菱形习题

合集下载

18.2.2菱形的性质与判定练习题

18.2.2菱形的性质与判定练习题

第14题F AD E B C 18.2.2菱形的性质与判定练习题一、选择题1、已知在菱形ABCD 中,下列说法错误的是( ).A. 两组对边分别平行B. 菱形对角线互相平分C. 菱形的对边相等D. 菱形的对角线相等 2、菱形具有而矩形不一定具有的性质是( ).A .对边相等B .对角相等C .对角线互相垂直D .对角线相等 3、能够找到一点使该点到各边距离相等的图形为( ). A .平行四边形 B .菱形 C .矩形 D .不存在 4、下列说法不正确的是( ).A .菱形的对角线互相垂直B .菱形的对角线平分各内角C .菱形的对角线相等D .菱形的对角线交点到各边等距离 5、菱形的两条对角线分别是12cm 、16cm ,则菱形的周长是( ). A .24cm B .32cm C .40 cm D .60cm 6、菱形ABCD 的周长是16,∠A=60°,则对角线BD 的长度为( ). A .2B .32C .4D .347、菱形的周长为4,一个内角为60°,则较短的对角线长为( ). A .2 B .3 C .1 D .218、菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为( ). A .15B .3215C .7.5D .315 9、已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD=120°,AC=4,则该菱形的面积是( ). A 、163B 、16C 、83D 、810、菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ).A .8cmB .9cmC .12cmD .15cm11、菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( ). A .3:1 B .4:1 C .5:1 D .6:112、如图,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果EF =2,那么菱形ABCD 的周长是( ). A .4 B .8 C .12 D .16第12题 第13题13、如图,菱形ABCD 的对角线交于点O ,AO=1,且∠ABC ∶∠BAD=1∶2,则下列结论中:①∠ABC=60°;②AC=2;③ BD=4;④ S 四ABCD =23;⑤ 菱形ABCD 的周长是8,其中正确的有( ). A .①②③④⑤ B .①②④⑤ C .②③④⑤ D .①②③⑤14、如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,则△AEF 的周长为( ).A .32B .33C .34D .315、从菱形的钝角的顶点向对边引垂线,并且这条垂线平分对边,•则该菱形的钝角为( ). A .110° B .120° C .135° D .150° 二、填空题1、已知在菱形ABCD 中,AB =5,它的周长= .2、已知菱形的两条对角线长分别为2cm ,3cm ,则它的面积是 _______cm 2. 3、已知在菱形ABCD 中,∠BAC =58°,∠ABC = .4、已知在菱形ABCD 中,对角线AC 、BD 相交于点O ,∠ABO =72°,∠BAO = .5、已知在菱形ABCD 中,对角线AC 、BD 相交于点O ,∠BAO 与∠ABO 的度数之比为2∶1,∠ABO = .6、在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5cm, AO=4cm ,则AC= ,BD= .7、已知菱形的两对角线的比为2:3,两对角线和为20,•则这对角线长分别为 .8、菱形ABCD 的对角线AC 与BD 交于点O ,AB=13,BO=12,AO=5,求菱形的周长= ,面积= . 9、菱形的邻角比为1:5,它的高为1.5cm ,则它的周长为_______.10、菱形的面积为24cm 2,一条对角线的长为6cm, 则另一条对角线长为 ,边长为 .11、如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC=8,BD=6,过点O 作OH 丄AB ,垂足为H ,则点0到边AD 的距离为 _______.12、如图,菱形ABCD 的边长是2cm ,E 是AB 的中点,且DE 丄AB ,则菱形ABCD 的面积为 cm 2. 13、如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=13,AC=10,过点D 作DE∥AC 交BC 的延长线于点E ,则△BDE 的周长为 _________ .A BC DOFECAB D11题图12题图13题图14、O为菱形ABCD的对角线交点,E、F、G、H分别是菱形各边的中点,若OE=3cm,•则OG =_______,OH=______.15、如图,已知:菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为______ .15题图 16题图 17题图16、如图,已知菱形ABCD,∠BAD=80°,对角线AC、BD交于点O,点E在AB上且BE=BO,则∠BEO=_____.17、如图,在菱形ABCD中,AE⊥BC,AF⊥CD,E、F分别为BC,CD的中点,则∠EAF的度数.18、已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________ .19、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________ cm2.20、已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________ cm2.21、如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________ .21题图22题图20题图22、如图,菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________ .23、如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=度.三、解答题1、如图,已知在菱形ABCD中,AE⊥CD于E,∠ABC=60°,求∠CAE的度数.2、如图,菱形的周长为20cm,两邻角的比为1:2.求:(1)较短对角线长是多少?(2)一组对边的距离是多少?3、如图,已知E为菱形ABCD的边AD的中点,EM⊥AC交CB的延长线于点F.(1)试说明M为AB的中点.(2)若FB=2,求菱形ABCD的周长.4、如图,菱形ABCD中,E是AB中点,DE⊥AB,AB=4.求(1)∠ABC的度数;(2)AC的长;(3)菱形ABCD的面积.5、如图,□ABCD 的对角线AC 的垂直平分线与两边AB 、CD 的延长线分别相交于E 、F , 求证:四边形AECF 为菱形.6、如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD . 求证:四边形ADCE 是菱形7、如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F ,且BE=BP . 求证:(1)∠E=∠F ; (2)□ABCD 是菱形.8、如图,在菱形ABCD 中,∠ABC=60°,DE∥AC 交BC 的延长线于点E . 求证:DE=21BE .9、如图,四边形ABCD 为菱形,已知A (0,4),B (﹣3,0). (1)求点D 的坐标;(2)求直线AC 的解析式.10、如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB ,CD 满足什么条件时,四边形EGFH 是菱形?请证明你的结论.11、如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、 BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.A BC D EG H12、如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.13、如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.14、如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,(1)求DH的长;(2)连接OH,求证:∠OHB+∠DCO=90°.15、如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形.16、如图,已知菱形ABCD中,E、F分别在BC和CD上,且∠B=∠EAF=60°,∠BAE=15°.求∠CEF的度数.17、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?证明你的结论.18、如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.19、如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.求证:(1)求∠BGD的度数。

