A B C A →→→.B 点在A 点的南偏东25︒方向32km 处,C 点在A 点的北偏东80︒方向,行进路线AB 和BC 所在直线的夹角ABC ∠为45︒.(1)求行进路线BC 和CA 所在直线的夹角BCA ∠的度数;(2)求检查点B 和C 之间的距离(结果保留根号).22.(2023·湖南常德·统考中考真题)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD 是平行四边形,座板CD 与地面MN 平行,EBC 是等腰三角形且BC CE =,114.2FBA ∠=︒,靠背57cm FC =,支架43cm AN =,扶手的一部分16.4cm BE =.这时她问小余同学,你能算出靠背顶端F 点距地面(MN )的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin 65.80.91︒=,cos 65.80.41︒=,tan 65.8 2.23︒=)23.(2023·山东·统考中考真题)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)24.(2023·重庆·统考中考真题)人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60︒方向,B 在灯塔C 的南偏东45︒方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 处?(参考数据:2 1.414≈,3 1.732≈)25.(2023·山东聊城·统考中考真题)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B 在角楼A 的正东方向520m 处,南关桥C 在城门楼B 的正南方向1200m 处.在明珠大剧院P 测得角楼A 在北偏东68.2︒方向,南关桥C 在南偏东56.31︒方向(点A ,B ,C ,P 四点在同一平面内).求明珠大剧院到龙堤BC 的距离(结果精确到1m ).(参考数据:sin 68.20.928︒≈,cos68.20.371︒≈,tan 68.2 2.50︒≈,sin 56.310.832︒≈,cos56.310.555︒≈,tan 56.31 1.50︒≈)26.(2023·四川·统考中考真题)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120︒,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角45OED ∠=︒,风叶OA 的视角30OEA ∠=︒.(1)已知α,β两角和的余弦公式为:()cos cos cos sin sin αβαβαβ+=-,请利用公式计算cos 75︒;(2)求风叶OA 的长度.27.(2023·湖北宜昌·统考中考真题)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约330km 的圆形轨道上,当运行到地球表面P 点的正上方F 点时,从中直接看到地球表面一个最远的点是点Q .在Rt OQF △中,6400km OP OQ =≈.(参考数据:cos160.96cos180.95cos 200.94cos 220.93π 3.14︒≈︒≈︒≈︒≈≈,,,,)(1)求cos α的值(精确到0.01);(2)在O 中,求 PQ 的长(结果取整数).28.(2023·四川泸州·统考中考真题)如图,某数学兴趣小组为了测量古树DE 的高度,采用了如下的方法:先从与古树底端D 在同一水平线上的点A 出发,沿斜面坡度为2:3i =的斜坡AB 前进207m 到达点B ,再沿水平方向继续前进一段距离后到达点C .在点C 处测得古树DE 的顶端E 的俯角为37︒,底部D 的俯角为60︒,求古树DE 的高度(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,计算结果用根号表示,不取近似值).29.(2023·山西·统考中考真题)2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC 和AB 的长度(结果精确到0.1m .参考数据:3 1.73≈,2 1.41≈).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A ,B ,C ,D ,E 在同一竖直平面内,AE 与CD 均与地面平行,岸墙AB AE ⊥于点A ,135BCD ∠=︒,60EDC ∠=︒,6m ED =, 1.5m AE =, 3.5mCD =计(1)求COD∠的大小;(2)若在点B处测得点O在北偏西α方向上,其中tan现点A处的货车?(当该轿车行驶至点D处时,正好发现点米,在坡顶B 处测得教学楼CF 的楼顶C 的仰角45CBF ∠=︒,离B 点4米远的E 处有一个花台,在E 处测得C 的仰角60CEF ∠=︒,CF 的延长线交水平线AM 于点D ,求DC 的长(结果保留根号).32.(2023·湖北随州·统考中考真题)某校学生开展综合实践活动,测量某建筑物的高度AB ,在建筑物附近有一斜坡,坡长10CD =米,坡角30α=︒,小华在C 处测得建筑物顶端A 的仰角为60︒,在D 处测得建筑物顶端A 的仰角为30︒.(已知点A ,B ,C ,D 在同一平面内,B ,C 在同一水平线上)(1)求点D 到地面BC 的距离;(2)求该建筑物的高度AB .33.(2023·天津·统考中考真题)综合与实践活动中,要利用测角仪测量塔的高度.某学习小组在观景台C 处测得塔顶部B (1)求DE 的长;(2)设塔AB 的高度为h (单位:m ).①用含有h 的式子表示线段EA 的长(结果保留根号)②求塔AB 的高度(tan 27︒取0.5,3取34.(2023·山东临沂·统考中考真题)如图,灯塔得灯塔A 在北偏西58°方向上,继续航行航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530,cos 320.848,︒︒≈≈35.