循环水设计计算

循环水设计计算
循环水设计计算

循环水设计计算

一、基础资料:

1.气象资料:

影响水温的气象资料:

大气干球温度

大气湿球温度

大气压

风向风速

2.换热器资料

为了恰当选择水处理工艺和水处理药剂,必须了解换热器的结构形式和材质,被冷却工艺介质的温度和性质等有关资料。

3.水质分析:包括水的物理、化学及菌藻分析

4.垢层和腐蚀产物的分析(旧厂改造)

二、循环冷却水的水质变化

a.CO2含量的降低:循环水冷却水与大气接触,水中游离及溶解的CO2大量散

失,引起循环水产生CaCO2结垢。

b.碱度的增加:随着循环冷却水被浓缩,冷却水的碱度会升高,当补充水被浓

缩N倍时,循环水的总碱度则相应增加为补充水总碱度的N倍,从而使冷却水的结垢倾向增大。

c.PH的变化:循环水的PH值变化与碱度、温度有关,并高于补充水的PH值,

补充水进入循环冷却水系统中后,水中游离的和溶解的CO2在曝气过程中逸入大气而散失,故冷却水的PH值逐渐上升,直到冷却水中的CO2与大气中的CO2达到平衡为止,此时的PH值称为冷却水的自然平衡PH值,冷却水的自然平衡PH值通常为8.5~9.3之间。

d.浊度的增加:在冷却塔中循环水和空气接触,使空气中的尘埃带入循环水系

统。进行旁滤处理可将循环水浊度控制在10~15mg/L(高限一般为20mg/L)。

e.含盐量的增加:循环水经蒸发损失后,水中含盐量必增加。

f.溶解氧的增加:由于水在冷却塔内喷洒曝气,水中溶解氧大量增加,达到接

近该温度与压力下氧的饱和浓度,增加了循环水设备的腐蚀。

g.微生物含量的增加:由于日光、水温及循环水中的营养成分,都是有利于微

生物繁殖的因素,受日光照射部分常产生大量藻类,不受日光照射部分,则由于细菌、真菌的大量繁殖、生产粘泥。

h.有害气体的进入。

j.工艺泄漏物的进入。

三、水质判断

设计时我们常用的简易方法

1.极限碳酸盐硬度

公式要求循环水耗氧量≤25mg/L ,最高温度t=30~65℃

[][][]??????

??????????? ??-+-----+=31040768.275.540388.21t O Hy O t O Hjz 式中:Hjz ——循环水极限碳酸盐硬度(mmol/L)。

[O]——补充水的耗氧量(mg/L )

t ——循环水最高温度(℃),当t<40℃时,仍按t=40℃计。

Hy ——补充水的非碳酸盐硬度(mmol/L )

求得极限碳酸盐硬度后,可按下式判断循环水是否发生碳酸钙沉淀: NxHz >Hjz 结垢

NxHz ≤Hjz 不结垢

2.饱和指数法

I L =Pho-PHs

式中:I L ——饱和指数

Pho ——水实测PH 值。

PHs ——水的碳酸钙饱和平衡的PH 值。

根据饱和指数,可对水的特性进行判断

当I L =Pho-PHs>0时,结垢。

当I L =Pho-PHs=0时,不腐蚀不结垢。

当I L =Pho-PHs<0时,腐蚀。

计算饱和PH (PHs )的简化方法

PHs=(9.7+Ns+Nt)-(N H + N A )

式中:Ns ——溶解固体常数,可查给排水手册第4册表7-6

Nt ——温度常数,可查给排水手册第4册表7-7

N H ——钙硬度常数,可查给排水手册第4册表7-8

N A ——总碱度常数,可查给排水手册第4册表7-8

四、循环水加药计算及规定

1.缓蚀与阻垢

大、中型循环冷却水处理系统,宜采用2个药剂溶解槽,溶解槽容积宜按4~24h 用药量确定。小型循环冷却水处理系统,当采用复合药剂时,可采用1个药剂溶解槽,其容积宜按不小于24h 用药量确定,当采用单独配制的药剂时,应根据实际用药品种数量确定溶解槽个数,每个溶解槽容积宜按不于24h 用药量确定。 加药设备边沿与墙体或其它设备之间应有不小于1000mm 的净距。加药设备四周应设排水明沟或其它排水设施。

循环冷却水系统的首次加药量可按下式计算:

Gf=V.g/1000

式中:Gf——系统首次加药量(KG)

g——加药浓度(mg/L)

V——系统容积(m2)

循环水冷却水系统运行时的加药量可按下列各式计算:

G=Qe.g/[1000.(N-1)]或

G=(Qb+Qw).g/1000,

G=(Qm-Qe).g/1000

式中:G——加药量kg/h

Qe——蒸发损失水量m3/h

Qb——排污水量m3/h

Qw——风吹损失水量m3/h

Qm——补充水量m3/h

N——循环冷却水浓缩倍数。

2.杀菌剂

(1)加氯

当采用冲击投加方式,每天投加1~3次,每次投加持续时间为2~3h,冲击投加量为2~4mg/L.。连续投加宜取0.1~0.5mg/L。

水中余氯量控制在0.5~1.0mg/L,并维持2~3小时。

a.采用氧化型杀菌灭藻剂用量的计算:

/1000

Gc=Q.g

c

式中:Gc——氧化型杀菌灭藻剂用量Kg/h;

Q——循环冷却水量m3/h.

——氧化型杀菌灭藻剂冲击投加量mg/L

g

c

b.采用非氧化型杀菌灭藻剂用量的计算;

Gn=Q.g

/1000

n

式中:Gn——非氧化型杀菌灭藻剂用量Kg/h;

——非氧化型杀菌灭藻剂冲击投加量mg/L

g

n

加氯机应按计算出的最大加氯量选用,并应设置备用机,其备用率为50%~100%。(2)二氧化氯与有效氯的折算

二氧化氯的氧化能力比氯要强,从理论上说,它的氧化能力是氯的2.63倍。3.各药剂投加点位置宜按下列条件进行设计

(1)缓蚀阻垢剂、酸、液氯应投加在冷却塔集水池内靠近出水口处,缓蚀阻垢剂也可投加在循环水泵吸水池吸水池的进水口处。

(2)缓蚀阻垢剂投加管口应伸入水池内,其标高为水池常水位以下0.4~1.0m . (3)加酸管口应伸入水池常水位以下0.5m的深处,且距水池底或水池壁的距离不宜小于0.8m。

(4)氯投加管口应伸入水池常水位以下2/3水深处,且距水池底或水池壁的距离不宜小于0.5m。

(5)上述各药剂投加管口处均应设置多孔管状分布器或自旋流式分布器。

五、补充水、旁流水和排污水的计算

1.敞开式循环冷却水系统的补充水量计算:

Qm=Qe+Qb+Qw=QeN/(N+1)

式中:Qm——补充水量m3/h.

