初中数学一次函数
初中数学知识归纳一次函数的概念与性质

初中数学知识归纳一次函数的概念与性质一次函数是初中数学中的重要内容,它具有简单的形式和规律性的特点。
本文将围绕一次函数的概念和性质展开论述。
一、一次函数的概念一次函数是指函数的最高次数为1的函数,可以表示为y = kx + b的形式,其中k和b为常数,x为自变量,y为因变量。
在一次函数中,自变量x的系数k称为斜率,表示了函数图像的倾斜程度,斜率正负表示了直线的上升或下降趋势;而常数b称为截距,表示了函数图像与y轴的交点。
二、一次函数的性质1. 函数图像为直线:由于一次函数的形式为y = kx + b,故其图像为一条直线。
直线可以用来表示两个变量之间的线性关系,如时间和距离的关系、成本和产量的关系等。
2. 斜率代表变化率:一次函数的斜率k反映了函数图像的倾斜程度。
斜率的绝对值越大,说明函数图像越陡峭;斜率为正表示上升趋势,斜率为负表示下降趋势。
3. 截距代表初始值:一次函数的常数b即截距,表示了函数图像与y轴的交点。
截距决定了函数图像的起点和y轴的交点位置,也可以理解为函数在x=0处的函数值。
4. 变量之间的线性关系:一次函数表示了两个变量之间的线性关系。
斜率k表示了两个变量之间的变化率,而截距b表示了变量在某个初始值时的数值。
三、一次函数的图像特点一次函数的图像有以下几个特点:1. 函数图像为一条直线,呈现出一致的斜率和截距;2. 当斜率为正时,函数图像从左下方朝右上方倾斜;当斜率为负时,函数图像从左上方朝右下方倾斜;3. 当截距为正时,函数图像与y轴的交点在y轴的正半轴上;当截距为负时,函数图像与y轴的交点在y轴的负半轴上;4. 斜率的绝对值越大,函数图像越陡峭;5. 斜率为零时,函数图像平行于x轴,表示了一个常数函数;6. 一次函数的图像可以通过两个点确定,其中一个点可以是截距,另一个点可以通过斜率确定。
四、一次函数的应用举例一次函数广泛应用于日常生活和工作中的各个领域。
以下是一些具体的应用举例:1. 距离和时间的关系:假设一个汽车以固定速度行驶,那么汽车的行驶距离与时间的关系可以用一次函数来表示。
七年级数学一次函数知识点

七年级数学一次函数知识点数学是一门让人爱恨交加的学科,但在数学中,一次函数的知识点是一个值得我们深入探讨的重要领域。
作为初中一年级数学的基本知识点,掌握一次函数的相关内容是学好整个数学课程的关键。
一次函数的定义一次函数也称为线性函数,它是指一个函数中的最高次数为1的多项式函数,其中x为自变量,k和b为常量。
一次函数的一般式为y = kx + b。
其中k表示直线的斜率,以y轴上升的高度除以x轴移动的距离,即k=(y2-y1)/(x2-x1),表示了该直线的倾斜程度;b称为直线截距,表示y轴上的截距,x=0时,y=b,即该直线在y轴上的截距。
一次函数的图像和特点一次函数的图像是一条线段。
当一次函数中的k大于0时,表示函数是增加的;反之,若k小于0,则表示函数是减少的。
截距b的正负性表示了函数与y轴的交点,从而帮助我们比较两个函数之间的差异。
一次函数的应用由于一次函数的直线关系,其在数学中有比较广泛的应用。
例如在物理学中,常常需要用一次函数来描述一个简单的力学模型或者电学模型。
在经济学中,一次函数可以被用来表示成本与产量之间的关系。
此外,一次函数也广泛应用于日常生活中的统计学和数据分析中。
例如,在考试分析中,可以用一次函数来表示学生考试得分与时间的关系;在受众分析中,可以用一次函数来描述改变广告投入与产品销售量之间的关系。
总结在七年级数学中,一次函数是一个非常基础的知识点,同时又是整个数学学科中的核心领域。
一次函数的定义、图像、应用等方面的内容,都对之后的学习具备重要的帮助作用。
因此,学生应该对于这些内容保持高度的关注和认真学习,以便为掌握更深层次的数学知识奠定基础。
