(新高考)2020版高考数学二轮复习基础送分专题三不等式课件文
2020高考数学(理)二轮专题复习课件:第一部分 专题二 函数、不等式、导数 1-2-3

第16页
返回导航
2020大二轮 ·数学(理)
3.利用定积分求平面图形的面积的两个关键点 (1)正确画出几何图形,结合图形位置,准确确定积分区间以 及被积函数,从而得到面积的积分表达式,再利用微积分基本定理 求出积分值. (2)根据图形的特征,选择合适的积分变量.在以 y 为积分变 量时,应注意将曲线方程变为 x=φ(y)的形式,同时,积分上、下 限必须对应 y 的取值.
的切点为 P(x0,y0),则 y′|x=x0=2ax0+a+2=2,得 a(2x0+1)=0, ∴a=0 或 x0=-12,又 ax20+(a+2)x0+1=2x0-1,即 ax20+ax0+2
=0,当 a=0 时,显然不满足此方程,∴x0=-12,此时 a=8.
第11页
返回导航
2020大二轮 ·数学(理)
第29页
返回导航
2020大二轮 ·数学(理)
大题规范——学会踩点 规范解答 类型三 含参数的函数的单调性 [典例 3] (2016·高考全国卷Ⅰ)已知函数 f(x)=(x-2)ex+a(x- 1)2. (1)讨论 f(x)的单调性; (2)若 f(x)有两个零点,求 a 的取值范围.
第30页
返回导航
第28页
返回导航
2020大二轮 ·数学(理)
解析:函数 f(x)=x2+3x-2ln x 的定义域为(0,+∞). f′(x)=2x+3-2x,令 2x+3-2x<0,即 2x2+3x-2<0,解得 x∈-2,12.又 x∈(0,+∞),所以 x∈0,12.所以函数 f(x)的单调 递减区间为0,12. 答案:0,12
第8页
返回导航
2020大二轮 ·数学(理)
解析:令 x>0,则-x<0,f(-x)=ln x-3x, 又 f(-x)=f(x), ∴f(x)=ln x-3x(x>0), 则 f′(x)=1x-3(x>0), ∴f′(1)=-2,∴y=f(x)在点(1,-3)处的切线方程为 y+3=- 2(x-1),即 y=-2x-1. 答案:y=-2x-1
2020高考数学(文)二轮专题复习课件:第1部分 专题二 函数、不等式、导数 1-2-2

优解:由题意,关于 x,y 的方程组ax+x+byy= =11, 无解,则直 线 ax+y=1 与 x+by=1 平行且不重合,从而可得 ab=1,且 a≠b.
又 a>0,b>0,故 a+b>2 ab=2,即 a+b 的取值范围是(2, +∞).
专题二 函数、不等式、导数
解题必备 解题方略 走进高考 限时规范训练
考点二 不等式及线性规划
1.(1)若 ax2+bx+c=0 有两个不等实根 x1 和 x2(x1<x2) ax2+bx+c>0(a>0)的解为{x|x>x2,或 x<x1}, ax2+bx+c<0(a>0)的解为{x|x1<x<x2}; (2)ax2+bx+c>0(a≠0)恒成立的条件是aΔ><00,. (3)ax2+bx+c<0(a≠0)恒成立的条件是a<0,
ab·ba=4,当且仅
优解:如图 a,b 分别是直线ax+by=1 在 x,y 轴上的截距,A(a,0), B(0,b),当 a→1 时,b→+∞,当 b→1 时,a→+∞,只有点(1,1) 为 AB 的中点时,a+b 最小,此时 a=2,b=2,∴a+b=4.
1.常数代换法求最值的关键在于常数的变形,利用此方法求 最值应注意以下三个方面:(1)注意条件的灵活变形,确定或分离 出常数,这是解题的基础;(2)将常数化成“1”,这是代数式等价变 形的基础;(3)利用基本不等式求解最值时要满足“一正、二定、 三相等”,否则容易出现错解.
x3 x≥1, 范围是________.
解析:结合题意分段求解,再取并集. 当 x<1 时,x-1<0,ex-1<e0=1≤2, ∴当 x<1 时满足 f(x)≤2.
【精品推荐】2020高考数学(理科)二轮专题复习课标通用版 课件 专题1 不等式、函数和导数 第1部分 专题1

解析 由题意和等差数列的性质知 a+b=1+17=
18,所以1a+2b5=118(a+b)1a+2b5=11826+ba+25ba≥118
26+2
ba·25ba=2,当且仅当ba=25ba,即 b=5a,即 a=
3 时,等号成立,即1a+2b5取最小值,所以公差 d=a-1
解析 当 a=0 时,有 1<0,故 A=∅;当 a≠0 时,若 A=∅,则有aΔ>=0,a2-4a≤0, 解得 0<a≤4.综上,a 的取 值集合为{a|0≤a≤4}.
答案 {a|0≤a≤4}
题型二 简单的线性规划问题
1.常见的三种目标函数 (1)截距型:形如 z=ax+by,求这类目标函数的最值 常将函数 z=ax+by 转化为 y=-abx+bz,通过求直线的 截距bz的最值间接求出 z 的最值.
解析 ①a2+b2=2≥2ab⇒(a+b)2=a2+b2+2ab≤4 ⇒a+b≤2,正确;②1a+1b+2 ab≥2 1ab+2 ab≥4,当 且仅当 a=b=1 时,等号成立,正确;③取 x=0,则 y =-4,错误;④a,b 均为负数时也成立,错误.故答案 为①②.
答案 ①②
8.(2019·江西上饶模拟)已知正数 x,y 满足 xy+yx=
• 线性规划的实质是把代数问题几何化,需要注意的是:(1)准 确无误地作出可行域;(2)画目标函数所对应的直线时,要注 意与约束条件中的直线的斜率进行比较,避免出错;(3)一般 情况下,目标函数的最大值或最小值会在可行域的顶点或边 界上取得,整点问题要验证解决.
题型三 基本不等式及其应用
1.几个常用不等式 (1)如果 a,b∈R,那么 a2+b2≥2ab,当且仅当 a=b 时,等号成立. 推论:ab≤a2+2 b2(a,b∈R).
2020届高考数学(文)二轮复习专题过关检测:专题3 不等式 Word版含答案

2020届高考数学(文)二轮复习专题过关检测专题3 不等式1.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-1或x ≥92 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤92 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-92或x ≥1D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1 解析:选D 不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,所以(2x +9)(x -1)≤0,解得-92≤x ≤1.所以不等式(x +5)(3-2x )≥6的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1.故选D. 2.设a >b ,a ,b ,c ∈R ,则下列式子正确的是( ) A .ac 2>bc 2B.ab>1 C .a -c >b -cD .a 2>b 2解析:选C 若c =0,则ac 2=bc 2,故A 错;若b <0,则a b<1,故B 错;不论c 取何值,都有a -c >b -c ,故C 正确;若a ,b 都小于0,则a 2<b 2,故D 错.于是选C.3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2).所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.4.设不等式组⎩⎪⎨⎪⎧x -2y ≤0,x -y +2≥0,x ≥0表示的可行域为Ω,则( )A .原点O 在Ω内B .Ω的面积是1C .Ω内的点到y 轴的距离有最大值D .若点P (x 0,y 0)∈Ω,则x 0+y 0≠0。
2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第4讲不等式课件文苏教版

过点
B(2,4)时,x+y
取得最大值
6,此时
12x+y取得最小值18.
[答案]
1 8
6.(2019·江苏省名校高三入学摸底卷)设 x,y 满足约束条件xy≥≥00
,若目标函数 z
2x+y≤2
=ax+by(a>0,b>0)的最大值为 M,且 M 的取值范围是[1,2],则点 P(a,b)所组成的
(2)作出可行域,如图中阴影部分所示, 由图可知当 0≤-k<12时,直线 y=-kx+z 经过点 M(4,4) 时 z 最大,所以 4k+4=12,解得 k=2(舍去);当-k≥12时, 直线 y=-kx+z 经过点(0,2)时 z 最大,此时 z 的最大值为 2,不合题意;当-k<0 时,直线 y=-kx+z 经过点 M(4,4)时 z 最大,所以 4k+4= 12,解得 k=2,符合题意.综上可知 k=2. 【答案】 (1)45,13 (2)2
1.必记的概念与定理 已知 x>0,y>0,则: (1)如果积 xy 是定值 p,那么当且仅当 x=y 时,x+y 有最小值是 2 p.(简记:积定和 最小) (2)如果和 x+y 是定值 p,那么当且仅当 x=y 时,xy 有最大值是p42.(简记:和定积最 大) 确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.