Qe——蒸发损失水量m3/h.

Qb——排污和渗漏损失水量m3/h.

Qw——风吹损失水量m3/h.

N——浓缩倍数

2.旁流水

敞开式循环冷却水系统采用过滤处理悬浮物时,其过滤水量宜为循环冷却用水量的1%~5%。

3.蒸发损失水量

Qe=k

△tQ

2

Qe——蒸发损失水量m3/h

△t——冷却塔进出水的温度差(℃)

Q——循环水量m3/h

——系数(℃-1)

k

2

4.风吹损失量

冷却塔的风吹损失主要为出塔空气中带出的水滴,从进风口吹出的水滴甚少,风吹损失水量与填料形式、配水方式、冷却水量和风速等因素有关。

设计说明-循环水站

PRE'D 2 of 5 设计说明 1.设计依据 《建筑给水排水设计规范》(2009年局部修订) GB50015-2003 《工业循环水冷却设计规范》GB/T50102-2003 《工业循环冷却水处理设计规范》GB50050-2007 《泵站设计规范》GB/T50265-97 《建筑灭火器配置设计规范》GB50140-2005 2.设计范围 3.系统简介 本工程循环水共设有二套系统,分别供Plant A和Plant B。 Plant A循环水系统:最大时用水量25m3/h,用水点所需温度35℃,△ t=10℃,供水压力0.285MPa,回水为无压回水,回水重力流入设在循环水站内 的地下水池,经由热水泵提升入风冷机组(利旧设备,由意大利搬运过来),夏 季,风冷机组的出水高于35℃时,风冷机组的出水再进入闭式冷却塔,进一步 冷却,达到工艺用水点的水温要求。同时,为了改善循环水的水质,在循环水 供水总管上设综合水处理器。本系统由热水池、热水泵、风冷机组、闭式冷却 塔、综合水处理器等。另,根据工艺对本系统的水质要求,本系统补充水采用 脱盐水,由水处理站提供。 Plant B循环水系统:最大时用水量200m3/h,用水点所需温度35℃,△ t=10℃,供水压力0.285MPa,回水为无压回水,回水重力流入设在循环水站内 的地下水池,经由热水泵提升入闭式冷却塔,冷却后供至工艺用水设备。同时, 为了改善循环水的水质,在循环水供水总管上设综合水处理器。本系统由热水 池、热水泵、闭式冷却塔、综合水处理器等。另,根据工艺对本系统的水质要

PRE'D 3 of 5求,本系统补充水采用脱盐水,由水处理站提供。由于Plant B的工艺设备对循 环水供水可靠性要求很高,本系统设有备用冷却塔和备用柴油机驱动泵,同时, 采用生产生活水作为系统的应急补水。 上述两个循环水系统的仪表控制参见流程图 灭火器设置:本建筑灭火器设置根据建筑灭火器配置设计规范(GB50140-2005)进行设计,每处的设置数量不少于2具。共设置6具MF/ABC4 磷酸铵盐干粉灭火器。 室内生产生活给水系统: 生产给水:主要用于Plant B循环水系统的应急补水, 应急补水量为3.5m3/h, 其他供给热工专业生产用水. 生活给水:供给水处理站洗涤盆用水. 上述用水系统从室外地下总管接入。 4.图中尺寸单位的标注 除标高以米计外,其余均以毫米计;所注标高均为相对标高,室内±0.000m 相对于绝对标高28.35m;所注管道标高,给水管为管中心,排水管为管内底。 5.管材与接口 循环冷却水系统管道:采用焊接钢管,焊接或法兰连接. 室内生活给水管道采用热镀锌内涂PE复合钢管,螺纹连接。埋地进户管 采用钢丝网骨架塑料(聚乙烯)复合管,电熔连接,电熔连接。 室内生产生活排水管道(范围为室内至室外第一个检查井):采用PVC-U 排水管,粘接连接. 管道施工参照《建筑排水硬聚氯乙烯管道工程技术规程》(CJJ/T29-98)相关规定执行。 6.管道敷设 6.1管道坡度:

工业循环水冷却设计规范

工业循环水冷却设计规范(2009-05-16) 目录 第一章总则 第二章冷却塔 第三章喷水池 第四章水面冷却 附录本规范用词说明 附加说明 第一章总则 第1.0.1条本规范适用于新建和扩建的敞开式工业循环水冷却设施的设计。 第1.0.2条工业循环水冷却设施的设计应符合安全生产、经济合理、保护环境、节约能源、节约用水和节约用地,以及便于施工、运行和维修等方面的要求。 第1.0.3条工业循环水冷却设施的设计应在不断总结生产实践经验和科学试验的基础上,积极开发和认真采用先进技术。 第1.0.4条工业循环水冷却设施的类型选择,应根据生产工艺对循环水的水量、水温、水质和供水系统的运行方式等使用要求,并结合下列因素,通过技术经济比较确定: 一、当地的水文、气象、地形和地质等自然条件; 二、材料、设备、电能和补给水的供应情况; 三、场地布置和施工条件; 四、工业循环水冷却设施与周围环境的相互影响。 第1.0.5条工业循环水冷却设施应靠近主要用水车间;并应避免修建过长的给水排水管、沟和复杂的水工建筑物。 第1.0.6条工业循环水冷却设施的设计除应执行本规范外,尚应符合现行有关的国家标准、规范的规定。 第二章冷却塔 第一节一般规定 第2.1.1条冷却塔在厂区总平面布置中的位置应符合下列规定:

