高中数学(必修1)第1章13函数的奇偶性
【成才之路】2014-2015学年高中数学 1.3.2 奇偶性 第1课时 函数的奇偶性课件 新人教A版必修1

[分析] (1) 定义域关于原点对称 得到a,b所满足 → fx关于y轴对称 的关系,进而求值
(2)利用奇偶性质求值. (3)利用奇偶性确定 m 的值,再求单调区间.
[解析] (1)因为偶函数的定义域关于原点对称,所以 a-1 1 =-2a,解得 a=3. 1 2 又函数 f(x)=3x +bx+b+1 为二次函数,结合偶函数图象 的特点,易得 b=0.
2.了解奇函数和偶函数图象的对称性.
●温故知新 旧知再现 1 .轴对称图形:如果一个图形上的任意一点关于某一条 直线 的对称点仍是这个图形上的点,就称该图形关于该直线 _____
对称轴 . 成轴对称图形,这条直线称作该轴对称图形的________
2 .中心对称图形:如果一个图形上的任意一点关于某一 ____ 点 的对称点仍是这个图形上的点,就称该图形关于该点成中 心对称图形,这个点称作该中心对称图形的 __________. 对称中心 (-a,b) ,关于原 3.点P(a、b)关于y轴的对称点为P′__________ (-a,-b ) 点的对称点P″__________ .
1 2 2x +1,x>0 (4)f(x)= -1x2-1,x<0 2
.
[分析] → 定义域关于原点对称 利用函数奇偶性 — 的定义进行判断 → 研究f-x与 → 分段函数需分 段来研究 fx的关系
[解析]
(1)函数f(x)=x+1的定义域为实数集R,关于原点
对称.
= -f(x)=-x3. „可类推出:f(-x) ____
新知导学
1.偶函数和奇函数 偶函数 定 义 奇函数 f(-x)=_____ -f(x) 函数f(x)叫做奇函数 图象关于_____ 原点 对称
人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学 2018版 第1章 1.3.2 奇偶性

x (1)若函数 f(x)= 为奇函数,则 a=( 2x+1x-a 1 A. 2 3 C. 4 2 B. 3 D.1
)
(2)已知 f(x)=x5+ax3+bx-8 且 f(-2)=10,那么 f(2)=________.
上一页
返回首页
下一页
【精彩点拨】 (1)利用奇函数的定义得到 f(-1)=-f(1),列出方程求出 a; (2)由已知中 f(x)=x5+ax3+bx-8,我们构造出函数 g(x)=f(x)+8,由函数奇偶 性的性质,可得 g(x)为奇函数,由 f(-2)=10,我们逐次求出 g(-2)、g(2),可 求 f(2).
2 x -1≥0, 对于④,由 2 1 - x ≥0,
解得 x=± 1,故函数 h(x)的定义域为{-1,1},
且 h(x)=0,所以 h(x)既是奇函数,又是偶函数,④正确.