(2023·湖南永州·统考中考真题)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB 代表陈树湘雕像,一参观者在水平地面BN 上D 处为陈树湘雕拍照,相机支架CD 高0.9米,在相机C 处观测雕像顶端A 的仰角为45︒,然后将相机架移到MN 处拍照,在相机M 处观测雕像顶端A 的仰角为30︒,求D 、N 两点间的距离(结果精确到0.1米,参考数据:3 1.732≈)36.(2023·重庆·统考中考真题)为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?37.(2023·江苏苏州·统考中考真题)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,38.(2023·湖南·统考中考真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼243米的C处,遥控无人机旋停在点长为49.6米.已知目高CE为1.6(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于无人机刚好离开圆圆的视线EB39.(2023·山东烟台·统考中考真题)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30︒的坡地新安装了一架风力发电机,如图力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45︒,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18︒,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈︒,cos180.951≈︒,tan180.325≈︒)40.(2023·甘肃武威·统考中考真题)如图1,某人的一器官后面A 处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A 处,先在皮肤上选择最大限度地避开器官的B 处照射新生物,检测射线与皮肤MN 的夹角为DBN ∠;再在皮肤上选择距离B 处9cm 的C 处照射新生物,检测射线与皮肤MN 的夹角为ECN ∠.测量数据35DBN ∠=︒,22ECN ∠=︒,9cmBC =请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm )(参考数据:sin 350.57︒≈,cos350.82︒≈,tan 350.70︒≈,sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈)41.(2023·四川达州·统考中考真题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m ,当摆角BOC ∠恰为26︒时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角AOC ∠为50︒,求座板距地面的最大高度为多少m ?(结果精确到0.1m ;参考数据:sin260.44︒≈,cos260.9︒≈,tan260.49︒≈,sin500.77︒≈,cos500.64︒≈,tan50 1.2︒≈)42.(2023·江西·统考中考真题)如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)43.(2023·浙江宁波·统考中考真题)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A B ,两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B C ,分别测得气球A 的仰角ABD ∠为37︒,ACD ∠为45︒,地面上点B C D ,,在同一水平直线上,20m BC =,求气球A 离地面的高度AD .(参考数据:sin 370.60,cos 370.80︒≈︒≈,tan 370.75︒≈)44.(2023·江苏连云港·统考中考真题)渔湾是国家“AAAA ”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A 处出发,沿着坡角为48︒的山坡向上走了92m 到达B 处的三龙潭瀑布,再沿坡角为37︒的山坡向上走了30m 到达C 处的二龙潭瀑布.求小卓从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 为多少米?(结果精确到0.1m )(参考数据:sin480.74cos480.67sin370.60cos370.80︒≈︒≈︒≈︒≈,,,)45.(2023·四川广安·统考中考真题)为了美化环境,提高民众的生活质量,市政府在三角形花园ABC 边上修建一个四边形人工湖泊ABDE ,并沿湖泊修建了人行步道.如图,点C 在点A 的正东方向170米处,点E在点A 的正北方向,点B D 、都在点C 的正北方向,BD 长为100米,点B 在点A 的北偏东30︒方向,点D 在(1)求步道DE 的长度.(2)点D 处有一个小商店,某人从点达点D ,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:sin 580.85,cos58︒≈46.(2023·浙江嘉兴·统考中考真题)图才能被识别),其示意图如图平距离150cm OB =.(1)身高208cm 的小杜,头部高度为26cm ,他站在离摄像头水平距离130cm 的点C 处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm 的小若,头部高度为15cm ,踮起脚尖可以增高3cm ,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm ,参考数据sin150.26,cos150.97,tan150.27,sin 200.34,cos 200.94,tan 200.36︒≈︒≈︒≈︒≈︒≈︒≈)47.