一、冷却塔宜布置在厂区主要建筑物及露天配电装置的冬季主导风向的下风侧; 二、冷却塔应布置在贮煤场等粉尘污染源的全年主导风向的上风侧; 三、冷却塔应远离厂内露天热源; 四、冷却塔之间或冷却塔与其他建筑物之间的距离除应满足冷却塔的通风要求外,还应满足管、沟、道路、建筑物的防火和防爆要求,以及冷却塔和其他建筑物的施工和检修场地要求; 五、冷却塔的位置不应妨碍工业企业的扩建。 第2.1.2条当环境对冷却塔的噪声有限制时,宜采取下列措施: 一、机械通风冷却塔应选用低噪声型的风机设备; 二、冷却塔周围宜设置消声设施; 三、冷却塔的位置宜远离对噪声敏感的区域。 第2.1.3条冷却塔的集中或分散布置方案的选择,应根据使用循环水的车间数量、分布位置及各车间的用水要求,通过技术经济比较后确定。第2.1.4条冷却塔一般可不设备用。冷却塔检修时应有不影响生产的措施。 第2.1.5条冷却塔的热力计算宜采用焓差法或经验方法。 第2.1.6条冷却塔的热交换特性宜采用原型塔的实测数据。 当缺乏原型塔的实测数据时,可采用模拟塔的试验数据,并应根据模拟塔的试验条件与设计的冷却塔的运行条件之间的差异,对模拟塔的试验数据进行修正。 第2.1.7条冷却塔的通风阻力系数宜采用原型塔的实测数据。当缺乏实测数据时,可按经验方法计算。 第2.1.8条冷却塔的最高冷却水温不应超过生产工艺允许的最高值;计算冷却塔的最高冷却水温的气象条件应符合下列规定: 一、根据生产工艺的要求,宜采用按湿球温度频率统计方法计算的频率为5%~10%的日平均气象条件; 二、气象资料应采用近期连续不少于五年,每年最热时期三个月的日平均值。 第2.1.9条计算冷却塔的各月的月平均冷却水温时,应采用近期连续不少于五年的相应各月的月平均气象条件。

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

循环水系统设计

循环水系统设计 1.1循环水系统设备组成 循环水系统作用为为窑炉、xx通道、xx设备提供降温冷却水。为了满足上述设备的不间断冷却水的供应,循环水系统分为水泵系统,柴油机泵系统和自来水系统三个小系统,以备设备故障,停电停水故障使上述设备出现无法冷却导致火灾发生。以下对系统进行逐个分解。 水泵系统和柴油机泵系统是组合在一起的,其中有水箱一个,电水泵两台,保安过滤器两台,板式换热器两台减压阀两套,安全阀一套,冷冻水一路,纯水补水管路一路,各型号阀门若干,不锈钢管道若干。 自来水系统是由自来水管道,保安过滤器一台组成,接入水泵系统的供水管道上。1.1循环水系统工作原理 整个循环水系统采用一用三备的工作方式,通过西门子S7100PLC冗余控制方式,水泵将纯水由水箱抽至保安过滤器,经过再次过滤后,纯水进入板式换热器与冷冻水进行热交换,使纯水温度降至10℃,然后经过减压阀降压至设备所需要的压力,供窑炉,xx通道,xx设备降温,回水由回水管道流入水箱进行循环使用。当其中一台水泵故障时,PLC控制系统自动切换至另一台水泵进行运行,两台水泵都故障时,系统自动启动柴油机,由柴油机带动柴油机水泵进行工作。当上述三台水泵全部故障时,设备管理人员手动开启自来水供水阀门,用自来水给设备紧急降温冷却。 循环水水质管理:动力部化验室每天对循环水水质进行检测,发现硬度、电导率等参数超标时通知设备管理人员进行换水,保证水质在规定的规格范围之内。 控制系统操作 本系统是采用西门子S7100冗余控制方式,系统可靠性高。控制柜上有“手动/自动”转换开关,可以在手动自动状态下运行,注意,手动状态一般用于调试阶段,正常运行不用手动,一定要用自动。自动状态下有两种运行方式:单动和联动。正常生产时用联动,程控运行。运行之前先观察冷却水水箱液位,如果低液位低于设定液位1.1米,电磁阀自动打开补水,补至1.6米自动停止。

石油化工企业循环水站设计

石油化工企业循环水站设计 在石油化工企业中,循环水主要用于冷却生产设备和产品。结合循环冷却水系统设计的相关规范,对石油化工企业循环冷却水系统设计过程进行阐述,总结设计过程中的注意事项,以提高设计效率。 标签:石油化工;循环水系统;设计 在石油化工企业中,循环水系统是保障工艺设备正常运行一个必不可少的系统。近期在参与石油化工企业循环水系统设计的过程中发现,涉及循环水系统设计规范较多,最基本的有《工业循环冷却水处理设计规范》(GB50050-2007)、《化学工业循环冷却水系统设计规范》(GB50648-2011)、《工业循环水冷却设计规范》(GB/T 50102-2014)、《石油化工循环水场设计规范》(GB/T 50746-2012)、《化工企业循环冷却水处理加药装置设计统一规定》(HG/T 20524-2006)。规范各有不同侧重,同时也有部分内容重复出现。将各规范进行比较,对石油化工企业循环水系统设计进行如下总结,供参考及批评指正。 1 设计规范的介绍 设计规范主要从5个方面对循环水系统设计内容进行了规定,第一,循环水系统总体设计,主要包括循环水系统划分、循环冷却水装置区的布置,水量设计等;第二,循环水冷却设施设计,主要为冷却塔(含冷却塔水池)设计;第三,循环冷却水水质处理设计;第四,循环水泵房设计;第五,循环水管网及配套设施的设计。 在上述5本规范中,《工业循环冷却水处理设计规范》(GB50050-2007)及《化工企业循环冷却水处理加药装置设计统一规定》(HG/T 20524-2006)主要规定了循环冷却水水质处理设计方面的内容;《工业循环水冷却设计规范》(GB/T 50102-2014)主要涉及循环水冷却设施设计内容的规定,《化学工业循环冷却水系统设计规范》(GB50648-2011)及《石油化工循环水场设计规范》(GB/T 50746-2012)较为综合,对5个方面的内容均有涉及。另外,在设计循环水泵房及管网时,还需参照《室外给水设计规范》(GB50013-2006)及《泵站设计规范》(GB 50265-2010)。 在规范使用中,经常遇到规范之间不一致的地方,笔者认为,针对这个问题,应当遵循从严原则,在不大幅增加建设成本的前提下,采用更为安全的设计参数进行设计。 2 设计内容 2.1 水量确定在GB 50648-2011/ 3.1.4中提到循环冷却水系统的设计水量,按工艺生产装置及辅助生产装置的正常小时用水量计算,按最大小时用水量校核。而GB50746—2012/ 3.2.2中提到,设计水量按最大连续小时用水量之和加上

游泳池循环水处理系统的工艺流程

游泳池循环水处理系统的工艺流程 游泳池循环水处理系统的匸艺流程: 自来水做为补给水进入平衡水箱,在平衡水箱中加药剂去除水中的藻类、菌 类,出水经毛发过滤器循环水泵。 游泳池水通过池底最低点主排水器,进入自身带有毛发聚集器的循环水泵,III 水泵打入除砂器。在此之前,由加药装置将絮凝药剂投加到水泵的吸水口,使之通 过水泵叶轮搅拌与水混合均匀,利于过滤处理效果。待水经过过滤器、板式换热器 后,向管路中投加消毒剂,直接向泳池进行布水。 其流程图如下: 游泳池打 瞧砂甜 换器」 平衡 水 箱? * 自 来7K 二氧化氯、臭氧等。 毛发辻 环水隸