【答案】 ①③④
上一页
返回首页
下一页
定义法判断函数奇偶性的步骤
上一页
返回首页
下一页
[再练一题] 1.下列函数中,是偶函数的有________.(填序号) 1 (1)f(x)=x ;(2)f(x)=|x|+1;(3)f(x)= 2; x此ppt下载后可自行编辑高中数学课件上一页
返回首页
下一页
上一页
返回首页
下一页
阶 段 一
阶 段 三
1.3.2
奇偶性
学 业 分 层 测 评
阶 段 二
上一页
返回首页
下一页
1.结合具体函数了解函数奇偶性的含义.(难点) 2.会判断函数奇偶性的方法.(重点、难点) 3.能运用函数图象理解和研究函数的奇偶性,了解函数奇偶性与图象的对称性 之间的关系.(易混点)
人教版高中数学必修1 第一章知识点

• 10.函数最大(小)值(定义见课本)
(1)利用二次函数的性质(配方法)求函数的最大(小)
值. (2)利用图象求函数的最大(小)值 (3)利用函数单调性的判断函数的最大(小)值:如果函 数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则 函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b] 上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有
映射。记作“f:A→ B”
• 给定一个集合A到B的映射,如果a∈A,b∈B.且元 素a和元素b对应,那么,我们把元素b叫做元素a 的象,元素a叫做元素b的原象
• 7.函数单调性 • (1)增函数 • 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间 D内的任意两个自变量a,b,当a<b时,都有f(a)<f(b),那
• 9、函数的解析表达式
(1)函数的解析式是函数的一种表示方法,要
求两个变量之间的函数关系时,一是要求出它们之
间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:待定系数法、 换元法、消参法等,如果已知函数解析式的构造时, 可用待定系数法;已知复合函数f[g(x)]的表达式时, 可用换元法,这时要注意元的取值范围;当已知表 达式较简单时,也可用凑配法;若已知抽象函数表 达式,则常用解方程组消参的方法求出f(x)
点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A },
图象C一般的是一条光滑的连续曲线(或直线),也可能
是由与任意平行与Y轴的直线最多只有一个交点的若
干条曲线或离散点组成。
• (2) 画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对
高中数学:第一章 1.3.2 函数奇偶性 (42)

1.3.2奇偶性课标要点课标要点学考要求高考要求1.奇函数、偶函数的概念b b2.奇函数、偶函数的性质c c知识导图学法指导1.要深挖函数“奇偶性”的实质,也就是图象的对称性:是关于原点的中心对称还是关于y轴的轴对称.2.学习本节知识注意结合前面所学的知识,如单调性、函数图象、解析式等,加强它们之间的联系.3.学习奇偶性时不能忘记函数的定义域,奇偶性是函数整个定义域上的性质,忽略定义域是一个易错点.知识点奇、偶函数1.偶函数的定义一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.2.奇函数的定义一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.3.奇、偶函数的图象特征(1)奇函数的图象关于原点成中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)偶函数的图象关于y轴对称;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数.奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)偶函数的图象关于(0,0)对称.()(2)奇函数的图象关于y轴对称.()(3)函数f(x)=x2,x∈[-1,2]是偶函数.()(4)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.()答案:(1)×(2)×(3)×(4)√2.下列函数为奇函数的是()A.y=|x|B.y=3-x C.y=1x3D.y=-x2+14解析:A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.答案:C3.若函数y=f(x),x∈[-2,a]是偶函数,则a的值为()A.-2 B.2 C.0 D.不能确定解析:因为偶函数的定义域关于原点对称,所以-2+a=0,所以a=2.答案:B4.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)解析:(1)(3)关于y轴对称是偶函数,(2)(4)关于原点对称是奇函数.