3微弱信号检测的原理和方法

合集下载

微弱信号检测放大的原理及应用

微弱信号检测放大的原理及应用

《微弱信号检测与放大》摘要:微弱信号常常被混杂在大量的噪音中,改善信噪比就是对其检测的目的,从而恢复信号的幅度。

因为信号具备周期性、相关性,而噪声具有随机性,所以采用相关检测技术时可以把信号中的噪声给排除掉。

在微弱信号检测程中,一般是通过一定的传感器将许多非电量的微小变化变换成电信号来进行放大再显示和记录的。

由于这些微小变化通过传感器转变成的电信号也十分微弱,可能是VV甚至V或更少。

对于这些弱信号的检测时,噪声是其主要干扰,它无处不在。

微弱信号检测的目的是利用电子学的、信息论的和物理学的方法分析噪声的原因及其统计规律研究被检测量信号的特点及其相干性利用现代电子技术实现理论方法过程,从而将混杂在背景噪音中的信号检测出来。

关键词:微弱信号;检测;放大;噪声1前言测量技术中的一个综合性的技术分支就是微弱信号检测放大,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。

这门技术研究的重点是如何从强噪声中提取有用信号,从而探索采用新技术和新方法来提高检测输出信号的信噪比。

微弱信号检测放大目前在理论方面重点研究的内容有:a.噪声理论和模型及噪声的克服途径;b.应用功率谱方法解决单次信号的捕获;c.少量积累平均,极大改善信噪比的方法;d.快速瞬变的处理;e.对低占空比信号的再现;f.测量时间减少及随机信号的平均;g.改善传感器的噪声特性;h.模拟锁相量化与数字平均技术结合。

2.微弱信号检测放大的原理微弱信号检测技术就是研究噪声与信号的不同特性,根据噪声与信号的这些特性来拟定检测方法,达到从噪声中检测信号的目的。

微弱信号检测放大的关键在于抑制噪声恢复、增强和提取有用信号即提高其信噪改善比SNIR。

根据下式信噪改善比(SNIR)定义即输出信噪比(S/N)0与输入信噪比(S/N)i之比。

(SNIR)越大即表示处理噪声的能力越强,检测的水平越高。

微弱信号检测装置(一稿)

微弱信号检测装置(一稿)

摘要“微弱信号”不仅意味着信号的幅度很小,而且主要指的是被噪声淹没的信号,微弱是相对于噪声而言的。

微弱信号检测的目的是从强噪声中提取有用信号, 或用一些新技术和新仪器来提高检测系统输出信号的信噪比。

微弱信号检测技术的首要任务是提高信噪比。

由于被测量的信号微弱,传感器、放大电路和测量仪器的固有噪声以及外界的干扰噪声往往比有用信号的幅度大的多,放大被测信号的同时也放大了噪声,而且必然会附加一些额外的噪声,因此只靠放大是不能把微弱信号检测出来的。

本文研究了一套微弱信号检测的装置。

AD524作为前置放大电路对信号进行初步放大,再利用MAX267程控滤波器对信号进行滤波以获取有用信号,TLC2652作为二次放大;然后再经模数转换器转换为数字信号,同时使用增强型8051 内核的USB 控制器CY7C68013A作为主控器,将采集数据通过USB2.0接口与PC机实现高速实时传输,还设计了电源模块和单片机扩展模块。