(2023·安徽·统考中考真题)如图,,O R 是同一水平线上的两点,无人机从O 点竖直上升到得A 到R 点的距离为40m,R 点的俯角为24.2︒,无人机继续竖直上升到B 点,测得R 点的俯角为人机从A 点到B 点的上升高度AB (精确到0.1m ).参考数据:sin24.20.41,cos24.20.91,tan24.2≈≈︒︒sin36.90.60,cos36.90.80,tan36.90.75≈≈≈︒︒︒.48.(2023·浙江·统考中考真题)如图,某工厂为了提升生产过程中所产生废气的净化效率,需在气体净化设备上增加一条管道A D C --,已知DC BC ⊥,,60,11m,4m AB BC A AB CD ⊥∠=︒==,求管道A D C --的总长.49.(2023·浙江温州·统考中考真题)根据背景素材,探索解决问题.测算发射塔的高度经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度.问题解决分析规划选择两个观测位置:点_________和点_________写出所选位置观测角的正切值,并量出观测点之获取数据间的图上距离.推理计算计算发射塔的图上高度MN.楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度..(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB BC CD ,,,山的高度即为三段坡面的铅直高度BH CQ DR ,,之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN MP ,的一端放在坡面起始端A 处,直杆MP 沿坡面AB 方向放置,在直杆MN 另一端N 用细线系小重物G ,当直杆MN 与铅垂线NG 重合时,测得两杆夹角α的度数,由此可得山坡AB 坡角β的度数.请直接写出αβ,之间的数量关系.(2)测量山高同学们测得山坡AB BC CD ,,的坡长依次为40米,50米,40米,坡角依次为243045︒︒︒,,;为求BH ,小熠同学在作业本上画了一个含24︒角的Rt TKS △(如图3),量得5cm 2cm KT TS ≈≈,.求山高DF .(2 1.41≈,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP 置于MN 的顶端,当MN 与铅垂线NG 重合时,转动直杆NP ,使点N ,P ,D 共线,测得MNP ∠的度数,从而得到山顶仰角1β,向后山方向前进40米,采用相同方式,测得山顶仰角2β;画一个含1β的直角三角形,量得该角对边和另一直角边分别为1a 厘米,1b 厘米,再画一个含2β的直角三角形,量得该角对边和另一直角边分别为2a 厘米,2b 厘米.已知杆高MN 为1.6米,求山高DF .(结果用不含12ββ,的字母表示)二、填空题51.(2023·广西·统考中考真题)如图,焊接一个钢架,包括底角为37︒的等腰三角形外框和3m 高的支柱,52.(2023·湖北武汉·统考中考真题)如图,将端点重合,OA与尺下沿重合,OB放置在该尺上,则OC与尺上沿的交点(结果精确到0.1cm,参考数据:53.(2023·湖南·统考中考真题)《意思是:“……直角的一半的角叫做宣,一宣半的角叫做欘=︒),问题:图(1)为中国古代一种强弩图,矩90∠=______度.∠=欘,则CB154.(2023·湖南岳阳·统考中考真题)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8︒,仪器与气球的水平距离且距地面高度AB为1.5米,则气球顶部离地面的高度EC是_________米(结果精确到sin21.80.3714,cos21.80.9285,tan21.80.4000︒≈︒≈︒≈).55.(2023·内蒙古赤峰·统考中考真题)为发展城乡经济,建设美丽乡村,某乡对圾填埋场进行改造,把原来A地去往B地需要绕行到C地的路线,改造成可以直线通行的公路经勘测,6AC =千米,60CAB ∠=︒,37CBA ∠=︒,则改造后公路AB 的长是___________千米(精确到0.1千米;参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈).56.(2023·山东·统考中考真题)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A ,在点A 和建筑物之间选择一点B ,测得30m AB =.用高()1m 1m AC =的测角仪在A 处测得建筑物顶部E 的仰角为30︒,在B 处测得仰角为60︒,则该建筑物的高是_________m .57.(2023·湖北荆州·统考中考真题)如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30 ,底部C 的俯角为60 ,无人机与旗杆的水平距离AD 为6m ,则该校的旗杆高约为___________m .(3 1.73≈,结果精确到0.1)58.(2023·湖北黄冈·统考中考真题)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD 的中点A 处竖直上升30米到达B 处,测得博雅楼顶部E 的俯角为45︒,尚美楼顶部F 的俯角为30︒,己知博雅楼高度CE 为15米,则尚美楼高度DF 为_____________米.(结果保留根号)59.(2023·山东枣庄·统考中考真题)如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=︒,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)60.(2023·四川眉山·统考中考真题)一渔船在海上A 处测得灯塔C 在它的北偏东60°方向,渔船向正东方向航行12海里到达点B 处,测得灯塔C 在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C 的最短距离是____________海里.。