答案:(2)(4)(1)(3)类型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f(x)=x3+x;(2)f(x)=1-x2+x2-1;(3)f(x)=2x2+2xx+1;(4)f(x)=⎩⎪⎨⎪⎧x-1,x<0,0,x=0,x+1,x>0.【解析】(1)函数的定义域为R,关于原点对称.又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),因此函数f(x)是奇函数.(2)由⎩⎨⎧1-x2≥0,x2-1≥0得x2=1,即x=±1.因此函数的定义域为{-1,1},关于原点对称.又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,所以f(x)既不是奇函数也不是偶函数.(4)函数f(x)的定义域为R,关于原点对称.f(-x)=⎩⎪⎨⎪⎧-x-1,-x<0,0,-x=0,-x+1,-x>0,即f(-x)=⎩⎪⎨⎪⎧-(x+1),x>0,0,x=0,-(x-1),x<0.于是有f(-x)=-f(x).所以f(x)为奇函数.满足f(-x)=f(x)是偶函数,f(-x)=-f(x)是奇函数.方法归纳函数奇偶性判断的方法(1)定义法:(2)图象法:若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.此法多用在解选择、填空题中.跟踪训练1判断下列函数的奇偶性:(1)f(x)=x2(x2+2); (2)f(x)=|x+1|-|x-1|;(3)f(x)=1-x2x;(4)f(x)=⎩⎪⎨⎪⎧x+1,x>0,-x+1,x<0.解析:(1)∵x∈R,∴-x∈R.又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),∴f(x)为偶函数.(2)∵x∈R,∴-x∈R.又∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)为奇函数.(3)f(x)的定义域为[-1,0)∪(0,1].即有-1≤x≤1且x≠0,则-1≤-x≤1,且-x≠0,又∵f(-x)=1-(-x)2-x=-1-x2x=-f(x),∴f(x)为奇函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-x)=1+x=f(x);当x<0时,-x>0,f(-x)=1+(-x)=1-x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.根据函数奇偶性定义判断.类型二函数奇偶性的图象特征例2设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是________.【解析】由奇函数的性质知,其图象关于原点对称,则f(x)在定义域[-5,5]上的图象如图,由图可知不等式f(x)<0的解集为{x|-2<x<0或2<x≤5}.【答案】{x|-2<x<0或2<x≤5}根据奇函数的图象关于原点对称作图,再求出f(x)<0的解集.方法归纳根据奇偶函数在原点一侧的图象求解与函数有关的值域、定义域、不等式问题时,应根据奇偶函数图象的对称性作出函数在定义域另一侧的图象,根据图象特征求解问题.跟踪训练2如图,给出了偶函数y=f(x)的局部图象,试比较f(1)与f(3)的大小.解析:方法一因函数f(x)是偶函数,所以其图象关于y轴对称,补全图如图.由图象可知f (1)<f (3).方法二 由图象可知f (-1)<f (-3). 又函数y =f (x )是偶函数, 所以f (-1)=f (1),f (-3)=f (3),故f (1)<f (3).方法一是利用偶函数补全图象,再比较f(1)与f(3)的大小; 方法二f(1)=f(-1),f(3)=f(-3),观察图象判断大小.类型三 利用函数奇偶性求参数例3 (1)设函数f (x )=(x +1)(x +a )x为奇函数,则a =________; (2)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,ax 2+x ,x <0是奇函数,则a =________.【解析】 (1)方法一(定义法) 由已知 f (-x )=-f (x ),即(-x +1)(-x +a )-x=-(x +1)(x +a )x . 显然x ≠0得,x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1.方法二(特值法) 由f (x )为奇函数得 f (-1)=-f (1),即(-1+1)(-1+a )-1=-(1+1)(1+a )1, 整理得a =-1.(2)(特值法) 由f (x )为奇函数, 得f (-1)=-f (1),[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.下列函数是偶函数的是( ) A .y =2x 2-3 B .y =x 3 C .y =x 2,x ∈[0,1] D .y =x解析:对于A ,f (-x )=2(-x )2-3=2x 2-3=f (x ),∴f (x )是偶函数,B ,D 都为奇函数,C 中定义域不关于原点对称,函数不具备奇偶性,故选A.答案:A2.函数f (x )=1x -x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称解析:∵f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x =-f (x ),∴f (x )是奇函数,图象关于原点对称.