[第二部分 高考20题各个击破]
专题一 集合、常用逻辑用语、不等式、 函数与导数 第4讲 不等式
数学
01
要点整合 夯基释疑
02
导学导练 核心突破
03
专题强化 精练提能
[2019 考向导航]
考点扫描
1.不等式的解法 2.基本不等式 3.不等式成立问题 4.线性规划 5.不等式的实际应用
2020版高考数学大二轮复习专题7选修部分第2讲不等式选讲课件文

[题后悟通] 含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)⇔f(x)>a 或 f(x)<-a. (2)|f(x)|<a(a>0)⇔-a<f(x)<a. (3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c 的不等式,可利用绝对值不等式的几何 意义求解.
与绝对值有关的参数范围问题
(2)①当 a>2 时,a2<2a-3,
3x-3a+3,x>2a-3 f(x)=x+a-3,a2≤x≤2a-3 , -3x+3a-3,x<a2
所以 f(x)在-∞,a2上是减函数,在a2,+∞是增函数,所以 f(x)min=fa2=32a-3, 由题设得32a-3≥4,解得 a≥134.
②当 a<2 时,同理求得 a≤-23. 综上所述,a 的取值范围为-∞,-23∪134,+∞.
第2讲 不等式选讲
绝对值不等式的解法
考情调研
考向分析
主要考查解绝对值不等式以及求含有绝对值的函数最值
问题.求解的一般方法是去掉绝对值,也可以借助数形 1.含绝对值不等式的解法.
结合求解.在高考中主要以解答题的形式考查,难度为 2.利用绝对值不等式求最值.
中、低档.
[题组练透] 1.已知函数 f(x)=|x+2|+2|x-1|. (1)求 f(x)的最小值; (2)若不等式 f(x)+x-a<0 的解集为(m,n),且 n-m=6,求 a 的值.
(2)
bac+
abc+
acb=a+abb+c c.
在(1)中已证 a+b+c≥ 3,
因此要证原不等式成立,
只需证明
1≥ abc
a+
b+
c.①
因为 a bc= ab·ac≤ab+2 ac,
2020版《3年高考2年模拟》(二轮)第3讲 不等式(可自主编辑PPT)
总纲目录
高考导航
考点一 不等式的性质与解法 考点二 基本不等式及其应用 考点三 简单的线性规划问题
考点一
栏目索引
考点一 不等式的性质与解法
高考导航
1.若x>y>0,m>n,则下列不等式中正确的是 ( D )
A.xm>ym B.x-m≥y-n
C. x > y
nm
D.x> xy
答案 D A不正确,因为m可能为0或负数;B不正确,因为同向不等式相减,不 等号的方向不确定;C不正确,因为m,n的正负不确定.故选D.
2 2x
-
1
3 2
=
x
1 2
+
x
1
1
-2≥2-2=0,当且仅当x+
1 2
=
x
1
1
,即x= 1 时等
2
2
2
号成立.
5.已知正数x,y满足x2+2xy-3=0,则2x+y的最小值是
答案 3
解析 由题意得,y= 3-x2 (0<x< 3),
2x
∴2x+y=2x+
3-x2 2x
=
3x2 2
x
3
=
3 2
企业每月利润的最大值为
千元.
考点三 栏目索引
答案 360
解析 设生产甲产品x件,生产乙产品y件,利润为z千元,
2x 3y 480,
高考导航
则6x y 960, 每月利润z=2x+y,作出不等式组所表示的可行域如图中阴影
x,y N,
部分所示,作出直线2x+y=0,平移该直线,当直线经过直线2x+3y=480与直线6x
2020新高考数学(文)二轮专题增分方案课件:基础送分专题一 集合与常用逻辑用语
“专题过关检测”见“专题过关检测(一)” (单击进入电子文档)
3 . (2019·山 西 芮 城 期 末 ) 在 一 次 数 学 测 试 中 , 成 绩 在 区 间 [125,150]内视为优秀,有甲、乙两名同学,设命题 p 是“甲 测试成绩优秀”,q 是“乙测试成绩优秀”,则命题“甲、乙 中至少有一名同学成绩不是优秀”可表示为 ()
A.(綈 p)∨(綈 q)
Z },则 A 中元素的个数为
()
A.9
B.8
C.5
D.4
解析:法一:将满足 x2+y2≤3 的整数 x,y 全部列举出来,即
(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-
1),(1,0),(1,1),共有 9 个.故选 A.
法二:根据集合 A 的元素特征及圆的方程在坐标系中作出图
中,则 1 一定在集合 A 中,因此只要保证 1∈A 即可,所以 a≥1,
故选 B.
法二:集合 A={x|x≤a},B={1,2,3},a 的值大于 3 时,满足
A∩B≠∅,因此排除 A、C.当 a=1 时,满足 A∩B≠∅,排除 D.
故选 B.
答案:B
4.(2018·全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z ,y∈
2.(2019·天津高考)设 x∈R ,则“0<x<5”是“|x-1|<1”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
解析:由|x-1|<1 可得 0<x<2,所以“|x-1|<1 的解集”是 “0<x<5 的解集”的真子集.故“0<x<5”是“|x-1|<1”的必 要而不充分条件.故选 B. 答案:B
2023高考数学二轮复习专题复习03 等式与不等式的性质 (解析版)
专题03等式与不等式的性质【考点预测】1.比较大小基本方法(1)基本性质bc【方法技巧与总结】1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.【题型归纳目录】 题型一:不等式性质的应用题型二:比较数(式)的大小与比较法证明不等式 题型三:已知不等式的关系,求目标式的取值范围 题型四:不等式的综合问题【典例例题】题型一:不等式性质的应用例1.(2022·北京海淀·二模)已知,x y ∈R ,且0x y +>,则( )A .110x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>【答案】B 【解析】 【分析】取特殊值即可判断A 、C 、D 选项,因式分解即可判断B 选项. 【详解】对于A ,令11,2x y ==-,显然01112yx +=-<,错误;对于B ,()()()23322213024x y x y x xy y x y x y y ⎡⎤⎛⎫+=+-+=+-+≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1,02x y y ==不能同时成立,故()2213024x y x y y ⎡⎤⎛⎫+-+>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,正确;对于C ,取1,0x y ==,则lg()0x y +=,错误; 对于D ,取1,3x y ==,则sin()sin 40x y +=<,错误. 故选:B.例2.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是( ) A .a c b c +<+ B .11a b< C .ac bc > D .b a c ->【答案】A【解析】 【分析】由不等式的基本性质和特值法即可求解. 【详解】对于A 选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a b a c b c <⇒+<+,A 选项正确;对于B 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若2a =-,1b =-,则11a b>,B 选项错误; 对于C 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,0c >,0a b ac bc <<⇒<,C 选项错误;对于D 选项,因为0a b b a <⇒->,0c >,所以无法判断b a -与c 大小,D 选项错误. 例3.(2022·山西·模拟预测(文))若0αβ<<,则下列结论中正确的是( ) A .22αβ< B .2βααβ+>C .1122αβ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .sin sin αβ<【答案】B 【解析】 【分析】对于A ,利用不等式的性质判断,对于B ,利用基本不等式判断,对于C ,利用指数函数的性质判断,对于D ,举例判断 【详解】∵0αβ<<,∴0αβ->->,∴22αβ>,故A 错误;∵0αβ<<,∴0,0αββα>>,∴2βαααββ+≥=. ∵αβ≠,∴2βααβ+>,故B 正确; ∵101,2αβ<<<,∴1122αβ>⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.故C 错误;令,2παπβ=-=-,此时sin 0,sin 1,sin sin αβαβ==->.故D 错误.故选:B .(多选题)例4.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是( ) A .221a b >+B .122a b +>C .24a b >D .1ab b>+ 【答案】ABC 【解析】 【分析】利用不等式的性质及特殊值法判断即可. 【详解】解:对于非零实数a ,b 满足||1a b >+,则()22||1a b >+,即2222||11a b b b >++>+,故A 一定成立; 因为1||1122a b a b b +>+≥+⇒>,故B 一定成立;又()2||10b -≥,即212||b b +≥,所以24||4a b b >≥,故C 一定成立; 对于D :令5a =,3b =,满足||1a b >+,此时5143a b b =<+=,故D 不一定成立. 故选:ABC(多选题)例5.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤ B .2a b +≥ C .1a b -> D .3a b -<【答案】ABD 【解析】 【分析】利用基本不等式以及适当的代数式变形即可判断. 