中考数学—锐角三角函数的综合压轴题专题复习附答案

中考数学—锐角三角函数的综合压轴题专题复习附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=33PE=33x米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数3.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数5.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.【答案】(1)(6,3). 30.(3,3)(2)()()()()243x 430x 3331333x x 3x 5232S {23x 1235x 93543x 9x +≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33). (2)当0≤x≤3时, 如图1,OI=x ,IQ=PI•tan60°=3,OQ=OI+IQ=3+x ; 由题意可知直线l ∥BC ∥OA , 可得EF PE DC 31==OQ PO DO 333==,∴EF=13(3+x ), 此时重叠部分是梯形,其面积为:EFQO 14343S S EF OQ OC 3x x 43233==+⋅=+=+梯形()()当3<x≤5时,如图2,)HAQ EFQO EFQO 221S S S S AH AQ243331333 3x 3=∆=-=-⋅⋅=+---梯形梯形当5<x≤9时,如图3,12S BE OAOC 312x 2323 =x 1233=+⋅=--+()()。

初三数学锐角三角函数测试题及答案

初三数学锐角三角函数测试题及答案

ACOP D B图3锐角三角函数(一)测试题一、 选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,已知AC=5,BC=2,那么sin ∠ACD=( )A 、35B 、32C 、552D 、252、如图1,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( ) A 、1200m B 、2400m C 、4003m D 、12003m3、(08)在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( )A 、34B 、43C 、35D 、535、如图2,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A 、311B 、113C 、119D 、9116、在△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=22ABC 三个角的大小关系是( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A7、若关于x 的方程x 2-2x+cos α=0有两个相等的实数根,则锐角α为( )A 、30°B 、45°C 、60°D 、0°8、如图3,∠AOB=30°,OP 平分∠AOB ,PC ∥OB ,PD ⊥DB , 如果PC=6,那么PD 等于( ) A 、4 B 、3 C 、2 D 、19、已知∠A 为锐角,且cosA ≤21,则( )A 、 0°≤A ≤60°B 、60°≤A <90°C 、0°<A ≤30°D 、30°≤A ≤90°10、如图4,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,设∠ACE=α,则 tan α的值为( )ABC( α 图1CEDAB图2(αA 、21B 、34C 、43D 、2二、 填空题(每小题3分,共30分)11、直线y=kx-4与y 轴相交所成的锐角的正切值为21,则k 的值为。

人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)

人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)

第二十八章 锐角三角函数一、单选题1.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为( )A .B .C .D . 2.(2016甘肃省兰州市)在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( ) A .4 B .6 C .8 D .103.在Rt △ABC 中,∠C=90°,sinB=513,则tanA 的值为( ) A .513 B .1213 C .512 D .1254.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( ) A .2sinA 3= B .2cosA 3= C .2tanA 3= D .2cotA 3= 5.如图,过点C (﹣2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB=( )A .25B .23C .52D .326.如图,某超市自动扶梯的倾斜角 为 ,扶梯长 为 米,则扶梯高 的长为( )A.米B.米C.米D.米7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米8.若某人沿坡角为α的斜坡前进100m,则他上升的最大高度是()A.100 αm B.100sinαm C.100cosαm D.100 αm9.某水坝的坡度i=1,坡长AB=20米,则坝的高度为()A.10米B.20米C.40米D.2010.如图,两建筑物的水平距离为32 m,从点A测得点C的俯角为30°,点D的俯角为45°,则建筑物CD的高约为()A.14 m B.17 m C.20 m D.22 m二、填空题11.2sin45°+2sin60°﹣=_____. 12.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则sin A = .13.某同学沿坡比为1: 的斜坡前进了90米,那么他上升的高度是______米14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题15.计算:|﹣2|﹣2cos60°+(16)﹣1﹣(π0. 16.如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB .(结果保留根号)17.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.18.如图,为了测量出楼房AC的高度,从距离楼底C处D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据: 53°≈0.8, 53°≈0.6, 53°≈43,计算结果用根号表示,不取近似值).答案1.D2.D3.D4.C5.B6.A7.A8.A9.A10.A1112.3513.4514.215.|﹣2|﹣2cos60°+(16)﹣1﹣(π﹣ )0 =2﹣2×12+6﹣1 =6.16.解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan AM EM x AEM ==∠, 由题意得,FM EM EF -=,即40x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB为(61+米.17.解:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°。