答案:C3.下列图象表示的函数具有奇偶性的是( )解析:选项A 中的图象不关于原点对称,也不关于y 轴对称,故排除;选项C ,D 中函数的定义域不关于原点对称,也排除.选项B 中的函数图象关于y 轴对称,是偶函数,故选B.答案:B4.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④奇函数y =f (x )(x ∈R )的图象必过(-a ,f (a )).表述正确的个数是( ) A .1 B .2 C .3 D .4解析:偶函数的图象一定关于y 轴对称,但不一定与y 轴相交,例如,函数f (x )=x 0,其定义域为{x |x ≠0},故其图象与y 轴不相交,但f (x )=x 0=1(x ≠0)是偶函数,从而可知①是错误的,③是正确的. 奇函数的图象关于原点对称,但不一定经过坐标原点,例如,函数f (x )=1x ,其定义域为{x |x ≠0},可知其图象不经过坐标原点,但f (x )=1x 是奇函数,从而可知②是错误的.若点(a ,f (a ))在奇函数y =f (x )(x ∈R )的图象上,则点(-a ,-f (a ))也在其图象上,故④是错误的.答案:A5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0解析:由图知f (1)=12,f (2)=32,又f (x )为奇函数,所以f (-2)+f (-1)=-f (2)-f (1)=-32-12=-2.故选A.答案:A二、填空题(每小题5分,共15分)6.若函数f (x )=kx 2+(k -1)x +3是偶函数,则k 等于________.解析:由于函数f (x )=kx 2+(k -1)x +3是偶函数,因此k -1=0,k =1.答案:17.给出下列四个函数的论断: ①y =-|x |是奇函数;②y =x 2(x ∈(-1,1])是偶函数;解得b=0.答案:0三、解答题(每小题10分,共20分)9.判断下列函数的奇偶性:(1)f(x)=x3-x2x-1;(2)f(x)=x2-x3;(3)f(x)=|x-2|-|x+2|;(4)f(x)=x2+ax(x≠0,a∈R).解析:(1)∵函数f(x)=x3-x2x-1的定义域为{x|x∈R且x≠1},定义域不关于原点对称,∴该函数既不是奇函数也不是偶函数.(2)f(x)的定义域为R,是关于原点对称的.∵f(-x)=(-x)2-(-x)3=x2+x3,又-f(x)=-x2+x3,∴f(-x)既不等于f(x),也不等于-f(x).故f(x)=x2-x3既不是奇函数也不是偶函数.(3)方法一(定义法)函数f(x)=|x-2|-|x+2|的定义域为R,关于原点对称.∵f(-x)=|-x-2|-|-x+2|=|x+2|-|x-2|=-(|x-2|-|x+2|)=-f(x),∴函数f(x)=|x-2|-|x+2|是奇函数.方法二(根据图象进行判断)f(x)=|x-2|-|x+2|=⎩⎪⎨⎪⎧-4,x≥2,-2x,-2<x<2,4,x≤-2,画出图象如图所示,图象关于原点对称,因此函数f(x)是奇函数.(4)当a=0时,f(x)=x2为偶函数.当a≠0时,f(x)=x2+ax(x≠0),取x=±1,得f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0,即f(-1)≠-f(1),f(-1)≠f(1),∴函数f(x)既不是奇函数也不是偶函数.综上所述,当a∈R且a≠0时,函数f(x)既不是奇函数也不是偶函数;当a=0时,函数f(x)为偶函数.10.已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2-2x.(1)求出函数f(x)在R上的解析式;(2)画出函数f(x)的图象.解析:(1)①由于函数f(x)是定义域为R的奇函数,则f(0)=0;②当x<0时,-x>0,∵f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,综上,f(x)=⎩⎪⎨⎪⎧x2-2x,(x>0)0,(x=0)-x2-2x,(x<0)(2)图象如图:[能力提升](20分钟,40分)11.定义两种运算:a b=a2-b2,a⊗b=(a-b)2,则函数f(x)=2x(x⊗2)-2为()A.奇函数B.偶函数C.奇函数且为偶函数D.非奇函数且非偶函数解析:由定义知f(x)=4-x2(x-2)2-2=4-x2|x-2|-2,由4-x2≥0且|x-2|-2≠0,得-2≤x<0或0<x≤2,即函数f(x)的定义域为{x|-2≤x<0或0<x≤2},关于原点对称;f(x)=4-x22-x-2=-4-x2x,f(-x)=-4-x2-x=-f(x).故f(x)是奇函数.故选A.答案:A12.若f(x)是[-2,2]上的偶函数,在(0,2]上为增函数,且f(m-1)>f(m+1),则m的取值范围为________.解析:∵f(x)为偶函数,。
3.2函数的基本性质(单调性、最值、奇偶性)(新课改2019新版人教A版高中数学必修第一册)

6
3.2函数的基本性质
• 2.单调性
• (3)判断单调性:借助图形;定义.