【详解】对于A ,由3ab a b ++= ,a b +≥,当且仅当a b = 时等号成立,3ab ∴+≤ ,)310≤ ,1ab ∴≤ ,当且仅当1a b == 时等号成立,故A 正确; 对于B ,由3ab a b ++=,得()()4114,11a b b a ++=∴+=+ , 由基本不等式得)44(1)(1)2122211a b a b a a a +=+++-=++-≥-=++ ,当且仅当a=b =1时成立;故B 正确;对于C ,若1,1,a b == 满足3ab a b ++=,01a b -=<,故C 错误; 对于D ,∵3ab a b ++=,∴3ab a b a b =+++> ,由B 的结论得23a b ≤+< ,()()()()222949439a b a b ab a b a b --=+--=+--+-⎡⎤⎣⎦()()()()2421730a b a b a b a b =+++-=+++-< ,()29,3a b a b ∴--<< ,故D 正确; 故选:ABD.(多选题)例6.(2022·广东汕头·二模)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是( ) A .ac (a -c )>0 B .c (b -a )<0 C .22cb ab < D .ab ac >【答案】BCD 【解析】 【分析】利用不等式的基本性质求解. 【详解】解:因为a ,b ,c 满足c <a <b ,且ac <0, 所以0,0,0,0,0c a b a c b a <>>->->,所以ac (a -c )<0 ,c (b -a )<0,22cb ab <,ab ac >, 故选:BCD(多选题)例7.(2022·福建三明·模拟预测)设a b c <<,且0a b c ++=,则( ) A .2ab b < B .ac bc < C .11a c< D .1c ac b-<- 【答案】BC 【解析】 【分析】根据条件可得0<<a c ,b 的符号不能确定,然后依次判断即可. 【详解】因为a b c <<,0a b c ++=,所以0<<a c ,b 的符号不能确定, 当0b =时,2ab b =,故A 错误,因为a b <,0c >,所以ac bc <,故B 正确, 因为0<<a c ,所以11a c<,故C 正确, 因为a b <,所以a b ->-,所以0c a c b ->->,所以1c ac b->-,故D 错误, 故选:BC【方法技巧与总结】1.判断不等式是否恒成立,需要给出推理或者反例说明. 2.充分利用基本初等函数性质进行判断.3.小题可以用特殊值法做快速判断.题型二:比较数(式)的大小与比较法证明不等式例8.(2022·全国·高三专题练习(文))设2312m ⎛⎫= ⎪⎝⎭,1312n ⎛⎫= ⎪⎝⎭,2315p ⎛⎫= ⎪⎝⎭,则( ) A .m p n << B .p m n <<C .n m p <<D .p n m <<【答案】B 【解析】 【分析】根据指数函数12xy ⎛⎫= ⎪⎝⎭的单调性判断n m >,再由作商法判断m p >.【详解】因为函数12xy ⎛⎫= ⎪⎝⎭是减函数,所以12331122⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以n m > 2320323155212215⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=>= ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭,所以m p >, 所以n m p >> 故选:B 【点睛】本题主要考查了利用指数函数的单调性比较大小,属于中档题. 例9.(2022·全国·高三专题练习)若a =ln 22,b =ln 33,则a ____b (填“>”或“<”). 【答案】< 【解析】 【分析】作商法比较大小,结合对数的运算律和性质,即得解 【详解】易知a ,b 都是正数,b a =232ln 3ln 3ln 93ln 2ln 2ln8===log 89>1,所以b >a .故答案为:<例10.(2022·全国·高一)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.【答案】(1)()()()2153x x x ++<+;(2)证明见解析. 【解析】 【分析】(1)()()15x x ++与()23x +作差,判断差的正负即可得出结论;(2)结合不等式的性质分析即可证出结论. 【详解】(1)由题意,()()()2153x x x ++-+ 22656940x x x x =++---=-<,所以()()()2153x x x ++<+. (2)证明:因为11a b<,所以110a b -<,即0b aab -<, 而a b >,所以0b a -<,则0ab >.得证.例11.(2022·湖南·高一课时练习)比较()()213a a +-与()()62745a a -++的大小. 【答案】()()213a a +-<()()62745a a -++ 【解析】 【分析】做差比较大小即可. 【详解】()()()()2221362745(253)(253)60a a a a a a a a +---++=----+=-<⎡⎤⎣⎦,∴()()213a a +-<()()62745a a -++.例12.(2022·湖南·高一课时练习)比较下列各题中两个代数式值的大小:(1))21与)21;(2)()()2211xx ++与()()2211xx x x ++-+.【答案】(1)221)1)≤(2)()()2211x x ++()()2211x x x x ≤++-+【解析】 【分析】利用作差法得出大小关系. (1)))()()221111m m -=--+=-因为0m ≥,所以221)1)0-≤,当且仅当0m =时,取等号.即221)1)≤ (2)()()2211xx ++()()2211x x x x -++-+()()2222222121x x x x x ⎡⎤⎡⎤=+--+-=-⎢⎥⎢⎥⎣⎦⎣⎦因为0x ≥,所以()()2222221210x x x x ⎡⎤⎡⎤+--+-≤⎢⎥⎢⎥⎣⎦⎣⎦,当且仅当0x =时,取等号.故()()2211x x ++()()2211x x x x ≤++-+.【方法技巧与总结】比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性. 比较法又分为作差比较法和作商比较法. 作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论. 作商比较大小(一般用来比较两个正数的大小)的步骤是: (1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若0,0a b >>,则1b b a a >⇔>;1b b a a <⇔<;1bb a a =⇔=;若0,0a b <<,则1b b a a >⇔<;1b b a a <⇔>;1bb a a=⇔=. 题型三:已知不等式的关系,求目标式的取值范围例13.(2022·浙江·模拟预测)若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围( )A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞【答案】A 【解析】 【分析】设2()(52)x y m x y n x y +=+++,求出,m n ,再根据不等式的性质即可得出答案. 【详解】解:设2()(52)x y m x y n x y +=+++,则5221m n m n +=⎧⎨+=⎩,解得13m n ==,故112()(52)33x y x y x y +=+++,又因1522x y x y +≥⎧⎨+≥⎩,所以()()1112,523333x y x y +≥+≥, 所以21x y +≥. 故选:A.例14.(2022·全国·高三专题练习)已知12a ≤≤,14b -≤≤,则2a b -的取值范围是( ) A .724a b -≤-≤ B .629a b -≤-≤ C .629a b ≤-≤ D .228a b -≤-≤【答案】A 【解析】 【分析】先求2b -的范围,再根据不等式的性质,求2a b -的范围. 【详解】因为14b -≤≤,所以822b -≤-≤, 由12a ≤≤,得724a b -≤-≤. 故选:A.例15.(2022·全国·高三专题练习)若,x y 满足44x y ππ-<<<,则x y -的取值范围是( )A .(,0)2π-B .(,)22ππ-C .(,0)4π-D .(),44ππ-【答案】A 【解析】 【分析】根据不等式的性质,求得0x y -<,且22x y ππ-<-<,即可求解.【详解】由x y <,可得0x y -<, 又由44y ππ-<<,可得44y ππ-<-<,因为44x ππ-<<,可得22x y ππ-<-<,所以02x y π-<-<,即x y -的取值范围是(,0)2π-.故选:A.例16.(2022·全国·高三专题练习(文))已知-3<a <-2,3<b <4,则2a b的取值范围为( )A .(1,3)B .4934⎛⎫ ⎪⎝⎭,C .2334⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 【答案】A 【解析】 【分析】先求出a 2的范围,利用不等式的性质即可求出2a b的范围.【详解】因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故2a b的取值范围为(1,3),故选:A .例17.(2022·江西·二模(文))已知122x y ≤-≤,1231x y -≤+≤,则6x +5y 的取值范围为______. 【答案】[]1,4- 【解析】 【分析】由()652223x y x y x y +=-++结合不等式的性质得出答案. 【详解】解:()652223x y x y x y +=-++,即()()1212223221x y x y +⨯-≤-++≤+⨯ 故6x +5y 的取值范围为[]1,4-. 故答案为:[]1,4-例18.(2022·全国·高三专题练习)设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________. 【答案】[1,13] 【解析】 【分析】根据二次函数的性质和已知条件得到m 与n 的关系,化简222211m n n m +++后利用不等式即可求出其范围. 