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题)  含答案

第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数练习题初三
一、选择题
1. 在锐角三角形ABC中,已知∠ABC = 30°,AB = 8,BC = 4。

求AC的值。

A. 8
B. 12
C. 16
D. 20
2. 若sinα = 0.6,其中α是锐角,则cosα的值为:
A. 0.4
B. 0.6
C. 0.8
D. 1.2
3. 已知cosβ = 0.8,其中β是锐角,则sinβ的值为:
A. 0.2
B. 0.4
C. 0.6
D. 0.8
4. 在锐角三角形PQR中,已知PQ = 10,QR = 8。

求∠Q的大小。

A. 30°
B. 45°
C. 60°
D. 90°
5. 若tanθ = 0.5,其中θ是锐角,则sinθ的值为:
A. 0.3
B. 0.4
C. 0.5
D. 0.6
二、填空题
1. 已知∠A是锐角,则角A的对边对斜边的比值等于()。

2. 若sinα = 0.4,其中α是锐角,则cosα的值为()。

3. 若cosβ = 0.6,其中β是锐角,则sinβ的值为()。

4. 若tanθ = 0.8,其中θ是锐角,则cosθ的值为()。

5. 在锐角三角形ABC中,∠A = 30°,AB = 5,AC = 10。

求BC的值。

三、计算题
1. 已知锐角三角形ABC中,∠A = 60°,AB = 5,BC = 4。

求AC 的值。

2. 在锐角三角形PQR中,∠P = 45°,PQ = 6。

若PR = 6sinQ,求PR的值。

3. 在锐角三角形XYZ中,∠X = 45°,XY = 3,YZ = 4。

求tanZ的值。

4. 已知锐角三角形LMN中,∠L = 30°,LM = 5,LN = 10。

求MN 的值。

5. 在锐角三角形UVW中,∠U = 60°,tanU = 2,UW = 10。

求VW 的值。

四、证明题
证明:在锐角三角形ABC中,tanA + cotA = secA + cosecA。

解:
已知:
tanA = sinA / cosA
cotA = 1 / tanA
secA = 1 / cosA
cosecA = 1 / sinA
需要证明:
tanA + cotA = secA + cosecA
根据已知的定义,将左边和右边的式子进行化简:
左边:tanA + cotA = sinA / cosA + 1 / (sinA / cosA)
= sinA / cosA + cosA / sinA
= (sinA^2 + cosA^2) / (cosA * sinA)
= 1 / (cosA * sinA)
右边:secA + cosecA = 1 / cosA + 1 / sinA
= (sinA + cosA) / (cosA * sinA)
= 1 / (cosA * sinA)
由于分母和分子相等,得证:
tanA + cotA = secA + cosecA
综上所述,证明完成。

五、应用题
1. 已知锐角三角形ABC满足∠A = 30°,AB = 12。

若∠B = 90°,求BC和AC的长度。

解:
由于∠A = 30°,∠B = 90°,所以∠C = 60°。

(三角形内角和为180°)根据三角函数的定义,我们可得:
sin30° = BC / AB
cos30° = AC / AB
sin30° = 1/2,cos30° = √3/2
因此,BC = AB * sin30° = 12 * 1/2 = 6,AC = AB * cos30° = 12 *
√3/2 = 6√3。

答案:BC = 6,AC = 6√3。

2. 锐角三角形XYZ中,∠X = 45°,∠Y = 60°,XY = 2。

求YZ的长度。

解:
由于∠X = 45°,∠Y = 60°,所以∠Z = 180° - 45° - 60° = 75°。

(三角形内角和为180°)
根据三角函数的定义,我们可得:
tan45° = YZ / XY
cos75° = YZ / XY
tan45° = 1,cos75° = 1/√2
因此,YZ = XY * tan45° = 2 * 1 = 2,YZ = XY * cos75° = 2 * 1/√2 = √2。

答案:YZ = 2,YZ = √2。

六、综合题
1. 三角形ABC是等边三角形,边长为2。

求角A的正弦、余弦和正切值。

解:
由于三角形ABC是等边三角形,所以∠A = ∠B = ∠C = 60°。

根据三角函数的定义,我们可得:
sin60° = √3 / 2
cos60° = 1 / 2
tan60° = √3
答案:角A的正弦值为√3 / 2,余弦值为1 / 2,正切值为√3。

以上是锐角三角函数练习题的答案和解析,希望对你的学习有所帮助!。

相关文档
最新文档