• (4)证明单调性:定义法.
(5)步骤:
若 若① ② ③fff计(((xxxx算1111,)))xf2(xfff1((()Dxxx,222
且)f与(xx012比),较x2将;:其分解为若干可以直接确定符号的式子; ) 0,则f (x)在D上单调递增; ) 0,则f (x)在D上单调递减.
当k 0时, f ( 所以函数y
x1 ) kx
bf在(xR2 )上单0即调f递(x1增) ,f即(x函2 ).数y
kx
b是增函数.
当k 0时, f ( 所以函数y
x1 ) kx
bf在(xR2 )上单0即调f递(x1减) ,f即(x函2 ).数y
kx
b是减函数.
9
3.2函数的基本性质
• 2.单调性
11
3.2函数的基本性质
函数的最值与单调性密切相联.
• 3.最值
• (1)定义 一般地,设函数y f (x)的定义域为I,
若存在实数M 满足: 则①称xM是I,y 都 有f (fx)(的x)最 M大;值②. x0 I,使得f (x) M .
y
y=x²
O
x
若存在实数M 满足:
y
①x I,都有f (x) M;②x0 I,使得f (x) M . 则称M 是y f (x)的最小值. 函数y f (x)在闭区间[a,b]上单调递增或递减,
x
2取1 得最大值,在x
6处取得最小值.
O
由f (2) 2 2, f (6) 2 0.4. 所以该函2数1的最大值为26,最1 小值为0.4.
x
高中数学必修一第一章知识点

偶与偶
+加
奇
偶
—减
奇
偶
乘
偶
奇
偶
除
偶
奇
偶
注:“性质法”中的结论只有在两个函数的公共定义域内才成立。
第一章集合与函数概念重要知识点
一、集合有关概念
1.集合的含义:把一些元素组成的总体叫做集合。
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
注意:常用数集及其记法:
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)判断函数奇偶性的步骤
首先确定函数的定义域,并判断其是否关于原点对称;
确定f(-x)与f(x)的关系;
作出相应结论:;若f(-x) =-f(x),则f(x)是奇函数;
若f(-x) = f(x),则f(x)是偶函数.
②对应法则
③值域: 的取值范围
如果两个函数的定义域相同,并且对应关系完全一致,
那么这两个函数相等
3.区间的概念
区间的分类:
开区间: ,
闭区间: ,
半开半闭区间: ,或 ,分别表示为 ,
五.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
20162017学年人教版高中数学必修一132《奇偶性》课标分析

2016-2017学年人教版高中数学必修一1.3.2《奇偶性》word课标分析
1、3、2函数的奇偶性课标分析
【课标分析】
1、使学生从数与形两方面理解奇偶性的概念,掌握判断函数奇偶性的方法;
2、在奇偶性概念形成过程中,培养学生的观察、类比与归纳能力,同时渗透数形结合与特殊到一般的数学思想方法;
3、在学习中,体验数学的美感,培养善于观察、勇于探索的良好习惯与严谨的科学态度。
设想通过以下四个教学过程来实现教学目标、
1、用图象表述奇偶性:通过设置情景,通过实际生活中的例子,让学生对图象的对称有一个初步的感性认识,为下一步对概念的理性认识做好铺垫。
2、用文字概括奇偶性:利用图、表帮助学生对函数奇偶性由“形”到“数”认识,使得学生对函数奇偶性的研究经历从直观到抽象的过程。
3、用符号描述奇偶性:引导学生用数学符号语言准确定义奇(偶)函数;
4、对函数性质的思辨:通过教师的设问,引导学生对函数奇偶性、单调性探究的过程进行类比与辨析,进一步精致所学的概念,培养思辨能力与类比方法。