【详解】二次函数f (x )对称轴为1x m=, ∵f (x )值域为[]0,∞+,∴0m >且21121001f m n n mn m m mm ⎛⎫⎛⎫=⇒⋅-+=⇒=⇒= ⎪ ⎪⎝⎭⎝⎭,n >0.()12224f m n m n ≤⇒-+≤⇒+≤,∵()()()()2222224422222222221111111m m n n m n m n m n n m m n m n m n +++++++==+++++++ =()22222222222m n m n m n m n +-++++=()()222222222m n mn m n +++-++=()()222222212m n m n m n +++-++=221mn +-∴221211m n mn +-≥-=,22221()34313m n m n +-=+-≤-=, ∴222211m n n m +++∈[1,13]. 故答案为:[1,13].例19.(2022·全国·高三专题练习)已知有理数a ,b ,c ,满足a b c >>,且0a b c ++=,那么ca的取值范围是_________. 【答案】122c a -<<- 【解析】 【分析】根据不等式的性质求得ca的取值范围.【详解】由于a b c >>,且0a b c ++=,所以0,0a c ><,,,2,2cb ac a c a a c a=----<>->-, 1,2,2c a c c a c a -->-><-, 所以122c a -<<-. 故答案为:122c a -<<-例20.(2022·全国·高三专题练习)已知函数()34f x x ax b =++,当[]1,1x ∈-时,()1f x ≤恒成立,则a b +=____________. 【答案】-3 【解析】 【分析】可以取特殊值112x x =±=±,时,()11f x -≤≤恒成立,从而求出a 和b ﹒【详解】当[]1,1x ∈-时,()1f x ≤恒成立,则()11f x -≤≤对任意[]1,1x ∈-恒成立, 则112x x =±=±,时,()11f x -≤≤恒成立1141x a b =-≤++≤,①1141141x a b a b =--≤--+≤⇒-≤+-≤,②1111222a xb =-≤++≤,③111111122222a a xb b =--≤--+≤⇒-≤+-≤,④①+②282253a a -≤+≤⇒-≤≤-:③+④21231a a -≤+≤⇒-≤≤: 3a ∴=-,代入①20b -≤≤: 代入③02b ≤≤: 0b ∴=,30a b ∴=-=,,3a b ∴+=-﹒证明()343f x x x =-满足题意:()343f x x x =-,则()()2112302f x x f x x ''=-=⇒=±,,由表可知,|f (x )|≤1在[-1,1]上恒成立满足题意﹒故答案为:-3. 【点睛】本题考察恒成立问题,根据函数和区间的特殊性,可取特殊值得到关于a 和b 的不等式组,求出a 和b 的范围,从而确定a 和b 的取值﹒例21.(2022·全国·高三专题练习)已知正数a ,b 满足5﹣3a ≤b ≤4﹣a ,ln b ≥a ,则ba的取值范围是___.【答案】[e ,7] 【解析】 【分析】 由题意可求得b a≤7;由ln b ≥a 可得b ba lnb ≥(b 12e ≥),设函数f (x )x lnx =(x 12e ≥),利用其导数可求得f (x )的极小值,也就是ba的最小值.【详解】∵正数a ,b 满足5﹣3a ≤b ≤4﹣a , ∴5﹣3a ≤4﹣a , ∴a 12≥. ∵5﹣3a ≤b ≤4﹣a , ∴5a -34b a a ≤≤-1.从而ba≤7, ∵ln b ≥a ,∴b ba lnb≥(b 12e ≥), 设f (x )x lnx =(x 12e ≥),则f ′(x )21lnx lnx -=(), 当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,当x =e 时,f ′(x )=0, ∴当x =e 时,f (x )取到极小值,也是最小值. ∴f (x )min =f (e )=e . ∴ba≥e , ∴ba的取值范围是[e ,7]. 故答案为:[e ,7].例22.(2022·全国·高三专题练习)已知,,a b c 均为正实数,且111,,232425abbc ca a bb cc a+++,那么111a b c ++的大值为__________.【答案】4 【解析】 【分析】本题目主要考察不等式的简单性质,将已知条件进行简单变形即可 【详解】因为,,a b c 均为正实数,所以由题可得:22203,04,05a b b c a c b bc ac a +++<≤<≤<≤,即1203b a<+≤,1204c b <+≤,1205a c <+≤,三式相加得:1110312a b c ⎛⎫<++≤ ⎪⎝⎭,所以11104a b c <++≤所以111a b c++的最大值为4故答案为:4【方法技巧与总结】在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.题型四:不等式的综合问题例23.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e1b aa b -+=+则下列不等式中恒成立的个数是( )①1122b a --< ②11b a a b -<- ③e e b a b a -<- ④5ln 5a b +<+A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】①,分析得到,a b <所以1122b a --<正确;②,构造函数举反例判断得解;③,构造函数利用函数单调性判断得解;④,转化为判断2ln(5)2ln(5)a b +<+再构造函数利用导数判断函数的单调性即得解. 【详解】解:①,若02,e e 1,11b aa ab b -+≥∴≤=∴>+,所以矛盾,所以,a b <所以1122b a --<正确; ②,1111b a a b a b a b -<-∴+<+,,设21(1)(1)(),(0),()x x f x x x f x x x +-'=+>∴=, 所以当(0,1)x ∈时,函数()f x 单调递减,当(1,+)x ∈∞时,函数()f x 单调递增,因为a b <,所以11a b ab+<+不恒成立,如1151,(),1,(1)2()2222a fb f f ====<,所以该命题错误;③,e e a b a b -<-,设()e ,()e 10,()x x g x x g x g x '=-∴=->∴在(0,)+∞单调递增,因为a b <,所以e e a b a b -<-恒成立,所以该命题正确;④,5ln2ln(5)2ln(5)5a a b b +<⇔+<++设()2ln(5)h x x =+所以2()h x '==所以函数()h x 在(0,1)单调递增,在(1,)+∞单调递减. 取131,e,(1)e 3e,1b b a b b -==∴+=+ 设()(1)e ,()(2)e 0x x k x x k x x '=+∴=+>,所以()k x 在(0,)+∞单调递增, (1)2e 3e k =<,2(2)3e 3e k =>,所以存在(1,2),(1)e 3e b b b ∈+>,此时2ln(5)2ln(5)a b +>+ 所以该命题错误. 故选:B例24.(2022·江西·临川一中高三期中(文))若实数a ,b 满足65a a b <,则下列选项中一定成立的有( ) A .a b < B .33a b <C .e 1a b ->D .ln 0a b ⎛⎫< ⎪⎝⎭【答案】D 【解析】 【分析】先由65a a b <得到0a b <<或0b a <<,再利用不等式的性质、函数的单调性进行判定. 【详解】因为65a a b <,所以655()0a a b a a b --=<, 显然0a ≠,所以()0a a b -<,所以00a a b >⎧⎨-<⎩或00a a b <⎧⎨->⎩,即0a b <<或0b a <<;若0a b <<,则a b <,33a b <,0e e 1a b -<=,ln ln10a b ⎛⎫<= ⎪⎝⎭;若0b a <<,则a b >,33a b >,0>e e 1a b -=,ln ln10a b ⎛⎫<= ⎪⎝⎭;即一定成立的是选项D. 故选:D.例25.(2022·湖南·长沙一中高三阶段练习)若m ,n ∈+N ,则下列选项中正确的是( ) A .()()1log 1log 2m m m m ++<+ B .(n m m n mn ⋅≥C .()()22sin 1sin 31n n n n n ππ⋅<+⋅>+ D .1121111n n n n n n n n +++++<++ 【答案】C 【解析】 【分析】对于A ,作商比较,对于B ,令1,2m n ==判断,对于C ,利用在单位圆中,内接正n 边形的面积小于内接正()1n +边形的面积判断,对于D ,利用放缩法判断 【详解】解:对于A 选项,由于m ,n ∈+N ,故由对数的定义得2,N m m +≥∈,()()1log 10,log 20m m m m ++>+>, 所以()()()()211111log 2log 2log log 2log log 12m m m m m m m m m m m m ++++++++⎛⎫=+⋅≤ ⎪+⎝⎭()()()22211log 1log2144m m m m m ++⎡⎤++⎣⎦=<=,所以()()1log 1log 2m m m m ++>+,故A 错误; 对于B 选项,令1,2m n ==,则(21122,n m m n mn =⨯==⋅(n m m n mn <⋅B 错误;对于C 选项,因为,在单位圆中,内接正n 边形的面积小于内接正()1n +边形的面积, 所以()112π12π11sin 111sin 221n n S n S n n n +=⋅⋅⋅⋅<=+⋅⋅⋅⋅+,故C 正确;对于D 选项,由于112111,111n n n n n n n n n +++++===++,故D 错误. 故选:C(多选题)例26.(2022·江苏连云港·模拟预测)已知0,0a b >>,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .19ab ≤B .219a b+≥CD【答案】BCD 【解析】【分析】根据导数的几何意义得21a b +=,再根据基本不等式与柯西不等式可判断出答案. 