菱形的性质练习题

菱形的性质练习题

菱形的性质练习题【选择题】1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形。

小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误2.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直3.已知四边形ABCD是平行四边形,下列结论不正确的是()A. 当AB=BC时,它是菱形;B. 当AC⊥BD时,它是菱形;C. 当∠ABC=90°时,它是矩形;D. 当AC=BD时,它是菱形。

4、已知在菱形ABCD中,下列说法错误的是().A. 两组对边分别平行B.菱形对角线互相平分C. 菱形的对边相等D.菱形的对角线相等5、能够找到一点使该点到各边距离相等的图形为().A.平行四边形 B.菱形 C.矩形 D.不存在6、下列说法不正确的是().A.菱形的对角线互相垂直 B.菱形的对角线平分各内角C.菱形的对角线相等 D.菱形的对角线交点到各边等距离7、菱形的两条对角线分别是12cm、16cm,则菱形的周长是().A.24cm B.32cm C.40 cm D.60cm8.如图,在菱形ABCD中,E是AB的中点,作EF∥BC,交AC•于点F,如果EF=4,那么CD的长为().A.2 B.4 C.6 D.89.菱形的两邻角之比为1:2,如果它的较短对角线为3cm,则它的周长为().A.8cm B.9cm C.12cm D.15cm10.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为28,则OH的长等于( )A.3.5B.4C.7D.14【填空题】11.若菱形的周长20 cm,则它的边长是__________cm.12.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm.13.已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 . 14.菱形的两条对角线长分别为16cm,12cm,那么这个菱形的高是_______.15.菱形的面积为50cm²,一个内角为30°,则其边长为______.16.【选做题】.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_______.【问答题】17.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.18.如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.19.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE. 求证:OE=BC.。

菱形的练习题

菱形的练习题

菱形的练习题菱形是一种几何形状,它由两个平行的三角形组成,中间以一条竖直的轴对称。

在数学和几何学中,练习菱形的题目是一种常见的练习方式,可以帮助学生巩固对几何概念和图形性质的理解。

本文将为您介绍菱形的练习题和解答方法,帮助您更好地理解和应用菱形的相关知识。

一、填空练习题1. 给定一个菱形,其中四个角的度数分别为______度。

2. 菱形的对角线互相垂直,且对角线__________。

3. 若ABCD为菱形,AD的长度为8cm,菱形的周长为______cm。

4. 若菱形的一个角度为60度,则其余三个角度分别为______度、______度和______度。

5. 若菱形的对角线长分别为12cm和16cm,则菱形的面积为__________。

二、选择题1. 菱形的性质是()A. 四个角度相等B. 两个相邻边平行C. 对角线相等且垂直D. 所有边相等2. 若一个四边形的四个角度均为90度,该四边形一定是()A. 菱形B. 正方形C. 长方形D. 平行四边形3. 若菱形的周长为24cm,边长为()A. 2cmB. 4cmC. 6cmD. 8cm4. 菱形的一个角为70度,则其余三个角的度数分别为()A. 70度、70度、70度B. 35度、35度、140度C. 55度、55度、70度D. 25度、145度、25度5. 若一个菱形的面积为30平方厘米,则它的对角线长为()A. 3厘米B. 5厘米C. 6厘米D. 9厘米三、解答题1. 已知一个菱形的对角线长分别为10cm和6cm,求该菱形的边长和周长。