在背景噪声中检测有用信号的仪器,为现代科学技术和工农业生产提供了强有力的测试手段,应用范围遍及几乎所有的科学领域,已成为现代科技必备的常用仪器。

关键词:微弱信号,噪声,信噪比,检测装置Abstract"Weak signal" means not only signal amplitude is small, and refers to the flooded signal by noise,weak signal is relative to noise.The purpose of the weak signal detection extracted useful signal from strong noise,or with some new technology and new instruments to improve the SNR of output signal detection system.Primary mission of weak signal detection is to improve SNR. Due to the measured weak signal is small, sensors,amplifying circuit and the inherent noise of measurement instrument and outside disturbance noise are larger than the useful signal amplitude of the often.Enlarging the measured signal means also enlarging noises and will add some extra noise,so only by the amplifier can not detection the weak signal.Only in effective noise conditions suppressing amplitude of weak signal can extract useful signal.This paper studies a set device of weak signal detection. AD524 as preamplifier is primarily to amplifier signal, then uses MAX267 to filter signal to get the useful signal, and uses TLC2652 as second to amplifier; Then the adc converts a analogue signal to a digital signal, also uses the USB controller CY7C68013A of enhanced 8051 kernel as the main controller and collected data will transmit through USB2.0 implementing high-speed real-time with the PC; And devises a power supply module and microcomputer expansion module.Detection equipment of useful signal in the background noise,which provides astrong means testing for modern science and technology, and the industry and agriculture production, application scope is throughout almost all the fields of science.It has become the common instrument for modern science and technology.Keywords: weak signal,noise,signal-to-noise ratio,detection device目录摘要 (I)Abstract............................................................................................................................................................ I I 第1章绪论 .. (1)1.1 微弱信号检测装置研究的意义 (1)1.2 国内外发展概况 (2)1.2.1 国内检测仪器的发展 (2)1.2.2 国外检测仪器的发展 (2)1.3设计内容 (3)第2章噪声概述 (4)2.1 噪声种类及其特性 (4)2.2 干扰的抑制方法 (5)第3章微弱信号检测的原理和常用检测理论 (8)3.1 微弱信号检测的原理 (8)3.2 微弱信号检测的方法 (8)第4章检测电路总体设计 (13)4.1 信号调理模块 (13)4.2 数据采集模块 (14)4.3 检测电路图 (14)第5章微弱信号的采集与调理 (16)5.1 信号拾取和低噪声前置放大器 (16)5.2 程控滤波器 (18)5.3 TLC2652放大器 (21)第6章基于USB2.0协议的数据采集装置 (24)6.1 A/D转换器的选择 (24)6.2 USB 2.0特点 (28)6.3 CY7C68013A单片机 (29)6.4 CY7C68013A单片机的外部扩展电路 (31)6.5 单片机软件编程 (36)6.6 电源的设计 (37)6.6.1 稳压电源设计 (37)6.6.2 各器件的电源 (39)第7章CY7C68013A与上位机的通信 (41)7.1 CY7C68013A固件程序 (41)7.2 USB驱动程序 (41)7.3 动态链接库DLL (42)7.4 LabVIEW界面应用程序 (42)第8章结语 (44)参考文献 (45)致谢 (46)第1章绪论微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。