【详解】设切点为00(,)x y ,因为1e x y -'=,所以01e 1x -=,得01x =, 所以122a b +=-,所以21a b +=, 对于 A,12a b =+≥18ab ≤,当且仅当11,42a b 时,等号成立,故A 不正确; 对于B,212122()(2)55b a a b a b a b a b+=++=++≥+9=,当且仅当13a b ==时,等号成立,故B 正确;对于C=25a =,15b =时,等号成立,故C 正确;对于D,22222(12⎡⎤⎡⎤≤+⋅+⎢⎥⎣⎦⎣⎦33(2)22a b =+⋅=, 所以,又21a b +=,即12,63a b ==时,等号成立. 故选:BCD(多选题)例27.(2022·辽宁辽阳·二模)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤ C≥D .412528a b +≥ 【答案】BD 【解析】 【分析】由不等式的性质与基本不等式对选项逐一判断 【详解】对于A ,02a <<,()()42344,2a b a a a -=--=-∈-,所以12416a b -<<,故A 错误,对于B ,420a b =+≥>,即0<02ab ,()222log log log 1a b ab +=≤,故B 正确,对于C,228a b =++≤C 错误,对于D,4122171725288488a b a b b a a b a b a b ++⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当825a b ==时,等号成立,故D 正确. 故选:BD(多选题)例28.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤ B .2a b +≥ C .1a b -> D .3a b -<【答案】ABD 【解析】 【分析】利用基本不等式以及适当的代数式变形即可判断. 【详解】对于A ,由3ab a b ++= ,a b +≥,当且仅当a b = 时等号成立,3ab ∴+≤ ,)310≤ ,1ab ∴≤ ,当且仅当1a b == 时等号成立,故A 正确; 对于B ,由3ab a b ++=,得()()4114,11a b b a ++=∴+=+ , 由基本不等式得)44(1)(1)2122211a b a b a a a +=+++-=++-≥-=++ ,当且仅当a=b =1时成立;故B 正确;对于C ,若1,1,a b == 满足3ab a b ++=,01a b -=<,故C 错误; 对于D ,∵3ab a b ++=,∴3ab a b a b =+++> ,由B 的结论得23a b ≤+< ,()()()()222949439a b a b ab a b a b --=+--=+--+-⎡⎤⎣⎦()()()()2421730a b a b a b a b =+++-=+++-< ,()29,3a b a b ∴--<< ,故D 正确; 故选:ABD.例29.(2022·全国·高三专题练习)若x ,y R ∈,设2223M x xy y x y =-+-+,则M 的最小值为__. 【答案】14-##0.25-【解析】 【分析】将M 化简可得2211224M x y y ⎛⎫=--+- ⎪⎝⎭,由此即可求出结果.【详解】因为()()2222221121321344M x y x y y x y x y y y y y y ⎡⎤=-+++=-++++++---⎢⎥⎣⎦221112244x y y ⎛⎫=--+-≥- ⎪⎝⎭.当且仅当0y =,12x =时取等号. 所以M 的最小值为14-.故答案为:14-.例30.(2022·四川泸州·三模(理))已知x 、y ∈R ,且224x y +=,给出下列四个结论: ①2x y +≤;②1xy ≥;③23x y +≤;④448x y +≥. 其中一定成立的结论是______(写出所有成立结论的编号). 【答案】①④ 【解析】 【分析】利用基本不等式可判断①和④,取特殊值x =0、y =2log 3可判断②,取特殊值y =12可判断③. 【详解】对于①,∵20,20x y >>,∴由224x y +=得,422x y =+≥即4≥,解得2x y +≤(当且仅当1x y ==时取等号),故①一定成立; 对于②,当20,log x y ==3时,224x y +=成立,但1xy ≥不成立,故②不一定成立;对于③,当12y =时,由224x y +=得24x =则132343022xy +-=-=>,即23x y +>,故③不一定成立;④将224x y +=两边平方得144216x y x y ++++=, ∴144162x y x y +++=-,由①可知:131********x y x y x y x y +++++≤⇒++≤⇒≤=⇒-≥-11621688x y ++⇒-≥-=,∴448x y +≥,当且仅当1x y ==时取等号,因此④一定成立﹒ 故答案为:①④﹒ 【点睛】本题①和④利用基本不等式即可求解,需要熟练运用基本不等式求范围.对于②和③,取特殊值验算即可快速求解﹒【过关测试】一、单选题 1.(2022·湖南·宁乡市教育研究中心模拟预测)小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则( ) A .2a bv +=B.v =C2a bv +< D.b v <<【答案】D 【解析】 【分析】平均速度等于总路程除以总时间 【详解】设从甲地到乙地的的路程为s ,从甲地到乙地的时间为t 1,从乙地到甲地的时间为t 2,则 1s t a=,2s t b =,1222211s s v s s t t a b a b===+++,∴221111v ba bb b=>=++,2211ab v a b a b==<=++ 故选:D.2.(2022·甘肃省武威第一中学模拟预测(文))已知0a b <<,则( ) A .110->a bB .sin sin 0a b ->C .0a b -<D .ln()ln()0a b -+->【答案】A 【解析】 【分析】利用特殊值法,结合已知逐一判断即可. 【详解】因为0a b <<,所以110b aa b ab--=>,选项A 正确; 当2π,πa b =-=-时,显然满足0a b <<,但sin sin 0a b -=,选项B 不正确; 当2π,πa b =-=-时,显然满足0a b <<,但0a b ->,选项C 不正确; 当1,123a b =-=-时,显然满足0a b <<,但是ln()ln()0a b -+-<,选项D 不正确, 故选:A3.(2022·陕西宝鸡·三模(理))若a b <,则下列结论正确的是( ) A .330a b -> B .22a b < C .()ln 0a b -> D .a b <【答案】B 【解析】 【分析】对于A 、B ,构造函数,借助函数单调性比大小; 对于C , ()ln a b -没有意义; 对于D ,取特值判断. 【详解】对于A ,构造函数3()f x x =,因为3()f x x =单调递增,又a b <,所以()()f a f b <,33a b ∴<,330a b ∴-<,故A 答案不对;对于B ,构造函数()2x f x =,因为()2x f x =单调递增,又a b <,所以()()f a f b <,22a b ∴<,故B 答案正确;对于C ,a b <,()ln a b ∴-没有意义,故C 答案不对;对于D ,取=11a b ,-=时,=a b ,故D 答案不对; 故选:B.4.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是( )A .11a b< B .a b +>C .22lg lg a b > D .33a b >【答案】D 【解析】 【分析】根据不等式的基本性质、基本不等式的条件和对数的运算,逐项判定,即可求解. 【详解】对于A 中,由11b aa b ab--=,因为a b >,可得0b a -<,当ab 不确定,所以A 错误;对于B 中,只有当0,0,a b a b >>,不相等时,才有a b +>B 错误; 对于C 中,例如1,2a b ==-,此时满足a b >,但22lg lg a b <,所以C 错误; 对于D 中,由不等式的基本性质,当a b >时,可得33a b >成立,所以D 正确. 故选:D.5.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( )A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>【答案】D 【解析】 【分析】对于A ,B ,C 可以取特殊值验证,对于D ,根据题意得330a b >>,3333a b b b --+>+,利用基本不等式求解即可. 【详解】对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2b a =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332b a b b --≥+>+=(等号成立的条件是0b =),故D 正确. 故选:D.6.(2022·安徽·芜湖一中高三阶段练习(理))已知0a >,0b >,22a b m +=,则以下正确的是( ) A .若1m =,则1a b + B .若1m =,则331a b + C .若2m =,则2a b +> D .若2m =,则332a b +【答案】D 【解析】 【分析】A :取特例a b ==B :求出01a <<,01b <<,根据幂函数在(0,1)之间的性质即可判断;C :根据不等关系2222a b a b ++ D :构造33222()(())a b a b a b ++-+并判断其范围,表示出33+a b ,结合C 项范围即可判断. 【详解】A :若221a b +=,取a b ==1a b +,故A 错误; B :若221a b +=,则01a <<,01b <<,∴33221a b a b +<+=,故B 错误; C :当222a b +=时,∵222a bab +,∴()222222a ba b ab +++,∴222()24a b a b ++,∴221222a b a b a b ++=⇒+,故C 错误;D :当222a b +=时,3322233222()(()2()0)a b a b a b a b b a a b ab a b ++-+=+-=-, 22233()4a b a ba b a b+∴+=++,由C 知,2a b +,42a b∴+,332a b ∴+,故D 正确. 