解答:设菱形的边长为x,则根据菱形性质可知,菱形的对角线相等且垂直。

根据勾股定理,可得:x² = (10/2)² + (6/2)²x² = 25 + 9x² = 34x = √34 cm因此,该菱形的边长约为5.83cm(保留两位小数)。

菱形的周长为4x = 4 * 5.83 ≈ 23.32cm(保留两位小数)。

初三有关菱形的练习题

初三有关菱形的练习题

初三有关菱形的练习题1. 将图中的菱形 ABCD 进行如下操作:a) 将它沿着对角线 AC 折叠,让角 A 和角 C 重合,得到新的图形A'C'BD。

b) 然后,将边 A'C' 沿着对角线 A'D' 折叠,让角 A' 和角 D' 重合,得到完全重合的两个菱形 A'D'CD' 和 A'C'BD'。

请根据以上操作,回答以下问题:i) 边 AC 和边 BD 之间的夹角是多少度?ii) 边 AC 和边 A'D' 之间的夹角是多少度?iii) 请说明每一个折叠操作对原始菱形的对称性有何影响?2. 已知菱形 ABCD 的对角线 AC 的长度为 12 cm,以及菱形的周长为 30 cm。

求菱形的边长和面积。

3. 菱形 ABCD 的对角线 AC 的长度为 16 cm,且边 AB 和边 CD 的长度分别为 6 cm 和 8 cm。

将该菱形旋转 45 度,得到新的菱形A'B'C'D'。

请计算新菱形的周长和面积。

4. 在菱形 ABCD 中,已知边 AB 的长度为 10 cm,以及菱形的周长为 32 cm。

求菱形的对角线长度。

5. 用纸片折叠法,将一个边长为 6 cm 的正方形变成一个边长为 6 cm 的菱形。

请描述折叠步骤。

注意:1. 对于计算题,请给出详细的步骤和计算结果。

2. 对于图形题,请在回答中绘制清晰的图示,以便读者更好地理解问题。

以上为初三有关菱形的练习题,请思考并回答,如有不清楚处,请及时提出。

矩形菱形练习题及答案

矩形菱形练习题及答案

矩形 【2 】.菱形常识考点:懂得并控制矩形的剖断与性质,并能应用所学常识解决有关问题. 精典例题:【例1】如图,已知矩形ABCD 中,对角线AC.BD 订交于点O,AE ⊥BD,垂足为E,∠DAE ∶∠BAE =3∶1,求∠EAC 的度数.剖析:本题充分应用矩形对角线把矩形分成四个等腰三角形的根本图形进行求解. 解略,答案450.例1图E ODC BA例2图FE DCB A例3图【例2】如图,已知菱形ABCD 的边长为3,延伸AB 到点E,使BE =2AB,贯穿连接EC 并延伸交AD 的延伸线于点F,求AF 的长.剖析:本题应用菱形的性质,联合平行线分线段成比例的性质定理,可使问题得解. 解略,答案AF =4.5.【例3】如图,在矩形ABCD 中,M 是BC 上的一动点,DE ⊥AM,垂足为E,3AB =2BC,并且AB.BC 的长是方程02)2(2=+--k x k x 的两根.(1)求k 的值;(2)当点M 分开点B 若干时,△ADE 的面积是△DEM 面积的3倍?请解释来由. 剖析:用韦达定理树立线段AB.AC 与一元二次方程系数的关系,求出k . 略解:(1)由韦达定理可得AB +BC =2-k ,AB ·BC =k 2,又由BC =23AB 可消去AB,得出一个关于k 的一元二次方程0123732=+-k k ,解得1k =12,2k =31,因AB +BC =2-k >0,∴k >2,故2k =31应舍去. (2)当k =12时,AB +BC =10,AB ·BC =k 2=24,因为AB <BC,所以AB =4,BC =6,由DEM AED S S ∆∆=3可得AE =3EM =43AM.易证△AED ∽△MBA 得MB AE =AMAD ,设AE =a 3,AM =a 4,则MB =22a ,而AB 2+BM 2=AM 2,故2421644a a =+,解得2a =2,MB =22a =4.即当MB =4时,DEM AED S S ∆∆=3.评注:本题将几何问题从“形”向“数”转化,这类分解题既有几何证实中的剖析和推理,又有代数式的灵巧变换.盘算,其解题进程层次较多,步骤较庞杂,书写进程也要增强练习.摸索与创新:【问题一】如图,四边形ABCD 中,AB =6,BC =35-,CD =6,且∠ABC =1350,∠BCD =1200,你知道AD 的长吗?剖析:这个四边形是一个不规矩四边形,应将它补割为规矩四边形才便于求解. 