初中数学一次函数解题的几种常规思路

初中数学一次函数解题的几种常规思路初中数学中,一次函数是一个非常基础的重要概念,也是学习代数的基础之一。
在解题过程中,我们需要根据题目的要求选择不同的思路,下面我们来介绍一些常规的解题思路。
一、直接代入求解一次函数一般就是通过y=kx+b来表示的,其中k是斜率,b是截距。
在一些简单的题目中,我们可以直接将已知的x值代入函数中求解y值,或者直接将给定的y值代入函数中求解x值。
举个例子,如果题目给出了一次函数的表达式为y=2x+3,然后问你当x=4时y的值是多少,我们可以直接将x=4代入函数中计算得到y=11。
这种方法适合一些简单的特殊情况,不需要进行太多的计算即可得到结果,但是对于一些复杂的题目来说,可能需要使用其他的方法来解题。
二、构建函数关系求解在一些题目中,我们需要根据已知条件构建函数之间的关系,然后通过这种关系来求解未知变量。
这种方法需要我们对函数的性质有一定的了解,例如线性关系、比例关系等。
举个例子,如果题目给出了两个直线的函数表达式,然后问你这两条直线的交点坐标是多少,我们就需要将两个函数建立关系,然后通过联立方程组的方法来解得交点坐标。
这种方法需要一定的代数解题能力,能够将已知条件转化为代数方程式,并运用方程的解法求解。
三、利用图像求解由于一次函数的图像一般是一条直线,所以我们可以通过图像来解答一些问题。
例如题目给出了一个一次函数的函数表达式,然后问你k的取值范围是多少,我们可以通过对函数图像的分析来得到答案。
这种方法需要我们对直线的一些特性有一定的了解,例如斜率的正负性、截距的大小关系等。
四、利用函数的特性求解一次函数有一些特性,例如斜率的正负性如何影响函数图像的走势,截距的大小关系如何影响函数图像的位置等。
在解题中,我们可以根据这些特性来判断一些问题的答案。
这种方法需要我们对一次函数的特性有一定的了解,能够根据特性来进行推理和判断。
总结一下,初中数学一次函数的解题思路有很多种,我们需要根据题目的要求灵活运用不同的方法。
初中数学 什么是一次函数的正比例关系

初中数学什么是一次函数的正比例关系一次函数的正比例关系是指函数的解析式形式为y = kx,其中k 是常数。
在初中数学中,正比例关系是一个重要的概念,它描述了两个变量之间的线性关系。
本文将详细介绍一次函数的正比例关系及其相关概念和应用。
一、正比例关系的定义一次函数的正比例关系指的是两个变量之间存在线性关系,即当一个变量的值增加(或减少)时,另一个变量的值也相应地增加(或减少),且变化的比例保持不变。
例如,考虑一个简单的例子,表示两个变量x 和y 的关系。
如果我们发现当x 增加1 个单位时,y 也相应增加2 个单位,那么这两个变量之间就存在正比例关系。
我们可以用一次函数的解析式y = 2x 来表示这个正比例关系,其中的2 就是比例系数。
二、正比例关系的性质和特点1. 比例系数k:一次函数的正比例关系中,比例系数k 是一个常数,它表示了两个变量之间的比例关系。
比例系数可以是正数、负数或零,它决定了变量的增长趋势和方向。
2. 原点(0,0):正比例关系中的一次函数必然通过坐标原点(0,0),即当x 和y 的值都为零时,函数值也为零。
这是因为正比例关系要求两个变量的比例关系在原点(0,0)处成立。
3. 直线图像:正比例关系的一次函数的图像是一条通过原点的直线。
直线的斜率等于比例系数k,表示了变量之间的比例关系。
当比例系数为正时,直线向右上方倾斜;当比例系数为负时,直线向右下方倾斜;当比例系数为零时,直线是水平的。
三、正比例关系的应用正比例关系在实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 比例尺:地图上的比例尺就是正比例关系的应用。
比例尺表示了地图上距离和实际距离之间的比例关系。