【学情分析】
学生已有的认知基础有:
1、学生已经学习过函数、轴对称与中心对称等知识;
2、之前已经学习过函数的单调性,经历了单调性的定义的形成过程;
学生可能会遇到的困难有:
1、学生要从“形”与“数”两个方面来理解“对称”这个概念,进而认识函数奇偶性的概念,将会有一定的难度;
2、在函数奇偶性概念形成过程中由特殊到一般的过渡,也就就是对定义中“任意”的理解;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第二章《函数》第三节函数的奇偶性(第一课时)讲课稿德阳市中江城北中学 姚志华教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)一:情景设置提出问题:同学们,上一节我们学习了的函数的单调性,大家还记得我们是用什么方式来研究的吗?学生回答(众):数形结合教师分析:对,我们是“利用函数的图象来理解函数的性质”,是先从函数的图象看出“随着自变量的增大函数值随之增大或减小”,然后利用函数解析式(从数的角度)进行研究。
这一节我们继续学习函数的另一个性质。
请大家请观察一下站在你们面前的老师具有怎样的数学特征? 把老师画下来是个“轴对称图形”,左耳与右耳是对称的,左眼与右眼是对称的,左手与手耳是对称的,这是我们初中学过的对称图形知识,那么大家还记得什么叫轴对称图形?什么叫中心对称图形?学生回答:沿着一条直线对折后的两部分能够完全重合的图形叫轴对称图形。
图形围绕某一个点旋转1800得到的图形与原图形重合的图形叫中心对称图形。
大自然的物质结构是用对称语言写成的,生活中的对称图案、对称符号丰富多彩,十分美丽(演示4个图形)。
教师分析:这一章我们学习的是函数,函数的图象也是一种图形,当函数的图像也是轴对称图形或中心对称图形时,我们又如何利用函数的解析式来刻画函数图象的几何特征呢?二:基本知识(一)偶函数概念教师提问:请大家观察函数y=x 2与函数y=|x|-2的图像有什么特征?大家能否用对称的观点来研究函数的图象呢?(1)反映在形:函数图像是轴对称图形,对称轴是y 轴。
即若点(x ,f (x ))是函数y=x 2图像上的任意一点,则它关于y 轴的对称点(-x ,f (-x ))也在函数y=x 2的图像上,这样的函数称之为偶函数。
(2)反映在数上:对于函数y=x 2有x … -3 -2 -1 0 1 2 3 … f (x )=x 2…94 1 0 149…对于函数y=|x|-2有x … -3 -2 -1 0 1 2 3 … f (x )=|x|-2… -112 1 0 -1 …f (-21)=(-21)2=(21)2=f (21);……(不完全归纳法),这里的数是取之不完的,因此与函数单调性一样,利用字母x 代替。
教师分析:我们的上述活动实际上已经完成了这样的数形对应:O x y也就是说,若自变量x 取一对相反数,则函数值相等,即f (-x )=(-x )=f (x )(这一结论是猜想出来的)。
于是得到偶函数的概念:如果对于函数y=f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数y=f (x )是偶函数。
任意的含义(因x 取不尽,所以利用任意来定义)【例1】已知偶函数f (x )=ax 2+bx+3a+b 的定义域为[a -1,2a],求函数y=f (x )的解析式。
答案:f (x )=31x 2+1。
变式:已知偶函数f (x )=ax 2+bx+c ,x ∈[2a +1,a 2],求a ,b 的值。
教师分析:大多数学生都能通过偶函数的定义出发由f (-x )=f (x ),得b=0,而如何求a 呢?教师提问:函数f (x )=3x 2,x ∈[0,2]是偶函数吗?为什么? 学生回答:不是,因为函数的图象不关于y 轴对称。