略解:作AE ⊥CB 的延伸线于E,DF ⊥BC 的延伸线于F,再作AG ⊥DF 于G ∵∠ABC =1350,∴∠ABE =450 ∴△ABE 是等腰直角三角形又∵AB =6,∴AE =BE =3 ∵∠BCD =1200,∴∠FCD =600 ∴△DCF 是含300的直角三角形 ∵CD =6,CF =3,DF =33 ∴EF =3)35(3+-+=8 由作图知四边形AGFE 是矩形 ∴AG =EF =8,FG =AE =3从而DG =DF -FG =32 在△ADG 中,∠AGD =900∴AD =22DG AG +=1264+=76=192【问题二】把矩形ABCD 沿BD 折叠至如上图所示的情况,请你猜想四边形ABDE 是什问题一图GD问题二图么图形,并证实你的猜想.剖析与结论:本题依据题设并联合图形猜想该四边形是等腰梯形,应用对称及全等三角形的有关常识易证.跟踪练习:一.填空题:1.若矩形的对称中间到双方的距离差为4,周长为56,则这个矩形的面积为.2.已知菱形的锐角是600,边长是20cm,则较短的对角线长是cm.3.如图,矩形ABCD 中,O 是对角线的交点,若AE ⊥BD 于E,且OE ∶OD =1∶2,AE =3cm,则DE =cm.4.如图,P 是矩形ABCD 内一点,PA =3,PD =4,PC =5,则PB =.5.如图,在菱形ABCD 中,∠B =∠EAF =600,∠BAE =200,则∠CEF =.第3题图E O DC BA第4题图543P D CBA 第5题图FEBA二.选择题:6.在矩形ABCD 的各边AB.BC.CD.DA 上分离取点E.F.G.H,使EFGH 为矩形,则如许的矩形( )A.仅能作一个B.可以作四个C.一般情况下不可作D.可以作无限多个7.如图,在矩形ABCD 中,AB =4cm,AD =12cm,P 点在AD 边上以每秒1 cm 的速度从A 向D 活动,点Q 在BC 边上,以每秒4 cm 的速度从C 点动身,在CB 间往返活动,二点同时动身,待P 点到达D 点为止,在这段时光内,线段PQ 有( )次平行于AB. A.1 B.2 C.3 D.4••第7题图QPDCB第8题图GFE DCBA8.如图,已知矩形纸片ABCD 中,AD =9cm,AB =3cm,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分离是( ) A.4cm.10cm B.5cm.10cmC.4cm.32cmD.5cm.32cm9.给出下面四个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③有一个角是直角且对角线互相等分的四边形是矩形;④菱形的对角线的平方和等于边长平方的4倍.个中准确的命题有( ) A.①②B.③④C.③D.①②③④10.平行四边形四个内角的等分线,假如能围成一个四边形,那么这个四边形必定是( ) A.矩形 B.菱形 C.正方形 D.等腰梯形 三.解答题:11.如图,在矩形ABCD 中,F 是BC 边上一点,AF 的延伸线交DC 的延伸线于点G,DE ⊥AG 于E,且DE =DC,依据上述前提,请在图中找出一对全等三角形,并证实你的结论.第11题图GFEDCBA第12题图 EBA第13题图C12.如图,在△ABC 中,∠ACB =900,CD 是AB 边上的高,∠BAC 的等分线AE 交CD 于F,EG ⊥AB 于G,求证:四边形GECF 是菱形.13.如图,以△ABC的三边为边在BC的统一侧分离作三个等边三角形,即△ABD.△BCE.△ACF.请答复下列问题(不请求证实):(1)四边形ADEF是什么四边形?(2)当△ABC知足什么前提时,四边形ADEF是矩形?(3)当△ABC知足什么前提时,以A.D.E.F为极点的四边形不消失?跟踪练习参考答案一.填空题:3;5.2001.180;2.20cm;3.3;4.2提醒:4题过点P作矩形任一边的垂线,应用勾股定理求解;5题贯穿连接AC,证△ABE≌△ACF得AE=AF,从而△AEF是等边三角形.二.DDBBA三.解答题:11.可证△DEA≌△ABF12.略证:AE等分∠BAC,且EG⊥AB,EC⊥AC,故EG=EC,易得∠AEC=∠CEF,∵CF =EC,EG=CF,又因EG⊥AB,CD⊥AB,故EG∥CF.四边形GECF是平行四边形,又因EG=FG,故GECF是菱形.13.(1)平行四边形;(2)∠BAC=1500;(3)当∠BAC=600时,以A.D.E.F为极点的四边形不消失.。