2. 速度和时间:当速度和时间成正比时,可以用一次函数的正比例关系来描述运动的速度变化。
3. 货币兑换:货币兑换中的汇率就是正比例关系的应用。
汇率表示了不同货币之间的比例关系。
4. 材料消耗:在制作产品过程中,材料的消耗量通常与产品数量成正比。
数学一次函数知识点

《一次函数全解析》数学是一门充满魅力和挑战的学科,而一次函数作为初中数学的重要内容之一,在实际生活和后续学习中都有着广泛的应用。
本文将深入探讨一次函数的知识点,帮助读者更好地理解和掌握这一重要概念。
一、引言在我们的日常生活中,很多现象都可以用数学模型来描述。
比如,汽车行驶的路程与时间的关系、电话费的计算等。
而一次函数就是一种能够简洁地表示这些关系的数学工具。
通过学习一次函数,我们不仅可以解决实际问题,还能为进一步学习更复杂的数学知识打下坚实的基础。
二、一次函数的定义一般地,形如 y = kx + b(k、b 是常数,k≠0)的函数,叫做一次函数。
其中 x 是自变量,y 是因变量。
当 b = 0 时,y =kx(k 为常数,k≠0),这时的一次函数叫做正比例函数。
三、一次函数的图像1. 一次函数 y = kx + b 的图像是一条直线。
- 当 k>0 时,直线从左到右上升,y 随 x 的增大而增大;- 当 k<0 时,直线从左到右下降,y 随 x 的增大而减小。
2. 直线 y = kx + b 与 y 轴的交点坐标为(0,b)。
- 当 b>0 时,直线与 y 轴交于正半轴;- 当 b<0 时,直线与 y 轴交于负半轴;- 当 b = 0 时,直线过原点。
3. 直线 y = kx + b 与 x 轴的交点坐标可通过令 y = 0 求得,即(-b/k,0)。
四、一次函数的性质1. 增减性- 当 k>0 时,函数为增函数;- 当 k<0 时,函数为减函数。
2. 图像的平移- 当 b 发生变化时,直线 y = kx + b 会沿 y 轴上下平移。
b 增大,直线向上平移;b 减小,直线向下平移。
- 当 k 不变,x 变为 x + h(h 为常数)时,直线 y = kx + b 会沿 x 轴左右平移。
h>0 时,直线向左平移;h<0 时,直线向右平移。
五、一次函数的应用1. 实际问题中的应用- 行程问题:根据速度、时间和路程的关系,可以建立一次函数模型来解决。
初中数学一次函数知识点汇总

初中数学一次函数知识点汇总(一)函数Update1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
某判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数Update1、一次函数的定义一般地,形如(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
一次函数知识点总结9篇
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
人教版初中数学《一次函数》_课件-完美版
C.y=2x-3 D.y=-x+3
4.根据表中一次函数的自变量x与函数y的对应值,可得p的值为
(A ) A.1 B.-1 C.3 D.-3
x -2 0 1 y 3 p0
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
第11题图
第12题图轴交于点B, 若AB= ,则5 函数的解析式为_____y_=__-__2_x_+__2____.
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
5.(练习 1 变式)设一次函数 y=kx+b(k≠0)的图象经过点 A(1,3), B(0,-2)两点,试求 k,b 的值.