注:表中根据不同类型游泳池的循环流量是计算确定所成套设备。(如扬程大于 32 X,可按实际需要另行选泵); 2、水泵选择已考虑反冲洗强度8-10升/秒平方米,反洗时可短时间停止过滤,不需另设反冲洗泵(表内没有考虑用泵,由设计定); 3、I为公共游泳池;II为比赛池;III为跳水池; 游泳池水处理系统 一、引言 随着人们生活水平的不断提高,游泳池作为一种水上娱乐健身设施,越来越多 地走进人们的日常生 3活。标准游泳池的容积约为2250m,若泳池水不能循环使用,将造成巨大浪 费。泳池水的循环使

用是污水资源化的一种体现,是缓解用水紧缺的有效途径。因为泳池水直接关系到人体的健康和 安全。所以,泳池水质卫生越来越受到人们的重视。 二、游泳池的水质标准 世界各国对游泳池的水质都有明确的要求,并制订了相关的卫生标准。在我国,游泳池水质应符合 国家技术监督局和卫生部联合颁布的《游泳场所卫生标准》(GB9667-96)中关于人工游泳池水质 卫生标准的规定,详见表1。 表1人工游泳池水质卫生标准 序号项目标准 1池水温度?22,26 2 PH值6. 5, 8.5 3浑浊度/度?5 4 尿素/mg,/L ?3. 5 5余氧/mg /L游离性0. 4, 0. 6 6细菌总数/(个/L) ?1000 7大肠杆菌/(个/L) ?18 8耗氧量/mg ?6 9有毒物质达到地面水水质标准三、游泳池的循环水量 游泳池的循环水量按下式计算; Q = aV/T 式中,Q——池水的循环流量 a——管道和过滤设备水容积附加系数,一般为1.1, 1.2,取1.1 V:游泳池的水容积,T:游泳池水的循环周期,按表规定选取。 表2游泳池水循环周期

循环水设计计算

循环水设计计算 一、基础资料: 1.气象资料: 影响水温的气象资料: 大气干球温度 大气湿球温度 大气压 风向风速 2.换热器资料 为了恰当选择水处理工艺和水处理药剂,必须了解换热器的结构形式和材质,被冷却工艺介质的温度和性质等有关资料。 3.水质分析:包括水的物理、化学及菌藻分析 4.垢层和腐蚀产物的分析(旧厂改造) 二、循环冷却水的水质变化 a.CO2含量的降低:循环水冷却水与大气接触,水中游离及溶解的CO2大量散 失,引起循环水产生CaCO2结垢。 b.碱度的增加:随着循环冷却水被浓缩,冷却水的碱度会升高,当补充水被浓 缩N倍时,循环水的总碱度则相应增加为补充水总碱度的N倍,从而使冷却水的结垢倾向增大。 c.PH的变化:循环水的PH值变化与碱度、温度有关,并高于补充水的PH值, 补充水进入循环冷却水系统中后,水中游离的和溶解的CO2在曝气过程中逸入大气而散失,故冷却水的PH值逐渐上升,直到冷却水中的CO2与大气中的CO2达到平衡为止,此时的PH值称为冷却水的自然平衡PH值,冷却水的自然平衡PH值通常为 8.5~9.3之间。 d.浊度的增加:在冷却塔中循环水和空气接触,使空气中的尘埃带入循环水系 统。进行旁滤处理可将循环水浊度控制在10~15mg/L(高限一般为20mg/L)。 e.含盐量的增加:循环水经蒸发损失后,水中含盐量必增加。 f.溶解氧的增加:由于水在冷却塔内喷洒曝气,水中溶解氧大量增加,达到接 近该温度与压力下氧的饱和浓度,增加了循环水设备的腐蚀。 g.微生物含量的增加:由于日光、水温及循环水中的营养成分,都是有利于微 生物繁殖的因素,受日光照射部分常产生大量藻类,不受日光照射部分,则由于细菌、真菌的大量繁殖、生产粘泥。 h.有害气体的进入。 j.工艺泄漏物的进入。 三、水质判断 设计时我们常用的简易方法

材料物理性能试验1

材料物理性能实验报告 材料热性能测量实验 专业:材料成型及控制工程 班级: 0802班 姓名:范金龙 学号: 200865097

材料物理性能实验报告二 ——【材料热性能测量实验】 一、实验目的: 1.学习DTAS-1A型测试仪和PCY-Ⅲ型热膨胀系数测试仪的工作原理,掌握它们的使用方法; 2.熟悉材料热容和热膨胀系数测试的试样制备,测试步骤和数据处理方法; 3.深化对材料热容和热膨胀系数物理本质的认识,掌握如何通过热容和热膨胀系数的测试来分析和研究材料。 二、实验原理 1.差热分析(Differential Thermal Analysis,DTA):在程序控制温度下,测量处于同一条件下样品与标准样品(参比物)的温度差与温度或时间的关系,对组织结构进行分析的一种技术。以参比物与样品间温度差为纵坐标,以温度为横座标所得的曲线,称为DTA曲线。 Furnace Thermocouples Sample Reference 2.线膨胀系数:单位温度改变下长度的增加量与的原长度的比值。 平均线膨胀系数计算公式: L:试样室温时的长度(μm) ΔL t:试样加热至t℃时测得的线变量(μm) K t :测试系统t℃补偿值(μm) ) ( t t L K L t t - - ? = α

t:试样加热温度(℃) t :室温(℃) 三、实验内容 1.利用DTAS-1A型测试仪测试Sn-Pb合金的熔化曲线 2.利用PCY-Ⅲ型热膨胀系数测试仪分别测试45#钢(室温~850 ℃)和纯Ni(室温~370 ℃)的热膨胀曲线 四、实验操作步骤 1.开设备之前先打开循环水; 2.打开微机差热仪的电源开关; 3.在样品台上放入样品,并关上炉体; 4.启动差热仪程序; 5.输入设置参数:起始温度 100 ℃,终止温度 330 ℃,升温速率 5 ℃ /min; 6.双击“绘图”,并点击“实验开始” 注意事项: 1.加热炉体在任何时候均禁止手触摸,以防烫伤! 2.升降炉体时轻拿轻放,勿触碰载物台支撑杆; 3.载物台左侧放标准样品(Al 2O 3 ),右侧放待测样品; 4.待测样品放入量勿超出坩埚; 5.请勿动其他实验仪器。 五、 DTAS-1A型测试仪工作步骤及原理 1.将与参比物等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触 2.与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中。 3. 在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何