初中数学形菱形练习题

初中数学形菱形练习题

初中数学形菱形练习题
一、选择题
1. 菱形的对角线互相垂直平分,下列哪个选项不是菱形的性质?
A. 四边相等
B. 对角线互相垂直
C. 对角线互相平分
D. 对角线相等
2. 已知菱形的一组邻边长分别为a和b,且a≠b,下列哪个选项是正
确的?
A. 菱形的面积为ab
B. 菱形的面积为\(\frac{1}{2}ab\)
C. 菱形的面积为\(\frac{1}{2}(a^2 + b^2)\)
D. 菱形的面积为\(\frac{1}{2}ab\sin(\theta)\),其中
\(\theta\)为a和b之间的夹角
二、填空题
3. 菱形的对角线互相垂直平分,如果一条对角线的长度为10cm,另一条对角线的长度为8cm,则菱形的面积为______平方厘米。

4. 若菱形的边长为5cm,一条对角线的长度为6cm,则另一条对角线
的长度为______cm。

三、解答题
5. 已知菱形ABCD的对角线AC和BD相交于点O,且AC=8cm,BD=6cm。

求菱形ABCD的面积。

6. 菱形EFGH中,EF=4cm,且∠E=60°。

求菱形EFGH的面积。

四、证明题
7. 证明:如果一个四边形的对角线互相垂直平分,那么这个四边形是菱形。

8. 证明:菱形的面积等于其对角线乘积的一半。

五、应用题
9. 一个菱形花坛的边长为10m,一条对角线长为12m,求这个花坛的面积。

10. 一块菱形的瓷砖,其边长为30cm,一条对角线长为40cm,另一条对角线长为50cm,求这块瓷砖的面积。

菱形、矩形判定性质练习题

菱形性质与判定练习题1. 已知菱形ABCD中, 对角线AC与BD交于点O, ∠BAD=120°, AC=4, 则该菱形的面积是()A.16B.16C.8D.82.菱形的周长为4, 一个内角为60°, 则较短的对角线长为()A. 2B.C. 1D.3.菱形的周长为8cm, 高为1cm, 则该菱形两邻角度数比为()A. 3: 1B. 4: 1C. 5: 1D. 6: 14.如图, 菱形ABCD中, AB=15, ∠ADC=120°, 则B.D两点之间的距离为()A. 15B.C. 7.5D.5.如图, 菱形ABCD的周长是16, ∠A=60°, 则对角线BD的长度为()A. 2B.C. 4D.6. 已知菱形的两条对角线长分别为2cm, 3cm, 则它的面积是_________cm2.7. 如图, 菱形ABCD的对角线AC、BD相交于点O, 且AC=8, BD=6, 过点O作OH丄AB, 垂足为H, 则点0到边AB的距离OH=_________.8.如图, 菱形ABCD的边长是2cm, E是AB的中点, 且DE丄AB, 则菱形ABCD的面积为cm2.6题图7题图8题图9题图9. 如图, 在菱形ABCD中, 对角线AC与BD相交于点O, AB=13, AC=10, 过点D作DE∥AC交BC的延长线于点E, 则△BDE的周长为_________.10. 如图, 已知菱形ABCD的一个内角∠BAD=80°, 对角线AC.BD相交于点O, 点E在AB上且BE=BO, 则∠BEO= _________度.11.如图, 活动菱形衣架的边长均为16cm, 若墙上钉子间的距离AB=BC=16cm, 则∠1=度.10题图13题14题图15题图12. 已知菱形的一个内角为60°, 一条对角线的长为, 则另一条对角线的长为_________.13. 如图, 两个全等菱形的边长为1米, 一机器人由A点开始按A—B—C—D—E—F—C—G—A的顺序沿菱形的边循环运动, 行走2009米停下, 则这个微型机器人停在_____点.14. 如图, P为菱形ABCD的对角线上一点, PE⊥AB于点E, PF⊥AD于点F, PF=3cm, 则P点到AB的距离是____ cm.15. 已知: 菱形ABCD中, ∠B=60°, AB=4, 则以AC为边长的正方形ACEF的周长为______.16. 已知菱形的周长为40cm, 两条对角线之比为3: 4, 则菱形的面积为_________cm2.17. 已知菱形的周长是52cm, 一条对角线长是24cm, 则它的面积是_________cm2.18.如图, 菱形ABCD的对角线的长分别为2和5, P是对角线AC上任一点(点P不与点A、C重合), 且PE∥BC交AB 于E, PF∥CD交AD于F, 则阴影部分的面积是_________.17题图18题图19题图19. 如图: 菱形ABCD中, AB=2, ∠B=120°, E是AB的中点, P是对角线AC上的一个动点, 则PE+PB的最小值是_________.20. 如图: 点E、F分别是菱形ABCD的边BC.CD上的点, 且∠EAF=∠D=60°, ∠FAD=45°, 则∠CFE=度. 21.如图所示, 在菱形ABCD中, ∠ABC=60°, DE∥AC交BC的延长线于点E.求证:DE= BE.22. 如图, 在菱形ABCD中, ∠A=60°, AB=4, O为对角线BD的中点, 过O点作OE⊥AB, 垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23. 如图, 四边形ABCD是菱形, BE⊥AD.BF⊥CD, 垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8, BD=6时, 求BE的长.24. 如图, 在菱形ABCD中, P是AB上的一个动点(不与A.B重合), 连接DP交对角线AC于E连接BE.(1)证明: ∠APD=∠CBE;(2)若∠DAB=60°, 试问P点运动到什么位置时, △ADP的面积等于菱形ABCD面积的, 为什么?25. 如图所示, 在矩形ABCD中, AB=4cm, BC=8cm、点P从点D出发向点A运动, 同时点Q从点B出发向点C运动, 点P、Q的速度都是1cm/s.(1)在运动过程中, 四边形AQCP可能是菱形吗?如果可能, 那么经过多少秒后, 四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.矩形的性质与判定【知识要点:】1. 矩形的定义: 有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。