教师提问:导致函数图象不关于y 轴对称的根源在哪里? 学生回答:函数的定义域不关于原点对称。
教师分析:也就是说,偶函数的定义域有何特点? 学生回答:必须是关于原点对称的集合。
教师点评:通过自然界的对称实例和对于函数y=x 2与函数y=|x|-2图像的直观观察,学生头脑中建立了函数奇偶性的直观表象,学生初步理解了函数奇偶性的几何意义,这样的引入有助于帮助学生找准新旧知识的连接点,对新知识的学习具有某种“召唤力”。
(二)奇函数概念教师问题:与研究偶函数概念的方法一样,请大家考察函数y=x1与函数y=x 3的图像具有怎样的对称性?学生回答:关于原点对称 提出问题:从函数函数y=x1与函数y=x 3(1)反映在数上:f (-1)=(-1)3==-13=-f (1);f (-2)=(-2)3=-23=-f (2);f (-21)=(-21)3=-(21)3=-f (21)……(不完全归纳法),也就是说,若自变量x 取一对相反数时,则函数值也得到一对相反数,即f (-x )=(-x )3=-f (x )。
(2)反映在形上:若点(x ,f (x ))是函数y=x 3图像上的任意一点,则它关于原点的对称点(-x ,-f (x ))也在函数y=x 3的图像上,这样的函数称之为奇函数。
教师分析:我们的上述活动实际上已经完成了这样的数形对应:于是得到奇函数的概念:如果对于函数y=f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数y=f (x )是奇函数。
(三)奇偶函数概念的几点说明:(1)整体性:奇偶函数是定义在整个定义域上的概念,这与函数的单调性截然不同; (2)任意性:定义中的x 必须是定义域内的任意一个值,不能通过某些值或无穷多个值来判定函数的的奇偶性;(3)定义域的对称性:从奇偶函数概念可知,若f (x )有意义,则f (-x )一定有意义,说明x 与-x 是同时在函数y=f (x )的定义域内,也就是x 与-x 是成双成对出现,换句话说,函数y=f (x )的定义域是关于原点对称。
(4)奇偶函数的分类:既然一个函数可以是奇函数,可以是偶函数,请问大家能否可以根据函数奇偶性将函数进行分类呢?(1)奇偶函数; (2)偶函数;(3)非奇非偶函数;(4)既是奇函数又是偶函数。
教师问题:若一个函数是奇(偶)函数,请问大家怎样判定一个函数是奇函数还是偶函数呢?【例2】试判断下列函数是奇函数还是偶函数?(1)y=x 2,①x ∈R ;②x ∈[-1,1];③x ∈[-1,1);(2)f (x )=xx-+11。
第一步:求函数的定义域(若关于原点对称,则转入第二步;若不对称,则是非奇非偶函数);第二步:求f (-x );第三步:与f (x )进行比较:若f (-x )=f (x ),则函数y=f (x )是偶函数;f (-x )=-f (x ),则函数y=f (x )是奇函数。
【例3】试判断下列函数是奇函数还是偶函数 (1)y=x 3+2x ;(2)y=2x 4+ 3x 2;(3)y=2x 2+1,x ∈[-1,2]; (4)y=x 2+2x +5; 答案:(1)奇函数;(2)偶函数;(3)非奇非偶函数;(4)非奇非偶函数; 【例4】试判断下列函数是奇函数还是偶函数(1)f (x )=21x -+12-x ;(2)f (x )=|x+4|+|x -4|;(3)f (x )=x -1+1-x ;(4)f (x )=2|2|12-+-x x 。
答案:(1)既是奇函数又是偶函数;(2)偶函数。
(3)非奇非偶函数;(4)奇函数。
引申:试判断下列函数是奇函数还是偶函数(1)f (x )=a ;(2)f (x )=|x+b|+|x -b|;(3)f (x )=x n -x -n。