微弱信号检测的方法

微弱信号检测的方法

微弱信号检测的方法
1. 常用放大技术:将微弱信号放大到可以被测量或感知的范围,如放大器、传输线、反馈电路等。

2. 信噪比增强技术:通过降低噪声干扰的影响,提高信号与噪声的比例,如滤波技术、锁相放大器等。

3. 信号处理和分析技术:对信号进行数字处理和分析,提取有用信息,如FFT 变换、小波变换、相关分析等。

4. 信号采集和存储技术:采用高灵敏度、高分辨率的传感器、采样器和数据存储器来收集和保存微弱信号,如超敏感传感器、低噪声ADC转换器和高速高效的存储介质等。

5. 其他技术:如高精度测量仪器、光学显微镜和红外线成像等。

duffing方程微弱信号检测算法原理

duffing方程微弱信号检测算法原理

duffing方程微弱信号检测算法原理一、Duffing方程简介Duffing方程是一种描述受迫振动的非线性微分方程,广泛应用于物理、工程、生物等领域。

在微弱信号检测中,Duffing方程常被用作信号模型,以提取微弱信号中的有用信息。

二、微弱信号检测原理微弱信号检测是指从强噪声环境中提取弱信号的过程。

常用的微弱信号检测方法有匹配滤波法、调制频率法、自相关法等。

在这些方法中,基于Duffing方程的检测算法是一种有效的手段。

该算法通过建立Duffing方程与待测信号的匹配关系,利用其非线性特性实现对微弱信号的检测。

1. 参数估计:首先,根据Duffing方程的参数,如振动幅度、频率、阻尼等,对系统进行参数估计。

这可以通过最小二乘法、卡尔曼滤波等方法实现。

2. 噪声抑制:利用估计得到的参数,通过调整系统参数,实现对噪声的抑制。

这可以通过自适应滤波等方法实现。

3. 微弱信号提取:在噪声抑制的基础上,通过观察Duffing方程的解,寻找与微弱信号匹配的模式,实现对微弱信号的提取。

这需要借助频谱分析、小波变换等工具。

4. 算法实现:在实际应用中,可以根据需要选择合适的数值求解方法(如龙格库塔法)来求解Duffing方程,并采用合适的滤波器来实现噪声抑制和微弱信号提取。

值得注意的是,Duffing方程的非线性特性可能导致其解的不稳定性,因此在实际应用中需要对算法进行稳定性分析和优化。

同时,对于不同的问题和场景,可能需要选择不同的Duffing方程模型和参数估计方法,以适应不同的需求和约束条件。

此外,由于Duffing方程微弱信号检测算法涉及到物理、工程、数学等多个领域的知识,因此在实际应用中需要综合考虑各种因素,并进行充分的实验验证和性能评估。

总之,Duffing方程微弱信号检测算法是一种有效的手段,通过利用Duffing方程的非线性特性,可以实现微弱信号的检测和提取。

在实际应用中,需要根据具体问题选择合适的算法和参数估计方法,并进行充分的实验验证和性能评估。

测控电子技术第五章 --微弱信号检测

测控电子技术第五章    --微弱信号检测

固有噪声归纳
• 电阻(电阻元件和其他元件(如电容、电感)的电阻分量) 热噪声 • 半导体器件 散弹噪声
• 导体接触
1/f噪声 • 部分半导体
同时起作用
爆裂噪声
5.1.2 放大器的噪声指标与噪声特性 反映电路本身噪声大小的技术指标 衡量电路噪声特性; 对比不同电路的性能。 l.噪声系数及噪声因数 1)噪声系数 放大电路整体电路的噪声特性指标, 衡量电路噪声特性的优劣。 内部噪声 外部输入噪声 仅由输入噪声经放大引起的输出噪声功率。 F表征放大器在放大信号的同时,又使得输出噪声增加的程度。 设计和调试 对电路进行改进和优化
1/f噪声的特性:
功率谱密度函数
在f1和f2之间的频段中,1/f噪声的功率:
Pf取决于频率上下限之比
。(热噪声和散弹噪声功率正比于带宽)。
在低频段,f越低,1/f噪声的幅度很大。 认为当频率低到一定程度时, 1/f噪声的幅度趋向于常数。 限定B的低频边界频率大于0.OO1Hz。 当频率高于某一数值时,与热噪声和散弹噪声相比,1/f噪声忽略。
几率:每秒几百个到几分钟一个。
在两种电流值之间切换。 取决制作工艺和材料中的杂质。
背景吵声
图5.1.4 爆裂噪声波形
理论分析证明,爆裂噪声元的功率谱密度函数为
f0:转折频率 当f<f0时,功率谱密度曲线趋于平坦。 爆裂噪声是电流型噪声,在高阻电路中影响更大。 改善工艺,提高纯度,减少杂质,改善爆裂噪声。 对器件的挑选能够避免爆裂噪声。
5.1.1 电子系统内部固有噪声源 1. 电阻的热噪声
现象:任何电阻或导体,即使没有连接到信号源或电源,其两端会出现微弱的电压波动。 起因:电阻中自由电子随机热运动,导致电阻两端电荷的瞬时堆积,形成噪声电压。

微弱信号检测(共享版)

微弱信号检测(共享版)
姓名: 学号: 班级:

微弱信号是信号的一种状态,主要是指一些声、 光、电等信号相对于弱,不容易被感觉到,也不 容易被设备所接收。
由于外界干扰,传感器本身的噪音和测量仪表的 噪音,有用信号被大量干扰和噪音所淹没,微弱 信号是相对于噪音而言的。