菱形的性质与判定经典习题

菱形的性质与判定经典题型
1.如图,在菱形ABCD中,∠BAD=60°,BD=4,则菱形ABCD的周长是_________.
2、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD 的面积为____________cm2.
3.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是________cm.4、如图,菱形ABCD的对角相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点O到边AB的距离___________
5、如图,将两张等宽的长方形纸重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于__________cm2.
6、如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是CD 的中点,过点A作AG∥BD,交CB的延长线于点G。

(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明。

7、如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
(1)说明四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由。

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题1.这个菱形的高为9cm。

2.较短对角线长为10cm。

3.边长为5cm。

4.各角分别为72°和108°。

5.添加的条件可以是AB=AD或BC=CD。

6.错误的说法是A,即两组对边分别平行。

7.对角线互相垂直。

8.菱形。

9.不正确的说法是B,即菱形的对角线平分各内角。

10.周长为40cm。

11.互相垂直且不平分。

12.AB长为8cm。

13.CD的长为4.14.对角线BD的长为2.15.边长为5.16.OH的长为7.17.若菱形的周长为20cm,则它的边长为4cm。

18.在菱形ABCD中,由对角线AC和BD相交于点O可知,菱形的对角线相等,即AC=BD。

又已知BD=6,则AC=6.设菱形ABCD的边长为a,则2a=20,即a=10.由菱形对角线的长度公式可得。

$AC=\sqrt{a^2+a^2}=a\sqrt{2}$,代入AC=6可得a=6/$\sqrt{2}$,因此菱形ABCD的面积为36.19.在菱形ABCD中,由$\angle ADC=120^\circ$可知,$\angle ADB=60^\circ$。

设$\angle ABD=\theta$,则$\angle ADB=120^\circ-\theta$。

由余弦定理可得,$BD^2=15^2+15^2-2\times15\times15\times\cos\theta$,化简可得$\cos\theta=1/2$,因此$\sin\theta=\sqrt{3}/2$。

由正弦定理可得,$BD/\sin\theta=2a$,其中a为菱形的边长。

又已知BD=15,代入可得$a=15\sqrt{3}/4$。

设B、D两点之间的距离为h,则$h=\sqrt{(15\sqrt{3}/4)^2-(15/2)^2}=15\sqrt{3}/4$,因此选项D 正确。

20.设菱形的较长对角线为2x,较短对角线为x,则菱形的面积为$x^2$。

初二数学菱形的性质作业练习题(含答案)