外网循环水系统设计方案

外网循环水系统施工方案 编制 审核 批准 机电部 2008年10月29日 壹

目录 一:设计说明 二:外网管道分类 三:系统分析 四:管道铺设方式;埋地 五:管道标高分配表 六:管道厂区布置平面设计及管道走向 七:各管段标高分配表 八:阀门及检查井的设置 九:综合材料表 十:施工的组织设计 十一:工期的具体安排 十二:施工中应采取的技术措施和手段 十三:工程完工验收时应注意的几个问题 十四:各管线详细施工图 十五:管道流量表(附录) 贰

一:说明 由于我厂原工艺设计中没有关于给排水的具体设计方案,造成了给排水系统无法安排正常施工的窘境,随着我厂工艺设备的逐步安装,迫切需要给排水系统的设计和施工方案,为此我个人参照相关的资料和根我本人多年的施工经验,编写了《外网循环水系统施工方案》,有考虑不到之处,请各位领导和同事给予批评指教,本人不胜感谢。 1 :依据 (1):参照设计院的《综合水泵房工艺图》 (2):参照设计院的《污水处理工艺图》 (3):参照国家关于给排水的设计规范 (4):本地区最大冰冻层—1200㎜管道设置应在—1200㎜以下 (5):管道中心标高以循环水泵房正负零为起始点 (6):工艺的具体使用要求 (7):根据我厂设备的实际使用情况 (8):《平均按用水量加30%考虑》的说明: 为了系统使用的稳定,防止由于工艺设计的不合理而影响生产的正常进行。 给今后的生产技术改造予留使用空间 (9):消防水系统不予考虑,只是给预留管道标高,和管道管道接口 (10):原设计变更部分的说明 原设计新鲜水工艺部分,设计思路不明确,造成新鲜水在回到凉水塔后就进入循环水系 统,不能循环使用,同时又给循环水系统补充了约600—1500立方米的水量,这样会造 成循环水系统无法正常使用。我建议修改原设计方案,在连接2#吸水井的新鲜水部分的 3台水泵出口处,加装连通管道和新鲜水出口管道连通这样新鲜水循环系统和循环水系 统就可以正常使用了。 2 :我厂给排水工艺流程分析 (1)炼焦工段 新鲜水焦炉顶部煤气水封消防水 (2)冷鼓工段 循环水初冷器上段: 新鲜水初冷器下段:冷凝泵房水泵:风机房:消防水 (3)硫氨工段 新鲜水饱和器:离心机:母液泵: 消防水 (4)脱硫工段 循环水脱硫预冷塔 新鲜水溶液换热器消防水 (5)粗笨工段 循环水终冷塔一段贫油冷却器 新鲜水二段贫油冷却器冷凝冷却器消防水 (6)污水处理新鲜水 (8)锅炉房新鲜水 (9)熄焦塔污水处理后的中水 (10)精煤场地截伏流的水 (11)焦碳场地新鲜水:截伏流的水 (12)消防用水新鲜水: (13)绿化用水新鲜水 (14)生活用水新鲜水 叁

循环水设计方案一车间

******生物科技有限公司 工业循环水 技 术 方 案 2016年10月31日

循环冷却水系统日常加药处理方案(一车间) 一、补充水概况 循环冷却水系统为敞开式循环水系统,补充水为自来水,循环水量Q r:2500 m3 /h,保有水量Q v: 约3000 m3。该系统对水量的消耗主要取决于系统的蒸发损失,风吹损失和排污损失。本方案是以该厂提供的水质及运行参数为基础设计。 2.水质判断 A.补充水: 饱和指数LSI=-0.41 稳定指数RSI=8.41 (为强型溶垢性水质。) 结垢指数PSI=10.93 结论: 补充水水质为腐蚀型水质。在浓缩倍率及温度较高的情况下,由于水中各种成垢性离子的增加,造成循环水的结垢和腐蚀都有可能发生且趋势特别大。 二、循环水处理方案

1.设计目的 通过低剂量的化学药剂抑制循环水系统中结垢、腐蚀和微生物的危害,使生产运行高效、安全、稳定、满负荷、高产量、优质量。 2.运行参数: 循环冷却水量:Qr: 2500m3/h 系统水容积:V:3000m3 温差:ΔT=7-8℃ 主要材质:碳钢、不锈钢,混凝土 浓缩倍率N≤3.0 3.目前运行情况及解决办法: 1.贵厂在运行中管理应严格,加药及时,监控得当,浓缩倍率K控制在2左右,ΔJD小于0.2,运行正常。 2、解决办法: 该系统是循环式的,补水为自来水,针对这个问题解决办法主要为投加化学药剂。药剂的配方设计既要考虑到该补水是腐蚀性水质,应该尽量减少或延缓系统腐蚀的发生,又要控制住结垢的趋势,也就是说,既考虑腐蚀性,又考虑结垢性。 办法: ⑴投加杀菌灭藻剂控制菌藻的滋生,防止形成微生物粘泥,预防腐蚀和点蚀的发生。此项非常重要。 ⑵针对贵厂现阶段水质情况,使用HY-3105缓蚀阻垢剂 我厂对缓蚀阻垢剂HY-3105的配方进行仔细筛选,并对配方的完美性、局限性进行跟踪试验调查,因此,随时监测循环水水质,是检测药剂配方是否有针对性的重要依据之一。 4.设计依据: 所有设计均遵照GB 50050-2007之规定和系统实际运行情况,采用日常加药自然PH值运行处理,以保证系统良好的运行期达5年以上。 5.设计思路: (1)日常加药处理用药:缓蚀阻垢、杀菌灭藻及粘泥剥离剂综合考虑——高效。