微弱信号检测的目的是检测出被背景噪音覆盖的微 弱信号,其标志是检测灵敏度提高,指标为信噪比 改善 。 微弱信号的检测实质是: 分析电路中噪声和干扰的抑制方法,以及各种信号 处理方法,以达到检测被背景噪声覆盖的微弱信号 的目的。 分析噪声产生的原因和规律,研究被测信号和噪声 的统计特征及差别。 利用信号与噪声不同的统计特征和规律,通过微弱 信号检测技术使测量精度得到大幅度提高。
时域信号——平均处理(取样积分与信号平均)

取样积分法 是用取样门及积分器对信号逐次取 样的波形。
信号平均器 则是采用适时多点取样,多用期平 均技术提取和复制在噪声中的低频信号波形,输 出特性同样为基波及各谐波处的杭状滤波器。


总体而言微弱信号处理的方法: 锁定放大器 取样积分器 单道光子计数器,光学多通道分析器 计算机处理


匹配滤波器法


噪声都具有一定大的带宽,为研究方便,设噪声 都具有平坦的电压频谱。或者说电压频谱与频率 无关,也就是所谓的白噪声。 匹配滤波器即输出信号最大,噪声最小的滤波器。
匹配滤波器具有电压传输函数就是信号本身函数 的特性。使信号最大通过,抑制噪声,使输出信 噪比最大。 根据信号频谱设计滤波器,使他自身的电压传输 函数和信号的电压频谱函数一样。

时域信号——取样积分与信号平均

取样积分法和信号平均也是相关检测,与锁定放 大不同的只是部分相关,即仅在取样门宽T的一 段时间内信号与参考信号相关。 由于取样门脉宽很窄,其函数包含了基波及奇、 偶各次谐波分量,所以其输出也包含了信号中的 基波及各次谐波分量,系统输出亦为信号基波及 各次谐波处的梳状滤波特性。

微弱信号检测技术概述

1213225王聪微弱信号检测技术概述在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、比如测定地震的波形和波速、材料分析时测量荧光光强、材料分析时测量荧光光强、材料分析时测量荧光光强、卫星信号的接收、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。

在物理、化学、生物医学、遥感和材料学等领域有广泛应用。

材料学等领域有广泛应用。

微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、信息论、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。

微弱信号检测的不同方法( 1) 生物芯片扫描微弱信号检测方法微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。