初二数学菱形的性质作业练习题一.选择题(共5小题)1.若菱形的一条边长为5cm,则这个菱形的周长为()A.20cm B.18cm C.16cm D.12cm2.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等3.在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.//⊥D.OA OC=AB DC B.OC OB=C.AC BD4.如图,四边形ABCD是菱形,120BD=,则BC的长是()∠=︒,4ABCA.6B.5C.4D.43第3题图第4题图第5题图5.如图,在菱形ABCD中,80∠=︒,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,BAD则CDF∠等于()A.80︒B.70︒C.65︒D.60︒二.填空题(共5小题)6.在菱形ABCD中,10BD=,则菱形的边长等于,面积等于.AC=,247.如图,菱形ABCD中,150∠=.∠=︒,则1D8.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.9.在菱形ABCD中,周长为16,30∠=︒,则其面积为.ABC10.菱形ABCD中,若周长是20cm,对角线6=,则对角线AC cmBD=cm.三.解答题(共4小题)11.如图,已知在菱形ABCD中,60AC=,求菱形ABCD∠=︒,对角线8ABC的周长和面积.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,且16BD=,求菱形ABCD的高AC=,12DH.13.如图,已知四边形ABCD是菱形,AE BC⊥于点F.⊥于点E,AF CD(1)求证:AE AF=;(2)若70∠的度数.∠=︒,求EAFB14.如图,在菱形ABCD中,AC为对角线,60B=.求∠=︒,点E,F分别是BC,CD边上的点,BE CF 证:AE AF=.答案与解析一.选择题(共5小题)1.若菱形的一条边长为5cm,则这个菱形的周长为()A.20cm B.18cm C.16cm D.12cm【分析】根据菱形的四条边都相等,现在已知其一条边长为5cm,即可求出菱形的周长.【解答】解:Q菱形的四条边都相等,∴其边长都为5cm,=⨯=.∴菱形的周长4520cm故选:A.2.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等【分析】根据菱形的对角线性质,即可得出答案.【解答】解:Q菱形的对角线互相垂直平分,且每一条对角线平分一组对角,∴菱形的对角线不一定具有的性质是相等;故选:D.3.在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.//=⊥D.OA OCAB DC B.OC OB=C.AC BD【分析】根据菱形的性质即可判断.【解答】解:Q四边形ABCD是菱形,⊥,OA OC=,AB CD//∴,AC BD故A,C,D正确,故选:B.4.如图,四边形ABCD是菱形,120BD=,则BC的长是()∠=︒,4ABCA.6B.5C.4D.43【分析】由菱形的性质可得CB CDBC BD==,∆是等边三角形,可得4=,BD平分ABC∠,可证BCD【解答】解:Q四边形ABCD是菱形,∠,且120∠=︒,ABC∴=,BD平分ABCCB CD∴∠=∠=︒,ABD CBD60∴∆是等边三角形,BCD4BC BD ∴==,故选:C .5.如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则CDF ∠等于( )A .80︒B .70︒C .65︒D .60︒【分析】连接BF ,根据菱形的对角线平分一组对角求出BAC ∠,BCF DCF ∠=∠,四条边都相等可得BC DC =,再根据菱形的邻角互补求出ABC ∠,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF BF =,根据等边对等角求出ABF BAC ∠=∠,从而求出CBF ∠,再利用“边角边”证明BCF ∆和DCF ∆全等,根据全等三角形对应角相等可得CDF CBF ∠=∠.【解答】解:如图,连接BF ,在菱形ABCD 中,11804022BAC BAD ∠=∠=⨯︒=︒,BCF DCF ∠=∠,BC DC =, 180********ABC BAD ∠=︒-∠=︒-︒=︒,EF Q 是线段AB 的垂直平分线,AF BF ∴=,40ABF BAC ∠=∠=︒,1004060CBF ABC ABF ∴∠=∠-∠=︒-︒=︒,Q 在BCF ∆和DCF ∆中,BC DC BCF DCFCF CF =⎧⎪∠=∠⎨⎪=⎩,()BCF DCF SAS ∴∆≅∆,60CDF CBF ∴∠=∠=︒,故选:D .二.填空题(共5小题)6.在菱形ABCD 中,10AC =,24BD =,则菱形的边长等于 13 ,面积等于 .【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长;由菱形面积公式即可求得面积.【解答】解:根据题意,设对角线AC 、BD 相交于O ,则由菱形对角线性质知,152AO AC ==,1122BO BD ==,且AO BO ⊥, 13AB ∴=,Q 菱形对角线相互垂直,∴菱形面积是11202S AC BD =⨯=. 