循环水设计计算

循环水设计计算 一、基础资料: 1.气象资料: 影响水温得气象资料: 大气干球温度 大气湿球温度 大气压 风向风速 2.换热器资料 为了恰当选择水处理工艺与水处理药剂,必须了解换热器得结构形式与材质,被冷却工艺介质得温度与性质等有关资料。 3.水质分析:包括水得物理、化学及菌藻分析 4.垢层与腐蚀产物得分析(旧厂改造) 二、循环冷却水得水质变化 a.CO2含量得降低:循环水冷却水与大气接触,水中游离及溶解得CO2大量散失, 引起循环水产生CaCO2结垢。 b.碱度得增加:随着循环冷却水被浓缩,冷却水得碱度会升高,当补充水被浓缩N 倍时,循环水得总碱度则相应增加为补充水总碱度得N倍,从而使冷却水得结垢倾向增大、 c.PH得变化:循环水得PH值变化与碱度、温度有关,并高于补充水得PH值,补 充水进入循环冷却水系统中后,水中游离得与溶解得CO2在曝气过程中逸入大气而散失,故冷却水得PH值逐渐上升,直到冷却水中得CO2与大气中得CO2达到平衡为止,此时得PH值称为冷却水得自然平衡PH值,冷却水得自然平衡PH值通常为8。5~9.3之间。 d.浊度得增加:在冷却塔中循环水与空气接触,使空气中得尘埃带入循环水系统、 进行旁滤处理可将循环水浊度控制在10~15mg/L(高限一般为20mg/L)、 e.含盐量得增加:循环水经蒸发损失后,水中含盐量必增加。 f.溶解氧得增加:由于水在冷却塔内喷洒曝气,水中溶解氧大量增加,达到接近该 温度与压力下氧得饱与浓度,增加了循环水设备得腐蚀。 g.微生物含量得增加:由于日光、水温及循环水中得营养成分,都就是有利于微生 物繁殖得因素,受日光照射部分常产生大量藻类,不受日光照射部分,则由于细菌、真菌得大量繁殖、生产粘泥。 h.有害气体得进入。 j.工艺泄漏物得进入。 三、水质判断 设计时我们常用得简易方法 1。极限碳酸盐硬度

过程控制实训--流量计和温度控制的PID整定

目录 目录 第一部分、系统介绍 (2) 一、AE2000B型系统介绍 (2) 二、AE2000B型实验对象组成结构 (2) 三、AE2000B型实验对象控制台 (3) 第二部分流量控制 (4) 2.1、实验一电磁流量计流量PID整定实验 (4) 2.2、实验二、涡轮流量计流量PID整定实验 (6) 2.3、实验三、涡轮与电磁流量比值控制系统实验 (9) 2.4、简单比值控制系统的仿真 (11) 第三部分温度控制 (12) 3.1、实验一、锅炉夹套水温PID整定实验(动态) (12) 3.2、实验二. 锅炉夹套和锅炉内胆温度串级控制系统 (14) 3.3、被控对象的仿真模型 (17) 3.4、单回路控制系统的仿真 (18) 3.5、串级控制系统的仿真 (18)

第四部分实训感想 (18) 第一部分、系统介绍 一、AE2000B型系统介绍 AE2000B型过程控制实验装置是根据工业自动化及相关专业教学特点,吸取了国外同类实验装置的特点和长处,并与目前大型工业自动化现场紧密联系,采用了工业上广泛使用并处于领先的AI智能仪表加组态软件控制系统、DCS(分布式集散控制系统),经过精心设计,多次实验和反复论证,推出的一套基于本科,着重于研究生教学、学科基地建设的实验设备。该设备涵盖了《信号和信息处理》、《传感技术》、《工程检测》、《模式识别》、《控制理论》、《自动化技术》、《智能控制》、《过程控制》、《自动化仪表》、《计算机应用和控制》、《计算机控制系统》等课程的教学实验与研究。整个系统美观实用,功能多样,使用方便,既能进行验证性、设计性实验,又能提供综合性实验,可以满足不同层次的教学和研究要求。AE2000型过程实验装置的检测信号、控制信号及被控信号均采用ICE标准,即电压1~5V,电流4~20mA。实验系统供电要求:单相220V交流电,外型尺寸:1850×1450×900mm,重量:100Kg 二、AE2000B型实验对象组成结构 过程控制实验对象系统包含有:不锈钢储水箱(长×宽×高:850×450×400mm)、串接圆筒有机玻璃上水箱、中水箱、下水箱、单相2.5KW电加热锅炉(由不锈钢锅炉内胆加温筒和封闭式外循环不锈钢冷却锅炉夹套组成)。系统动力支路分两路组成:一路由单相增压泵、电动调节阀、涡轮流量计、自锁紧不锈钢水

ICP操作编程

ICP操作编程 操作步骤 一、开机 开氩气,打开氩气阀 1、打开稳压电源开关 2、打开外置循环水开关 3、打开电脑,将进样针放入纯水中,蠕动泵夹紧 4、打开排风系统 5、按绿色按钮,打开ICP主机 6、等待桌面右下角网络显示黄色“!”,表示连接正常 7、双击打开软件,弹出对话框,点击“OK”,等待显示窗口 8、在显示窗口中,点击左上角“方法”, 打开或新建的方法,弹出对话框,点击“确定” 9、在导航面板中,左侧为“+”的选框,点击,展开方法,点击“仪器控制” 1)在显示窗口中,点击“仪器诊断”,弹出窗口,查看输出压力值是否在78-95PSI之间,如在范围内,点击“关闭”,回到仪器控制页面,打开冷却气,再查看输出压 力值,如不是,调节压力阀(0.55-0.60),再查看输出压力值 2)以上如都在范围之内,同时点开辅助气和雾化气,查看压力值 3)正常点火之前,查看光室温度和警报信息提示,两者缺一不可 ●光室温度必须达到35±2℃ ●警报信息提示是否为红色,如是,点击打开,弹出窗口,查看连锁信息,点击“确 认”,点开冷却气,直至红色消失 10、点击“自动开始”,确认蠕动泵运转正常,稳定10-15分钟,观察检测状态温度为:-40℃ 二、汞灯基准点校准 1、打开或新建的方法,仪器正常启动 2、在导航面板中,点击“元素选择”,在元素周期表中点击“Hg”,在显示框右上方“分析 元素谱线”中选择“Hg253.652”,点击“添加谱线” 3、在导航面板中,点击“仪器控制”,选择观测方式:汞灯校准 4、在导航面板中,点击元素选择左侧为“+”,点击“Hg253.652” 5、在右侧窗口点击“波长校准” 6、点击“拍摄全谱图像”,弹出窗口“汞灯校准”,输入样品名称“Hg”,曝光时间:0.02s, 将“35sec”智能拍摄方框中的“√”取消,点击“确认”,等待 7、完成后,点击“接受”,如果出现“接受”: 1)点击“接受”,弹出对话框,显示X、Y值并记住,,点击“确定” 2)在导航面板中,点击“仪器控制”,点击“仪器诊断”,弹出窗口,在右上角“基准点偏差”,显示出的X、Y值与之前记下的X、Y值相加,输入得出的X、Y值,点击“确认”,等待 3)弹出对话框,点击“确认”,点击“关闭” 8、点击“元素选择”中的“Hg253.652”,在右侧显示框中,点击“删除谱线” 三、波长校准 1、打开或新建的方法,仪器正常启动 2、在导航面板中,点击“仪器控制”,选择观测方式:垂直观测 3、如果新建方法,点击“元素选择”,在元素周期表中选择所测元素,在显示框右上方“分