故选:D.7.(2022·全国·高三专题练习(理))已知32a =,53b =,则下列结论正确的有( ) ①a b < ②11a b a b+<+ ③2a b ab +< ④b a a a b b +<+ A .1个 B .2个 C .3个 D .4个【答案】B 【解析】 【分析】求出a 、b 的值,比较a 、b 的大小,利用指数函数的单调性、导数法、不等式的基本性质以及基本不等式逐项判断可得出合适的选项. 【详解】因为32a =,53b =,则3log 2a =,5log 3b =.对于①,3223<,则2323<,从而2333320log 1log 2log 33a =<=<=,3235>,则2335>,则235552log 5log 3log 513b =<=<=,即2013a b <<<<,①对;对于②,()()()11111a b ab a b a b a b a b ab --⎛⎫⎛⎫⎛⎫+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为2013a b <<<<,则0a b -<,01ab <<,所以,11a b a b+>+,②错; 对于③,355522log 2log 32log 2log 4ab =⋅==,所以,355353542log 2log 3log 4log 2log log log 03a b ab +-=+-=->, 所以,2a b ab +>,③错; 对于④,构造函数()ln x f x x =,其中0e x <<,则()21ln xf x x -'=. 当0e x <<时,()0f x '>,则函数()f x 在()0,e 上单调递增, 因为01a b <<<,则()()f a f b <,即ln ln a ba b<,可得b a a b <,所以,b a a a b b +<+,④对. 故选:B.8.(2022·安徽省舒城中学模拟预测(理))若数列{}n a 为等差数列,数列{}n b为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+ B .4132b b b b ≤-- C .3124a a a a ≥ D .3124a a a a ≤【答案】D 【解析】 【分析】对选项A ,令112n n b -⎛⎫=- ⎪⎝⎭即可检验;对选项B ,令2nn b =即可检验;对选项C ,令n a n =即可检验;对选项D ,设出等差数列的首项和公比,然后作差即可. 【详解】 若112n n b -⎛⎫=- ⎪⎝⎭,则12341111,,,248b b b b ==-==-可得:14237184b b b b +=>=-+,故选项A 错误; 若2nn b =,则12342,4,8,16b b b b ====可得:4132144b b b b -=>-=,故选项B 错误; 若n a n =,则12341,2,3,4a a a a ==== 可得:124346a a a a =<=,故选项C 错误; 不妨设{}n a 的首项为1a ,公差为d ,则有:()112411133a a a a d a a d =+=+()()22311121223a d a d a d a a d a =++=++则有:4223120a a a a d -=≥,故选项D 正确故选:D 二、多选题9.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是( ) A .1ab a b +>+ B .()2log 1a b +> C .11a b ab+<+ D .11a b a b+>+ 【答案】BD 【解析】 【分析】A 选项,利用()()1110a b ab a b --=+--<作出判断;B 选项,利用基本不等式即函数单调性求解;CD 选项,用作差法求解.由于两个不相等的正实数a 和b ,满足1ab >,所以a 和b 可取一个比1大,一个比1小,即()()1110a b ab a b --=+--<,故1ab a b +<+,A 错误;由题意得:2a b +>>,所以()2log 1a b +>,B 正确;()111111a b a b a b a b a b ab ⎛⎫⎛⎫+-+=-+-=-- ⎪ ⎪⎝⎭⎝⎭,其中110ab ->,但不知道a 和b 的大小关系,故当a b >时,11a b a b+>+,当a b <时,11a b a b +<+,C 错误;()1111a b a b a b ab ⎛⎫⎛⎫+-+=+- ⎪ ⎪⎝⎭⎝⎭,其中110ab ->,0a b +>,所以()11110a b a b a b ab ⎛⎫⎛⎫+-+=+-> ⎪ ⎪⎝⎭⎝⎭,即11a b a b+>+,D 正确. 故选:BD10.(2022·湖南省隆回县第二中学高三阶段练习)已知a b c >>,且0a b c ++=,则下列结论正确的是( ) A .2ab b > B .ac bc <C .11a c> D .1a cb c->- 【答案】BCD 【解析】 【分析】根据不等式的基本性质依次判断选项即可. 【详解】A :由a b c >>且0a b c ++=,可知a >0,c <0,b 的值不确定, 故由a b >,不能推出2ab b >,故A 错误;B :由0a b c ><,,得ac bc <,故B 正确;C :由于0a >,0c <,得11a c>,故C 正确; D :由a b c >>得0a c b c ->->.所以1a cb c->-,故D 正确, 故选:BCD.11.(2022·广东·广州市第四中学高三阶段练习)已知实数a ,b ,c 满足1,01a b c >><<,则下列不等式一定成立的有( ) A .()()c c a c b c -<- B .log (1)log (1)a b c c +<+ C .log log 2a c c a +≥ D .22224a c b c c >>【答案】BD 【解析】对于A ,利用幂函数的性质判断,对于BC ,利用对数函数的性质判断,对于D ,利用不等式的性质分析判断 【详解】对于A ,因为01c <<,所以c y x =在(0,)+∞上单调递增,因为,01a b c c >><<,所以0a c b c ->->,所以()()cca cbc ->-,所以A 错误,对于B ,因为1a b >>,所以当1x >时,log log a b x x <,因为01c <<,所以11c +>,所以log (1)log (1)a b c c +<+,所以B 正确,对于C ,因为1,01a b c >><<,所以log 0,log 0a c c a <<,所以log log 0a c c a +<,所以C 错误, 对于D ,因为1,01a b c >><<,所以22210a b c >>>>,所以22224a c b c c >>,所以D 正确, 故选:BD12.(2022·河北保定·一模)已知a 、b 分别是方程20x x +=,30x x +=的两个实数根,则下列选项中正确的是( ). A .10b a -<<< B .10a b -<<< C .33a b b a ⋅<⋅ D .22b a a b ⋅<⋅【答案】BD 【解析】 【分析】在同一直角坐标系中画出2,3,x x y y y x ===-的图象,可判断AB ,然后结合不等式的性质可判断CD. 【详解】函数2,3,x x y y y x ===-在同一坐标系中的图象如下:所以10a b -<<<,所以22,33,0a b a b b a<<<-<-所以()()22,33a b a bb a b a -⋅<-⋅-⋅<-⋅所以22b a a b ⋅<⋅,33a b b a ⋅⋅> 故选:BD 三、填空题13.(2022·四川泸州·三模(文))已知x ,R y ∈,满足224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +<;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号). 【答案】①④ 【解析】 【分析】根据基本不等式,结合特殊值法逐一判断即可. 【详解】①:因为224x y +=,所以有4222422x y x y x y +=+≥≥≥⇒+≤,故本结论一定成立; ②:当20,log 3x y ==时,显然224x y +=成立,但是1xy ≥不成立,故本结论不一定成立; ③:当1x y ==时,显然224x y +=成立,但是23x y +<不成立,故本结论不一定成立; ④:因为224x y +=,所以114421644162x y x y x y x y ++++++=⇒+=-,由①可知: 1311213228281621688x y x y x y x y x y +++++++≤⇒++≤⇒≤=⇒-≥-⇒-≥-=,所以448x y +≥,因此本结论一定成立, 故答案为:①④14.(2022·全国·江西科技学院附属中学模拟预测(文))已知实数x 、y 满足223x y -≤+≤,220x y -≤-≤,则34x y -的取值范围为______. 【答案】[7,2]- 【解析】 【分析】设34(2)(2)x y m x y n x y -=++-,利用待定系数法求出,m n 的值,然后根据不等式的性质即可求解. 【详解】解:设34(2)(2)x y m x y n x y -=++-,则2324m n m n +=⎧⎨-=-⎩,解得12m n =-⎧⎨=⎩,所以34(2)x y x y -=-++2(2)x y -, 因为223x y -≤+≤,220x y -≤-≤, 所以3(2)2x y -≤-+≤,42(2)0x y -≤-≤, 所以7342x y -≤-≤, 故答案为:[7,2]-.15.(2022·全国·高三专题练习)如果a >b ,给出下列不等式:①11a b<;②a 3>b 32ac 2>2bc 2;⑤ab >1;⑥a 2+b 2+1>ab +a +b .其中一定成立的不等式的序号是________. 【答案】②⑥ 【解析】 【分析】对,a b 分别赋值,然后对各个不等式进行排除,对于无法排除的选项利用函数的单调性和差比较法证明成立. 【详解】令1,1a b ==-,11a b>=11a b =-<,排除⑤.当0c 时,排除④.由于幂函数3y x =为R 上的递增函数,故33a b >,②是一定成立的.由于()()()()22222111102a b ab a b a b a b ⎡⎤++-++=-+-+->⎣⎦,故221a b ab a b ++>++.