解:把 A,B 的坐标代入 y=kx+b 得kb+=b-=23,,解得kb==5-,2,即 k,b 的值分别为 5,-2
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
10.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂 线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是 ( C)
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
一次函数知识点总结
一次函数知识点总结一次函数是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,也为后续学习其他函数和数学知识打下了坚实的基础。
接下来,让我们系统地总结一下一次函数的相关知识点。
一、一次函数的定义一般地,如果两个变量 x 和 y 之间的关系可以表示为 y = kx + b (k,b 为常数,且k ≠ 0)的形式,那么我们称 y 是 x 的一次函数。
特别地,当 b = 0 时,y = kx(k ≠ 0),这时称 y 是 x 的正比例函数。
二、一次函数的图像一次函数 y = kx + b 的图像是一条直线。
当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。
b 的值决定了直线与 y 轴的交点坐标。
当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。
三、一次函数的性质1、增减性由 k 的正负决定。
k > 0 时,函数单调递增;k < 0 时,函数单调递减。
2、与坐标轴的交点与 x 轴的交点:令 y = 0,解得 x = b/k,所以交点坐标为(b/k,0)。
与 y 轴的交点:令 x = 0,得 y = b,所以交点坐标为(0,b)。
四、一次函数的解析式1、待定系数法若已知一次函数图像上的两个点的坐标,可设函数解析式为 y = kx + b,然后将两点坐标代入,得到关于 k 和 b 的方程组,解方程组即可求出 k 和 b 的值,从而确定函数解析式。
2、平移规律一次函数图像的平移遵循“上加下减,左加右减”的原则。
例如,将函数 y = 2x + 3 的图像向上平移 2 个单位,得到 y = 2x + 3 + 2 = 2x + 5;将其向左平移 1 个单位,得到 y = 2(x + 1) + 3 = 2x + 5。
五、一次函数与方程、不等式的关系1、与一元一次方程的关系一次函数 y = kx + b 的图像与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0 的解。
初中数学一次函数练习题(含答案)精选全文完整版
可编辑修改精选全文完整版初中数学一次函数练习题(含答案)一.选择题(每题3分,满分36分)1.下列函数中,不是一次函数的是()A.y=x+4 B.y=x C.y=2﹣3x D.y=2.对于函数y=﹣2x+1,下列结论正确的是()A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限3.在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣5 C.x≥﹣5且x≠0 D.x≥0 且x≠0 4.函数y=5﹣2x,y的值随x值的增大而()A.增大B.减小C.不变D.先增大后减小5.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A.B.C.D.6.若函数y=kx的图象经过第一、三象限,则k的值可以为()A.﹣2 B.﹣C.0 D.27.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A. B.C.D.8.小明同学利用“描点法”画某个一次函数的图象时,列出的部分数据如下表:x…﹣2 ﹣1 0 1 2 …y… 4 1 ﹣2 ﹣6 ﹣8 …经过认真检查,发现其中有一个函数值计算错误,这个错误的函数值是()A.2 B.1 C.﹣6 D.﹣89.已知一次函数y=﹣2x+1,当x≤0时,y的取值范围为()A.y≤1 B.y≥0 C.y≤0 D.y≥110.以下关于直线y=2x﹣4的说法正确的是()A.直线y=2x﹣4与x轴的交点的坐标为(0,﹣4)B.坐标为(3,3)的点不在直线y=2x﹣4上C.直线y=2x﹣4不经过第四象限D.函数y=2x﹣4的值随x的增大而减小11.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地12.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二.填空题(每题4分,满分20分)13.