冷却循环水系统施工组织设计方案

一、冷却循环水系统施工方案 1. 施工程序 施工准备——图纸会审——施工作业指导书报审——技术交底——现场预制——现场安装质量检查——水压试验——管道保温——管道吹扫及冲洗——管道交工验收 2. 管材、管件的验收 2.1 检验程序 检查产品质量证明书——检查出厂标志——外观检查——核对规格、材质——材质复检——无损检验及试验——标识——入库保管 2.2 检验要求:所有材料必须具有制造厂的质量证明书,其质量要求不得低于现 行标准的规定。钢管、管件、阀门在使用前应进行外观检查,不合格者不得使用。钢管表面不得有裂缝、折迭、皱折、离层、发纹及结疤等缺陷;钢管无超过壁厚负偏差的锈蚀、麻点、凹坑及机械损伤等缺陷。除非极个别情况,禁止利用旧管道和管件,否则必须按有关标准的规定进行全面检验合格,并经过设计许可。法兰密封面应光洁,不得有径向沟槽,且不得有气孔、裂纹、毛刺或其他降低强度和连接可靠性方面的缺陷。法兰端面上连接的螺栓的支承部位应与法兰结合面平行,以保证法兰连接时端面受力均匀。螺栓及螺母的螺纹应完整、无伤痕、毛刺等缺陷,螺栓与螺母应配合良好,无松动或卡涩现象。 3. 阀门试压 3.1 该阀门试验应从每批中抽查5%,且不少于1个,进行壳体压力试验和密封试验,当不合格时,应加倍抽查,仍不合格时,该批阀门不得使用;阀门的壳体试验压力不得小于公称压力的1.5倍,试验时间不得少于5min,以壳体填料无渗漏为合格;密封试验宜以公称压力进行,以阀瓣密封面不漏为合格。 3.2 试验合格的阀门,及时排除积水,并吹干。关闭阀门,做好明显标记,并填写《阀门试验记录》。

3.3 阀门壳体压力试验和密封试验应用洁净水进行。 3.4 密封试验不合格的阀门,必须解体检查,重做试验。 4. 管道预制 4.1 切割要求:管道切割后应移植原有标记。切口表面应平整,无裂纹、重皮、毛刺、凸凹、缩口、熔渣、氧化物、铁屑等;切口端面倾斜偏差不应大于管子外径的1%且不得超过3mm。弯管用弯管机冷弯成形或热煨弯。 4.2 管道加工:管道预制工作应按设计单位提供的管道施工蓝图实施。管道预制应遵守下列程序和规定: 4.2.1 管道组成件应按施工图、《管道安装材料表》规定的数量、规格、材质选配。 4.2.2 为了保证工程质量和便于安装,应合理选定自由管段和封闭管段。 4.2.3 自由管段应按施工图标注的长度加工,封闭管段应留有适当的裕度,按现场安装实测后的长度加工,以保证现场安装工作顺利进行。 4.2.4 预制管段应具有足够的刚性,必要时,可进行加固,以保证在存放、运输过程中不变形。 4.2.5 制作完毕的管段,应将内部清理干净,及时封闭管口。需加工坡口的管道一律加工成V型坡口;坡口角度为60°~70°角,根部钝边为1~3㎜。 5. 支架的安装 5.1 现场支架安装标准采用《工业金属管道工程施工规范》GB50235-2010。5.2 支架、管道标高根据鼓风机房地平±0.000为基准点,分别向鼓风机房墙面引基准线以确定管道标高。 5.3 除施工图上标明的管道支架外,在保证管道不变形和规定坡度外,可视具体

润优益寻优系统经验挖掘功能研究与应用

润优益寻优系统经验挖掘功能研究与应用 摘要:本文介绍了华润电力火电厂润优益寻优系统经验数据挖掘的重要性和意义,总结了基于数据驱动的智能寻优挖掘思路,通过数据挖掘方法建立一套对大 数据进行挖掘、分析、提纯,进而自动反复生成发电系统的参数最优值和最优运 行方式——润优益寻优系统,实现各系统安全、经济运行,为火电厂带来经济与 社会效益,持续提升企业的竞争力。 关键词:操作寻优;动态标杆值;大数据分析;最优工况;经验挖掘 随着国家环保政策的持续推进,火电厂的节能减排压力愈发凸显,对企业的 管理优化及技术创新提出了更高的要求。火电厂在生产过程中产生了大量数据, 这些数据被简单的储存起来,相当于“埋藏在地下的金库”。随着电力改革的深化 和科学技术的进步,急需建立一套对大数据进行挖掘、分析、提纯,进而自动反 复生成发电设备最优值和标准运行方式,实现发电设备安全、经济运行的体系和 系统,持续提升企业的竞争力。 目前有很多关于火电厂的数据挖掘算法的相关技术,比如根据机组运行的外 部边界条件,对负荷、生产环境、煤质和设备健康状况等因素建立不同运行工况 边界,采用聚类等机器学习算法,以系统稳定、经济、环保等性能指标确立安全 边界并划分工况,筛选出机组在不同的工况条件下,机组各运行参数的最优值, 将其建立为标杆值,初步使得机组维持在运行最佳水平。 润优益寻优系统经验挖掘正是在这一背景下,基于大数据分析运用与人工智 能的快速寻找不同工况下历史最优标杆值的系统。系统充分应用数据驱动控制理 论和迭代收敛控制思想,替代传统的控制模式,实现自动控制向智慧控制转变; 基于稳定节能理念,引入系统判定依据,通过科学算法,实现系统寻优。 1、润优益寻优系统的建设意义: 1.1为生产运行提供操作指导; 1.2快速寻找不同工况下最优标杆值; 1.3通过边界条件的变化实现持续优化; 1.4操作标准化,生产实时管控; 1.5实现专家经验、科学试验成果与系统智能有机结合; 1.6建立区域性数据分享平台。 2、润优益寻优系统经验挖掘功能设计 系统通过实时运行的后台程序,定时自动获取SIS或其他系统的参数数据,SIS系统所获取的数据必须具备计算各项指标的能力,系统通过SIS系统获取负荷 数据(某个固定值或者具体的范围值)、循环水温度、煤种的相关数据信息(如:热值、挥发份、水份、飞灰含碳量等);获取到的数据按照指标参数和时序进行 自动过滤、筛选,并存入存储库,其中部分指标(环保指标、经济指标等)作为 系统的存入标杆库的否决条件;在否决条件内的数据自动丢弃;并将符合条件的 数据经方差、标准差计算后存入标杆库中。 经验挖掘系统根据设置的时间周期,以及压力波动的排序数据,按照二八定 律自动筛选出部分数据用于计算经济性,并根据经济性的指标参数,过滤数据。 系统根据时间段内的时间参数值,采用中位数,根据对应时刻,获取出某段时间 内的最优工况,并将该时间点或时间段内的操作量自动存入经验库。