故⑥正确.所以一定成立的是②⑥. 【点睛】本小题主要考查实数比较大小,使用的方法较多,一个是特殊值比较法,也就是对问题中的,a b 举出一些具体的数值,然后对不等式的正确与否进行判断.第二个是用函数的单调性的方法来比较,即是如果要比较的两个数和某个函数有点接近,如本题中②,用幂函数的单调性来判断.第三个是用差比较法来判断,如本题中的⑥.16.(2022·全国·高三专题练习)设x ,y 为实数,满足238xy ≤≤,249x y≤≤,则3x y 的最小值是______.【答案】12 【解析】利用方程组形式,可得()223nm x x xy y y ⎛⎫=⋅ ⎪⎝⎭,求得,m n 后结合不等式性质即可求得3x y 的最小值. 【详解】设()223nm x x xy y y ⎛⎫=⋅ ⎪⎝⎭即322m n m n xy x y -+-=⋅所以2123m n m n +=⎧⎨-=-⎩,解得11m n =-⎧⎨=⎩所以()2123x x xy y y -⎛⎫=⋅ ⎪⎝⎭因为238xy ≤≤,249x y≤≤, 所以()121183xy-≤≤ 由不等式性质可知()212132x xy y -⎛⎫≤⋅≤ ⎪⎝⎭即3132x y ≤≤,当且仅当()212418x yxy -⎧=⎪⎪⎨⎪=⎪⎩时取等号,解得74552,2x y ==. 综上可知,3x y的最小值为12. 故答案为:12. 【点睛】本题考查了不等式的化简变形应用,不等式性质求最值,关键是要求出两个不等式间的关系,属于中档题. 四、解答题17.(2022·全国·高三专题练习)已知1a >,1b >,2222,1111a b b a M N a b a b =+=+----. (1)试比较M 与N 的大小,并证明; (2)分别求M ,N 的最小值.【答案】(1)M N ≤;证明见解析 ;(2) M ,N 的最小值都是8. 【解析】 【分析】(1)利用作差比较法,得到2()()0(1)(1)a b a b M N a b -+-=-≤--,即可求解; (2)化简1111411a b a M b =-++-++--,结合基本不等式,即可求解. 【详解】(1)M 与N 的大小为M N ≤,证明:由22222()()1111(1)(1)a b b a a b a b M N a a b b a b -+-=-+-=-------, 因为1a >,1b >,所以0a b +>,10a ->,10b ->,2()0a b -≥,所以2()()0(1)(1)a b a b a b -+-≤--,所以M N ≤. (2)因为2222[(1)1][(1)1]1111a b a b M a b a b -+-+=+=+----111144811a b a b =-++-++≥=--, 当2a b ==时取等号,又由(1)N M ≥,所以M ,N 的最小值都是8.18.(2022·全国·高三专题练习)(1)已知a ,b 均为正实数.试比较33+a b 与22a b ab +的大小; (2)已知a ≠1且a ∈R ,试比较11a-与1a +的大小. 【答案】(1)33+a b ≥22a b ab +;(2)答案见解析. 【解析】 【分析】(1)将目标代数式作差得2()()a b a b -+,即可知大小关系;(2)利用“作差法”有21(1)11a a a a-+=--,对a 分类讨论即可判断大小. 【详解】(1)∵a ,b 均为正实数,∴332222222()()()()()()()0a b a b ab a a b b a b a b a b a b a b +-+=---=--=-+≥,即33+a b ≥22a b ab +. (2)由21(1)11a a a a-+=--. ①当a =0时,21a a=-0,则11a =-1a +; ②当a <1且a ≠0时,21a a >-0,则11a >-1a +; ③当a >1时,21a a<-0,则11a <-1a +. 综上,当a =0时,11a =-1a +;当a <1且a ≠0时,11a >-1a +;当a >1时,11a<-1a +. 19.(2022·全国·高三专题练习)已知下列三个不等式:①0ab >;②c da b>;③bc ad >,以其中两个作为条件,余下一个作为结论,则可组成几个正确命题?并选取一个结论证明. 【答案】可组成3个正确命题,证明见解析. 【解析】 【分析】根据不等式的性质逐个分析每个命题的真假即可. 【详解】 (1)对②变形:0c d bc ad a b ab->⇔>,由0,ab bc ad >>得②成立,∴①③⇒②.。
【2020最新】数学高考二轮复习专题一第3讲不等式案-文科
教学资料范本【2020最新】数学高考二轮复习专题一第3讲不等式案-文科编辑:__________________时间:__________________高考定位 1.利用不等式性质比较大小、不等式的求解、利用基本不等式求最值及线性规划问题是高考的热点,主要以选择题、填空题为主;2.在解答题中,特别是在解析几何中求最值、范围问题或在解决导数问题时常利用不等式进行求解,难度较大.真题感悟1.(20xx·全国Ⅰ卷)设x,y满足约束条件则z=x+y的最大值为( )A.0B.1C.2D.3解析根据约束条件画出可行域,如图中阴影部分(含边界),则当目标函数z=x+y经过A(3,0)时取得最大值,故zmax=3+0=3.答案D2.(20xx·山东卷)若变量x,y满足则x2+y2的最大值是( )A.4B.9C.10D.12解析作出不等式组表示的平面区域,如图中阴影部分所示:x2+y2表示区域内点到原点距离的平方,由得A(3,-1).由图形知,(x2+y2)max=|OA|2=32+(-1)2=10.答案C3.(20xx·天津卷)若a,b∈R,ab>0,则的最小值为________.解析∵a,b∈R,ab>0,∴≥=4ab+≥2=4,当且仅当即时取得等号. 答案 44.(20xx·全国Ⅲ卷)设函数f(x)=则满足f(x)+f>1的x 的取值范围是________.解析 当x≤0时,f(x)+f =(x +1)+, 原不等式化为2x +>1,解得-<x≤0,当0<x≤时,f(x)+f =2x +⎝ ⎛⎭⎪⎫x -12+1原不等式化为2x +x +>1,该式恒成立, 当x>时,f(x)+f =2x +2x -,又x>时,2x +2x ->2+20=1+>1恒成立, 综上可知,不等式的解集为. 答案 ⎝ ⎛⎭⎪⎫-14,+∞考 点 整 合1.不等式的解法(1)一元二次不等式的解法.一元二次不等式ax2+bx +c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a 与ax2+bx +c 同号,则其解集在两根之外;如果a 与ax2+bx +c 异号,则其解集在两根之间. (2)简单分式不等式的解法. ①>0(<0)⇔f(x)g(x)>0(<0).②≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.(3)指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解. 2.几个不等式(1)a2+b2≥2ab(取等号的条件是当且仅当a=b).(2)ab≤(a,b∈R).(3)≥≥≥(a>0,b>0).(4)2(a2+b2)≥(a+b)2(a,b∈R,当a=b时等号成立).3.利用基本不等式求最值(1)如果x>0,y>0,xy=p(定值),当x=y时,x+y有最小值2(简记为:积定,和有最小值).(2)如果x>0,y>0,x+y=s(定值),当x=y时,xy有最大值s2(简记为:和定,积有最大值).4.简单的线性规划问题解决线性规划问题首先要找到可行域,再根据目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域上的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.热点一不等式的性质及解法【例1】 (1)已知函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2-x)>0的解集为( )A.{x|x>2或x<-2}B.{x|-2<x<2}C.{x|x<0或x>4}D.{x|0<x<4}(2)(20xx·江苏卷)已知函数f(x)=x3-2x+ex-,其中e是自然对数的底数,若f(a-1)+f(2a2)≤0,则实数a的取值范围是________.解析(1)∵f(x)=(x-2)(ax+b)为偶函数,∴(-x-2)(-ax+b)=(x-2)(ax+b),则(2a-b)x=0恒成立.因此2a-b=0,即b=2a,则f(x)=a(x-2)(x+2).又函数在(0,+∞)上单调递增,所以a>0.f(2-x)>0即ax(x -4)>0,解得x<0或x>4.(2)f′(x)=3x2-2+ex +≥3x2-2+2=3x2≥0且f′(x)不恒为0,所以f(x)为单调递增函数.又f(-x)=-x3+2x +e -x -ex =-(x3-2x +ex -)=-f(x),故f(x)为奇函数,由f(a -1)+f(2a2)≤0,得f(2a2)≤f(1-a), ∴2a2≤1-a ,解之得-1≤a≤, 故实数a 的取值范围是. 答案 (1)C (2)⎣⎢⎡⎦⎥⎤-1,12探究提高 1.解一元二次不等式:先化为一般形式ax2+bx +c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.2.(1)对于和函数有关的不等式,可先利用函数的单调性进行转化. (2)含参数的不等式的求解,要对参数进行分类讨论.【训练1】 (1)若不等式x2-ax +1≥0对于一切a∈[-2,2]恒成立,则x 的取值范围是________.(2)已知不等式≥|a2-a|对于x∈[2,6]恒成立,则a 的取值范围是________.解析 (1)因为a∈[-2,2],可把原式看作关于a 的一次函数,即g(a)=-xa +x2+1≥0, 由题意可知解之得x∈R. (2)设y =,y′=-<0,故y =在x∈[2,6]上单调递减,则ymin ==, 故不等式≥|a2-a|对于x∈[2,6]恒成立等价于15|a2-a|≤恒成立, 化简得⎩⎨⎧a2-a -2≤0,a2-a +2≥0,解得-1≤a≤2,故a 的取值范围是[-1,2]. 答案 (1)R (2)[-1,2] 热点二 基本不等式及其应用【例2】 (1)(20xx·山东卷)若直线+=1(a>0,b>0)过点(1,2),则2a +b 的最小值为________.