若一次函数y=kx+b的图象如图所示,那么关于x的方程kx+b=0的解是.14.已知y﹣2与x成正比例,且x=2时,y=﹣6.则y与x的函数关系式为.15.某院观众的座位按下列方式设置,根据表格中两个变量之间的关系.排数(x) 1 2 3 4 …座位数(y ) 30 33 36 39 …则当x =8时,y = .16.已知函数y =﹣3x +1的图象经过点A (﹣1,y 1)、B (1,y 2),则y 1 y 2(填“>”、“<”、“=”).17.A 、B 两地相距2400米,甲从A 地出发步行前往B 地,同时乙从B 地出发骑自行车前往A 地.乙到达A 地后,休息了一会儿,原路原速返回到B 地停止,甲到B 地后也停止.在整个运动过程中,甲、乙均保持各自的速度匀速运动.甲、乙两人相距的路程y (米)与甲出发时间x (分钟)之间的关系如图所示,则a = .三.解答题(共44分)18.(10分)已知直线l 1:y =x +2与x 轴交于点A ,与y 轴交于点B ,直线l 2:y =﹣2x +b 经过点B 且与x 轴交于点C .(1)b = ;(答案直接填写在答题卡的横线上) (2)画出直线l 2的图象; (3)求△ABC 的面积.19.(10分)在同一平面直角坐标系中,画出函数①y =x +3、②y =x ﹣3、③y =﹣x +3④y =﹣x ﹣3的图象,并找出每两个函数图象之间的共同特征.20.(12分)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去图书馆的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)21.(12分)如图1,在平面直角坐标系中,直线l1:y=2x+8与坐标轴分别交于A,B两点,点C在x正半轴上,且OA=OC.点P为线段AC(不含端点)上一动点,将线段OP 绕点O逆时针旋转90°,得线段OQ(见图2)(1)分别求出点B、点C的坐标;(2)如图2,连接AQ,求证:∠OAQ=45°;(3)如图2,连接BQ,试求出当线段BQ取得最小值时点Q的坐标.参考答案一.选择题1. D.2. C.3. C.4. B.5. B.6. D.7. D.8. C.9. D.10. B.11. C.12. C.二.填空题13. x=2.14. y=﹣4x+2.15. 51.16.>.17. 24.三.解答题18.解:(1)当x=0时,y=x+2=2,∴点B的坐标为(0,2).:y=﹣2x+b经过点B,∵直线l2∴b=2.故答案为:2.的解析式为y=﹣2x+2.(2)由(1)可知直线l2当y=0时,﹣2x+2=0,解得:x=1,∴点C的坐标为(1,0).连接BC,则直线BC即为直线l,如图所示.2(3)当y=0时,x+2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).S=AC•OB,△ABC=(OA+OC)•OB,=×(4+1)×2,=5.19.解:列表:如图所示:由图可得,①和②图象互相平行,①和③图象与y轴交点相同,①和④图象与x轴交点相同,②和③图象与x轴交点相同,②和④图象与y轴交点相同,③和④图象互相平行.20.解:(1)l1(2)小凡,10(3)小光,10(4)34(5)10千米/小时、7.5千米/小时.21.解:(1)C(8,0).(2)∠OAQ=45°.(3)点Q坐标为(﹣6,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学“一次函数试题精选” 1.(2010山东德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h与注水时间t关系的是
、 (A) (B) (C) (D)
【答案】A 2.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是( )
答案:B 3(2010年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是( )
(A) (B) (C) (D) 【答案】A 4(2010年四川省眉山)某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为
【答案】D 5.(2010年安徽省芜湖市)要使式子有意义,a的取值范围是() A.a≠0 B.a>-2且a≠0 C.a>-2或a≠0 D.a≥-2且a≠0 【答案】D
6 (2010重庆市潼南县)已知函数y= 的自变量x取值范围是( ) A.x﹥1 B. x﹤-1 C. x≠-1 D. x≠1 答案:C
7.(2010年浙江台州市)函数的自变量的取值范围是 . 【答案】 8.(2010年益阳市)如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间与火车在隧道内的长度之间的关系用图象描述大致是