水上乐园、造浪池、儿童戏水池循环水处理系统设计方法

精心整理 水上乐园|造浪池|儿童戏水池|水处理系统设计方案 1水上乐园水处理设计依据 1.1设计依据 (1)根据甲方提供的有关书面文件及相关图纸资料 (2)《室外排水设计规范》(GB50014-2006) (3)《室外给水设计规范》(GB50013-2006) (4)《游泳池给排水工程设计规范》 (5) (6)1.2(1)(2)(3)(4)(5)(6) 22.1总述 过滤, 图2-12.2游泳池水质标准 表2-1游泳池水质标准

KQW卧式清水泵,供输送清水及物理化学性质类似于清水的其它液体之用,使用介质温度80℃以下适用于工业和城市给排水、高层建筑增压送水、园林喷灌、消防增压、远距离输送、暖通制冷循环、浴室等冷暖水循环增压及设备配套等,使用温度T?80℃。 (2)KQW卧式清水泵产品特点 1)运行平稳:泵轴的绝对同心度及叶轮优异的动静平衡,保证平稳运行,绝无振动。 2)滴水不漏:不同材质的硬质合金密封,保证了不同介质输送均无泄漏。 3)噪音低:两个低噪音轴承支撑下的水泵,运转平稳,除电机微弱声响,基本无噪音。 4)故障率低:结构简单合理,关键部分采用国际一流品质配套,整机无故障,工作时间大大提高。

5)维修方便:更换密封、轴承,简易方便。 6)占地更省:出口可向左、向右、向上三个方向,便于管道布置安装,节省空间 2.4.3水质控制系统 消毒系统选择次氯酸钠做为消毒剂,系统消毒剂投加量为0.1mg/L(有效氯含量为10%)。系统通过曝气增氧技术,可有效去除池水中的油质,尿素,蛋白酶等有机污染物。因而不用向池水中投加混凝剂,除藻剂减少水质化学污染。投氯的主要目的在于抑制水中,菌类大量繁殖。游离余氯的浓度保持在0.3~0.5mg/L之间。消毒剂采用DFD-12-07-X计量泵注入至系统。 设备选型:DFD-12-07-X(合资新道茨)1套 3 YX 图31 3.1YX 1) 2) 3) 4) 5) 3.2

循环水管道安装施工方案设计

目录 1、适用围 2、编制依据 3、工程概况及主要工程量 4、作业人员的资格和要求 5、主要机械及工、器具 6、施工准备 7、作业程序、作业方法、工艺要求及质量标准 8、工序交接及成品保护 9、安全及文明施工措施 10、附录

1、适用围 本施工方案适用于我公司承建的中电投供热2×168MW热水锅炉扩建工程循环水管道安装。本施工方案按中国核电工程循环水管道图(0911-1(2)-11R)进行编制。 2、编制依据 2.1《电力建设施工质量验收及评价规程》第5部分:管道及系统DL/T 5210.5-2009 2.2《火力发电厂焊接技术规程》DL/T869-2004 2.3《电力建设施工质量验收及评价规程》焊接部分DL/T 5210.7-2010 2.4《电力建设安全工作规程》(火力发电厂部分)DL5009.1-92 2.5施工图 3、工程概况及主要工程量 主要工程量: Φ920×13 Q235A 77.2m Φ720×11 Q235A 124m Φ529×8 Q235A 204m Φ457×7 Q235A 46m Φ426×7 Q235A 55m Φ219×6 20# 0.25m Φ114×3.5 20# 32m 4、作业人员的资格和要求 4.1作业人员上岗前应经过专业培训,合格者方可上岗。 4.2作业人员应经过三级安全教育和考试,懂得安全操作知识。 4.3从事高空作业人员必须经过体格检查,合格者方可上岗。 4.4作业人员必须具有一定的管道安装经验,技师、主责、作业人员按一定的比例配备。 4.5电焊工应持有效合格证,操作工、起重工、电工、架子工等特殊工种必须持证上岗。 5、主要机械及工、器具 主要施工机械及工器具见附表1 6、施工准备 6.1材料设备准备 6.1.1施工用临时材料到位。 6.1.2材料设备到货,满足施工需要,出厂质量证明书或合格齐全。 6.2技术准备 6.2.1施工图纸齐全,图纸会审工作结束。 6.2.2技术交底结束。 6.2.3配管图会审工作结束,作业人员熟悉施工图。

光伏组件生产常用设备仪器介绍教材

组件生产常用设备仪器介绍组件测试仪(博硕) 操作规范 组件测试仪操作规程 面板各部件功能

A、电压表——用于显示设置电压的大小 B、充电显示——黄(绿)色发光二极管。显示设备的充电状态,灯亮表示充电完成,可以使用。 C、充电进行——用于显示设备的充电状态。灯亮充电进行,灯灭表示充电结束 D、光强调节——调节光源电压 E、负载调节——调节此钮,使电子负载和光强曲线平顶保持同步,最大限度使用“闪光平顶”。 F、电源指示——显示供电电源的通断 G、放电——用于维修时对电容进行放电(注意:正常时禁止操作此按钮)。 H、电源开关——接通/断开供电电源 I、触发——插接触发线 J、电源(~220V)——电源插座 K、电池组件——插接连接电池组件的组件测试线 1调试 1.1接通设备电源和计算机电源,预热15分钟。 1.2进行电池组件测试前要校准电流、电压、光源通道零点。测试组件前要校准组件测试仪的电压与电流零点。电压、电流数值的准确与否会直接影响到组件的电压、电流和功率。如果不填入光强通道的零点不能正常测量。 2校准 2.1将组件测试线从“电池组件”插座取下。 2.2双击“CS”出现如下画面: 2.3双击“ ”图标,出现如下界面

CH0对应的数值-4630即为电流零点 CH1对应的数值-4604即为电压零点 CH2对应的数值-4628即为光强通道零点 (电流零点、电压零点、光强零点的实际数值以实测数据为准) 2.4双击“ ”图标,显示如下窗口 2.5单击“设置” ,显示如下窗口 2.6进行“硬件设置” 将上面步骤2.3读取的CH2对应的方格内的数字填入到光强零点对应的方格内、CH1对应的方格内的数字填入到电压零点对应的方格内、CH0对应的方格内的数字填入到电流零点对应的方格内。点击“应用”、“确定”,电压、电流零点校准完毕。

相关文档
最新文档