(2)(20xx·江苏卷改编)已知函数f(x)=2x +,若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,则实数m 的最大值为________. 解析 (1)∵直线+=1(a>0,b>0)过点(1,2), ∴+=1(a>0,且b>0), 则2a +b =(2a +b)⎝ ⎛⎭⎪⎫1a +2b =4++≥4+2=8.当且仅当=,即a =2,b =4时上式等号成立. 因此2a +b 的最小值为8.(2)由条件知f(2x)=22x +2-2x =(2x +2-x)2-2=(f(x))2-2. ∵f(2x)≥mf(x)-6对于x∈R 恒成立,且f(x)>0, ∴m≤对于x∈R 恒成立. 又=f(x)+≥2=4,且=4, ∴m≤4,故实数m 的最大值为4. 答案 (1)8 (2)4探究提高 1.利用基本不等式求最值,要注意“拆、拼、凑”等变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值,等号能够取得.2.特别注意:(1)应用基本不等式求最值时,若遇等号取不到的情况,则应结合函数的单调性求解.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则会出错.【训练2】 (1)已知向量a=(3,-2),b=(x,y-1),且a∥b,若x,y均为正数,则+的最小值是( )A. B.C.8D.24(2)若实数a,b满足+=,则ab的最小值为( )A. B.2C.2D.4解析(1)∵a∥b,∴3(y-1)+2x=0,即2x+3y=3.∵x>0,y>0,∴+=·(2x+3y)=≥(12+2×6)=8.当且仅当3y=2x时取等号.(2)依题意知a>0,b>0,则+≥2=,当且仅当=,即b=2a时,“=”成立.∵+=,∴≥,即ab≥2,∴ab的最小值为2.答案(1)C (2)C热点三简单的线性规划问题命题角度1 已知线性约束条件,求线性目标函数最值【例3-1】 (1)(20xx·天津卷)设变量x ,y 满足约束条件则目标函数z =x +y 的最大值为( ) A. B.1 C.D.3(2)(20xx·全国Ⅲ卷)若x ,y 满足约束条件则z =3x -4y 的最小值为________.解析 (1)作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最优解在B(0,3)处取得,故zmax =0+3=3,选项D 符合. (2)由题设,画出可行域如图阴影部分所示: 由z =3x -4y , 得y =x -,作出直线y =x ,平移使之经过可行域,观察可知,当直线经过点A(1,1)时,z 有最小值.故zmin =3×1-4×1=-1. 答案 (1)D (2)-1命题角度2 求非线性目标函数的最值【例3-2】 (20xx·汉中模拟)已知实数x ,y 满足⎩⎨⎧2x -y -4≥0,x -2y -2≤0,y≤6,则z =的取值范围是________.解析 作出约束条件所表示的可行域如图中阴影部分所示, 联立得A(2,0). 联立得点B(5,6).z =的几何意义为可行域内的动点与定点P(-2,-1)连线的斜率,∵kPA=,kPB =1,∴z=的取值范围为. 答案 ⎣⎢⎡⎦⎥⎤14,1命题角度3 线性规划中参数问题【例3-3】(20xx·池州模拟)已知x,y满足约束条件目标函数z=2x-3y的最大值是2,则实数a=( )A. B.1C. D.4解析作出约束条件所表示的可行域如图中阴影部分所示,∵目标函数z=2x-3y的最大值是2,由图象知z=2x-3y经过平面区域的A时目标函数取得最大值2.由解得A(4,2),同时A(4,2)也在直线ax+y-4=0上,∴4a=2,则a=.答案A探究提高 1.线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.2.对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【训练3】(1)(20xx·山东卷)已知x,y满足约束条件则z=x+2y 的最大值是( )A.-3B.-1C.1D.3(2)(20xx·新乡模拟)若实数x,y满足且z=mx-y(m<2)的最小值为-,则m等于( )A. B.-C.1D.1 3解析(1)已知约束条件可行域如图中阴影部分所示,z=x+2y经过B(-1,2)时有最大值,∴zmax=-1+2×2=3.(2)作出约束条件所表示的可行域如图中阴影部分所示,z=mx-y(m<2)的最小值为-,可知目标函数的最优解过点A,由解得A.∴-=-3,解得m=1.答案(1)D (2)C1.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.4.解答不等式与导数、数列的综合问题时,不等式作为一种工具常起到关键的作用,往往涉及到不等式的证明方法(如比较法、分析法、综合法、放缩法、换元法等).在求解过程中,要以数学思想方法为思维依据,并结合导数、数列的相关知识解题,在复习中通过解此类问题,体会每道题中所蕴含的思想方法及规律,逐步提高自己的逻辑推理能力.一、选择题1.(20xx·全国Ⅲ卷)已知a=2,b=3,c=25,则( )A.b<a<cB.a<b<cC.b<c<aD.c<a<b解析a=2=,b=3=,c=25=,所以b<a<c.答案A2.(20xx·南昌模拟)若正数x, y满足+=1,则3x+4y的最小值是( )A.24B.28C.25D.26解析∵正数x,y满足+=1,则3x+4y=(3x+4y)=13++≥13+3×2=25,当且仅当x=2y=5时取等号.∴3x+4y的最小值是25.答案C3.(20xx·全国Ⅲ卷)设x,y满足约束条件则z=x-y的取值范围是( )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]解析 画出不等式组表示的可行域(如图阴影部分所示).结合目标函数的几何意义,函数在点A(0,3)处取得最小值z =0-3=-3,在点B(2,0)处取得最大值z =2-0=2. 答案 B4.已知当x <0时,2x2-mx +1>0恒成立,则m 的取值范围为( ) A.[2,+∞) B.(-∞,2] C.(-2,+∞)D.(-∞,-2)解析 由2x2-mx +1>0,得mx <2x2+1, 因为x <0,所以m >=2x +. 又2x +=-⎣⎢⎡⎦⎥⎤(-2x )+1(-x ) ≤-2=-2.当且仅当-2x =-,即x =-时取等号, 所以m >-2. 答案 C5.(20xx·济南十校二模)已知x ,y 满足约束条件若z =ax +y 的最大值为4,则a =( ) A.3 B.2 C.-2D.-3解析 不等式组表示的平面区域如图阴影部分所示.易知A(2,0), 由得B(1,1).由z =ax +y ,得y =-ax +z.∴当a =-2或-3时,z =ax +y 在O(0,0)处取得最大值,最大值为zmax =0,不满足题意,排除C ,D ;当a =2或3时,z =ax +y 在A(2,0)处取得最大值,∴2a=4,∴a=2,排除A ,故选B. 答案 B6.已知函数f(x)=那么不等式f(x)≥1的解集为________.解析 当x >0时,由log3x≥1可得x≥3,当x≤0时,由≥1可得x≤0,∴不等式f(x)≥1的解集为(-∞,0]∪[3,+∞). 答案 (-∞,0]∪[3,+∞)7.(20xx·北京卷)已知x≥0,y≥0,且x +y =1,则x2+y2的取值范围是________.解析 法一 ∵x≥0,y≥0且x +y =1. ∴2≤x+y =1,当且仅当x =y =取等号, 从而0≤xy≤,因此x2+y2=(x +y)2-2xy =1-2xy , 所以≤x2+y2≤1.法二 可转化为线段AB 上的点到原点距离平方的范围,AB 上的点到原点距离的范围为,则x2+y2的取值范围为.答案 ⎣⎢⎡⎦⎥⎤12,18.(20xx·长郡中学二模)曲线x =|y -1|与y =2x -5围成封闭区域(含边界)为Ω,直线y =3x +b 与区域Ω有公共点,则b 的最小值为________.解析 作x =|y -1|与y =2x -5围成的平面区域如图, 由解得A(6,7),平移直线y =3x +b ,则由图象可知当直线经过点A 时,直线y =3x +b 在y 轴上的截距最小,此时b 最小. ∴b=-3x +y 的最小值为-18+7=-11. 答案 -119.(20xx·郴州二模改编)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求实数m的取值范围.解先根据约束条件画出可行域(图略)要使可行域存在,必有m<-2m+1,要求可行域包含直线y=x-1上的点,只要边界点(-m,1-2m)在直线y=x-1的上方,且(-m,m)在直线y=x-1的下方,故得不等式组解之得m<-.故实数m的取值范围是.10.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.解(1)f(x)>k⇔kx2-2x+6k<0.由已知{x|x<-3,或x>-2}是其解集,得kx2-2x+6k=0的两根是-3,-2.由根与系数的关系可知(-2)+(-3)=,即k=-.(2)因为x>0,f(x)==≤=,当且仅当x=时取等号.由已知f(x)≤t对任意x>0恒成立,故t≥,即t的取值范围是.11.(20xx·天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万) 甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解 (1)由已知,x ,y 满足的数学关系式为即⎩⎪⎨⎪⎧7x +6y≤60,x +y≥6,x -2y≤0,x≥0,y≥0,该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设总收视人次为z 万,则目标函数为z =60x +25y.考虑z =60x +25y ,将它变形为y =-x +,这是斜率为-,随z 变化的一族平行直线,为直线在y 轴上的截距,当取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距最大,即z 最大. 解方程组得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.。