A. B. C. D. 【答案】A 9.(2010江苏泰州,13,3分)一次函数(为常数且)的图象如图所示,则使成立的的取值范围为 .
【答案】x<-2 10.(2010年重庆)小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是( )
【答案】 C 12.(2010江苏泰州,5,3分)下列函数中,y随x增大而增大的是( ) A. B. C. D. 【答案】C 【答案】D 15(2010年湖北黄冈市).已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为( ) A.1或-2 B.2或-1 C.3 D.4 答案.A 16. (2010年安徽中考) 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4和6,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离与时间的函数图象是( )
【答案】C 17 (2010年山东省济南市)如图,在中,AB=AC=2,.动点P,Q分别在直线上运动,且始终保持.设BP=x,CQ=y则y与x之间的函数关系用图象大致可以表示为( )
【答案】A 18.(2010年山东省济南市)已知一次函数的图象如图所示,当时,y的取值范围是 .
【答案】y<-2 19(2010年台湾省)如图(十七),在同一直在线,甲自A点开始追赶等速度前
进的乙, 且图(十八)长示两人距离与所经时间的线型关系。若乙的速率为每秒1.5公尺,则经过40秒,甲自A点移动多少公尺?
(A) 60 (B) 61.8 (C) 67.2 (D) 69 。 【答案】C 20. (2010浙江衢州)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )
A. B. C. D. 答案:C 21.(2010年山东聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函 数图象的方程是() A.3x-2y+3.5=0 B.3x-2y-3.5=0 C.3x-2y+7=0 D.3x+2y-7=0
【答案】D 22、(2010盐城 )给出下列四个函数:①;②;③;④. 时,y随x的增大而减小的函数有 A.1个 B.2个 C.3个 D.4个 答案:C 23、(2010盐城)写出图象经过点(1,-1)的一个函数关系式 答案:y=-x或y=-或y=x2-2x,答案不唯一
24.(2010年北京崇文区) 在函数中,自变量的取值范围是 .
【答案】 25(2010年浙江省东阳市)如图,矩形ABCO,O为坐标原点,B的坐标为(8,6),
A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是两直线y1=2x+6、y2=2x-6中某条上的一点,若△APD是等腰Rt△,则点D的坐标为 【答案】(4,2),(4,14),(,),(,) 26.(2010年浙江台州市)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.
【答案】 (1)①当0≤≤6时, ; ②当6<≤14时, 设, ∵图象过(6,600),(14,0)两点,
∴ 解得 ∴. ∴ (2)当时,,
(千米/小时). 27、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。 (2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
【答案】解:(1)15, (2)由图像可知,是的正比例函数 设所求函数的解析式为() 代入(45,4)得:
解得: ∴与的函数关系式() (3)由图像可知,小聪在的时段内 是的一次函数,设函数解析式为()
代入(30,4),(45,0)得:
解得: ∴() 令,解得 当时, 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。 28. (2010年益阳市)我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面千米处的温度为℃. (1)写出与之间的函数关系式; (2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃? (3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米? 【答案】解:⑴ () ⑵ 米=千米 (℃) ⑶
答:略. 29.(2010江西)已知直线经过点(1,2)和点(3,0),求这条直线的解析式. 【答案】解:设这直线的解析式是,将这两点的坐标(1,2)和(3,0)代入,得,解得所以,这条直线的解析式为. 30(2010年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%. (1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗? (3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 【答案】 解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗尾,由题意得:
解这个方程,得: ∴ 答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. (2)由题意得: 解这个不等式,得: 即购买甲种鱼苗应不少于2000尾. (3)设购买鱼苗的总费用为y,则
由题意,有 解得: 在中 ∵,∴y随x的增大而减少 ∴当时,. 即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. 32(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图). ⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
【答案】⑴①当1≤≤5时,设,把(1,200)代入,得,即;②当时,,所以当>5时,; ⑵当y=200时,20x-60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元;
⑶对于,当y=100时,x=2;对于y=20x-60,当y=100时,x=8,所以资金紧张的时间为8-2=6个月.
33(2010江苏泰州,27,12分)如图,二次函数的图象经过点D,与x轴交于A、B两点. ⑴求的值;