答案:(1)当a=0时,既是奇函数又是偶函数;当a ≠0时,偶函数。
(2)当b=0时,既是奇函数又是偶函数;当b ≠0时,奇函数。
(3)当n=0时,既是奇函数又是偶函数;当n ≠0时,若n 为奇数,则f (x )为偶函数;若n 为偶数,则f (x )为偶函数。
三:基本小结四:课外阅读数学概念的教学方法:旁敲侧击式为了让学生深刻理解“必要条件”的概念,可以让学生完成下面问题: 【例】已知函数f (x )=121+x+a 是奇函数,则a=_________。
学生分析:学生往往会根据奇函数的充要条件f (-x )+f (x )=0得到a =-21。
教师分析:引导学生思考:函数f (x 的定义域中有0吗?由函数f (x )为奇函数可以得到什么结论?学生会发现f (x )为奇函数的必要条件是f (0)=0,于是很快得到a =-21,但必须验证函数f (x )是奇函数。
不直接正面叙述“必要条件”,而是在解题中,从一个侧面揭示概念的重要性,让学生在两种解法中加深了对“必要条件”的理解。
五:课后补记(1)定义域的对称性是奇偶函数的本质属性之一,因为f (x )、f (-x )就意味着函数在x 与-x 处都有意义,换句话说,若函数y=f (x )的定义域不关于原点对称,则y=f (x )既不是奇函数也不是偶函数。
(2)f (-x )=-f (x )或f (-x )= f (x )是奇偶函数的另一本质属性,因为这是依据定义而可以证明的,这是函数一个非常特殊的性质,也并不是所有的函数都具有这种性质。
(3)判断函数的奇偶性的方法:①定义法;②图像法。
(二)例题补记【例1】试判断下列函数是奇函数还是偶函数:(1)y=⎩⎨⎧>+<-0)1(0)1(x x x x x x ,,;(2)y =⎪⎩⎪⎨⎧>-=<+0)1(000)1(22x x x x x x x ,,,。
答案:(1)奇函数;(2)偶函数。
引申:试判断下列函数是奇函数还是偶函数(1)已知函数f (x )是奇函数,且当x >0时,f (x )=x|x -2|,求当x <0时函数f (x )的解析式;(2)已知函数f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=x (1+3x ),求函数f (x )的解析式。
答案:f (x )=⎪⎩⎪⎨⎧<-=>+0)1(000)1(3232x x x x x x x ,,,。
点拨:若函数y=f (x )是定义在R 上的奇函数,则f (0)=0。
换句话说,奇函数图像只要与y 轴相交,交点必然过原点。
高中数学第二章《函数》第三节函数的奇偶性(第2课时)讲课稿德阳市中江城北中学姚志华一:知识回顾1:偶函数概念:如果对于函数y=f(x那么函数y=f(x)是偶函数。
2:奇函数概念:如果对于函数y=f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数y=f(x)是奇函数。
二:基本知识(一)奇偶函数的图像特征:定理1:y=f(x)为奇函数⇔y=f(x)的函数的图像关于原点对称。
定理2:y=f(x)为偶函数⇔y=f(x)的函数的图像关于y轴对称。
分析:证明对称的基本思想:(1)同一个图形上对称的证明:证明图形上任意一点关于该点(线)的对称点也在该图形上即可;(2))两个图形上对称的证明:①证明其中一个图形上任意一点关于该点(线)的对称点在第二个图形上;②证明第二个图形上任意一点关于该点(线)的对称点在第一个图形上,当且仅当两个方面都具备时,命题才成立。
证明:设奇函数y=f(x)上的任意一点A(a,f(a)),则此点关于原点的对称点为A`(-a,-f(a)),又-f(a)=f(-a),从而A点关于原点的对称点为A`(-a,f(-a)),故A`也在奇函数y=f(x)的函数的图像上,故命题成立。