故答案为:13,120.7.如图,菱形ABCD 中,150D ∠=︒,则1∠= 15︒ .【分析】由菱形的性质得出//AB CD ,21BAD ∠=∠,求出30BAD ∠=︒,即可得出115∠=︒.【解答】解:Q 四边形ABCD 是菱形,150D ∠=︒,//AB CD ∴,21BAD ∠=∠,180BAD D ∴∠+∠=︒,18015030BAD ∴∠=︒-︒=︒,115∴∠=︒;故答案为:15︒8.如图,已知菱形ABCD 的面积为26cm ,BD 的长为4cm ,则AC 的长为 3 cm .【分析】利用菱形的性质,菱形面积等于对角线乘积的一半,进而得出AC 的长;【解答】解:Q 菱形ABCD 的面积为26cm ,BD 的长为4cm ,∴1462AC ⨯⨯=, 解得:3AC =,故答案为:3.9.在菱形ABCD 中,周长为16,30ABC ∠=︒,则其面积为 8 .【分析】如图,过点A 作AE BC ⊥于点E ,由菱形的性质可求4AB BC ==,由直角三角形的性质可求2AE =,即可求解.【解答】解:如图,过点A 作AE BC ⊥于点E ,Q 菱形ABCD 的周长为16,4AB BC ∴==,30ABC ∠=︒Q ,AE BC ⊥,122AE AB ∴==, ∴菱形ABCD 的面积8BC AE =⨯=,故答案为:8.10.菱形ABCD 中,若周长是20cm ,对角线6AC cm =,则对角线BD = 8 cm .【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD 的一半,然后即可得解.【解答】解:如图,Q 菱形ABCD 的周长是20cm ,对角线6AC cm =, 2045AB cm ∴=÷=,132AO AC cm ==, 又AC BD ⊥Q ,2222534BO AB AO cm ∴=-=-=,28BD BO cm ∴==.故答案为:8.三.解答题(共4小题)11.如图,已知在菱形ABCD 中,60ABC ∠=︒,对角线8AC =,求菱形ABCD 的周长和面积.【分析】由在菱形ABCD 中,60ABC ∠=︒,可得ABC ∆是等边三角形,又由对角线8AC =,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【解答】解:Q 四边形ABCD 是菱形,AB BC ∴=,60ABC ∠=︒Q ,ABC ∴∆是等边三角形,8AB AC ∴==.∴菱形ABCD 的周长4832=⨯=, 228443BO =-=Q ,283BD BO ∴==,∴菱形ABCD 的面积18833232=⨯⨯=. 12.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且16AC =,12BD =,求菱形ABCD 的高DH .【分析】首先求出AB ,再利用12AB DH AC BD =g g ,即可解决问题. 【解答】解:Q 四边形ABCD 是菱形,DH AB ⊥,8OA OC ∴==,6OB OD ==,AC BD ⊥, ∴在Rt AOB ∆中,22228610AB OA OB =+=+=,12AB DH AC BD ∴=g g , 11016122DH ∴=⨯⨯g , 9.6DH ∴=.13.如图,已知四边形ABCD 是菱形,AE BC ⊥于点E ,AF CD ⊥于点F .(1)求证:AE AF =;(2)若70B ∠=︒,求EAF ∠的度数.【分析】(1)首先根据菱形的性质得到AB AD =,B D ∠=∠,再利用AAS 证明ABE ADF ∆≅∆,于是得到AE AF =;(2)首先根据垂直等知识求出BAE ∠的度数,结合全等三角形的知识以及菱形邻角互补即可求出EAF ∠的度数.【解答】(1)证明:AE BC ⊥Q ,AF DC ⊥,90AEB AFD ∴∠=∠=︒.Q 四边形ABCD 是菱形,AB AD ∴=,B D ∠=∠,在ABE ∆和ADF ∆,Q 90AEB AFD B D AB AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩gABE ADF ∴∆≅∆(AAS ), AE AF ∴=.(2)AE BC ⊥Q 于点E ,70B ∠=︒,20BAE ∴∠=︒,ABE ADF ∆≅∆Q ,20BAE DAF ∴∠=∠=︒,18070EAF B BAE DAF ∴∠=︒-∠-∠-∠=︒.14.如图,在菱形ABCD 中,AC 为对角线,60B ∠=︒,点E ,F 分别是BC ,CD 边上的点,BE CF =.求证:AE AF =.【分析】证明ABC ∆是等边三角形,得出AB AC =,由SAS 证明ABE ACF ∆≅∆,即可得出结论.【解答】证明:Q 四边形ABCD 是菱形,AB BC ∴=,ACB ACD ∠=∠,//AB CD ,180BCD B ∴∠+∠=︒,120BCD ∴∠=︒,60ACB B ∴∠=︒=∠,ABC ∴∆是等边三角形,AB AC ∴=,在ABE ∆和ACF ∆中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE ACF SAS ∴∆≅∆,AE AF ∴=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档