随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。

根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。

扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。

激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。

固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD 捕获荧光信号并成像, 从而完成对生物芯片的扫读。

微弱信号检测实验报告

微弱信号检测实验报告微弱信号检测实验报告引言在科学研究和工程应用中,微弱信号的检测是一项具有重要意义的任务。

微弱信号的检测可以帮助我们探测宇宙中的奥秘、改善通信系统的性能、提高医学影像的分辨率等。

本实验旨在探索微弱信号检测的原理和方法,并通过实验验证其可行性。

实验装置本实验使用了一套精密的实验装置,包括信号源、放大器、滤波器、检测器和示波器等。

信号源产生微弱信号,放大器将信号放大到可以被检测器检测的范围内,滤波器用于去除噪声和干扰,检测器将信号转换为电压信号,示波器用于显示信号的波形和幅值。

实验步骤1. 首先,将信号源连接到放大器的输入端,并将放大器的输出端连接到滤波器的输入端。

2. 调节信号源的频率和幅值,使其产生一个微弱的正弦信号。

3. 调节放大器的增益,使信号的幅值适合检测器的输入范围。

4. 将滤波器的输出端连接到检测器的输入端。

5. 调节检测器的灵敏度,使其能够检测到微弱信号。

6. 将检测器的输出端连接到示波器的输入端。

7. 调节示波器的触发模式和时间基准,使其能够显示信号的波形和幅值。

实验结果经过一系列的调节和优化,我们成功地检测到了微弱信号,并通过示波器观察到了信号的波形和幅值。

实验结果表明,我们设计的实验装置能够有效地检测微弱信号,并具有较高的灵敏度和准确性。

讨论与分析在实验过程中,我们发现调节放大器的增益是关键步骤之一。

如果增益过低,信号将被放大得不够,无法被检测器检测到;如果增益过高,放大器可能会引入噪声和干扰,影响信号的检测结果。

因此,需要根据实际情况选择适当的增益值。

另外,滤波器的选择和调节也对信号的检测结果有重要影响。

滤波器可以去除噪声和干扰,提高信号与噪声的信噪比。

在实验中,我们使用了带通滤波器,将信号源产生的特定频率范围内的信号通过,而去除其他频率的信号。

这样可以有效地提高信号的检测灵敏度。

此外,检测器的灵敏度也是影响信号检测结果的重要因素。

较高的灵敏度意味着检测器能够检测到较小幅值的信号,但也可能引入更多的噪声。

第九章:微弱信号检测


为带通白噪声的带宽
x(t)=Asin(0 t+) Sx()=N0/2
自相关函数性质: L Rx x()=Rxx(-),即Rxx()为的偶函数。 L Rxx()在原点=0处最大。Rxx(0)代表x(t)变化量的平均功率。 L若变化量x(t)不包含周期性分量,则Rxx()将随的增加从最大 值Rxx(0)逐渐下降。Rxx()衰减得越快,表示变化量x(t)随机 信号相关性越小。由于白噪声在不同时期是相关独立的,所 以它的Rxx()=(t),随着的增加衰减得非常迅速。
互相关函数为:
1 1 1 R xy ( ) x(t ) y (t )dt S i (t ) y (t )dt N i (t ) y (t )dt T 0 T 0 T 0 Rsy ( ) Rny ( ) Rsy ( )
Rxx ( ) Rss ( ) Rsn ( ) Rns ( ) Rnn ( )

对于图示的低通滤波器,电压V1和输出电压V0满足一阶线性微 分方程:
dV0 V0 V1 C0 dt R0 R1
通解为:
t t V1 dt dt V0 exp( )[ ( ) exp( )dt C ] 0 R C 0 0 R1C0 R0 C0 0 0 t
T
1 R xx ( ) lim A 2 sin( 0 t ) sin[ 0 (t ) ]dt T T 0 A2 cos 0 2
(2)白噪声
由于其功率谱密度与频率无关,因而可以定义 Sx()=N0/2,其中 N0为常数,于是由式(9.1-7)可得: N 0 j N0 1 R xx ( ) e d ( ) 2 2 2

(3)带通白噪声

微弱信号检测


图 对含扰信号的噪声消除和基线漂移消除结果
返回
结束
脉象信号扰动消除效果(二)
(1)自相关检测

自相关检测原理
x t s t n t
乘法器
积分器
Rss
延时器
(2)互相关检测

互相关检测原理框图
x t s t n t
y t
乘法器 积分器
Rxy
延时器
相干检测原理
Vi t
窄带放大器 乘法器 积分器

小波变换是一种信号的分析方法,它具有 多分辨率分析的特点,而且在时频两域都具有 表征信号局部特征的能力。 基于小波变换的多分辨率滤波技术有明显 优点。小波变换可用来提取和识别那些淹没在 噪声中的微弱电生理信号,在获得信噪比增益 的同时,能够保持对信号突变信息的良好分辨, 因此对临床上的非平稳信号的处理中具有独特 的优越性,应该能成为脉象信号的一种可行有 效的处理方法。
同步积累器的工作原理



设信号是一串周期窄脉冲,检测时可把信号通路接到 一个分配器上,分配器的每一个输出都接到一个积累 器,工作时信号通路被分配器轮流地接到不同的积累 器上 假设分配器的工作周期和信号的重复周期相同,并设 分配器从一个出路到另一个出路的切换时间可以忽略, 则分配器的工作周期被分割成若干个时间区间(取决 于积累器的个数),在每次信号到来的那个时间区间 都能保证通路恰好接到同一个积累器上,所以这种方 法称为同步积累 只要重复的次数足够多,基于同步积累法就可以把噪 声中的微弱信号提取出来,而且重复的次数越多,提 取微弱信号的能力越强
脉象微弱信号检测
概述



微弱信号是相对背景噪声而言,其信号幅度的 绝对值很小、信噪比很低(远小于1)的一类 信号 微弱信号检测的任务是采用电子学、信息论、 计算机及物理学、数学的方法,分析噪声产生 的原因和规律,研究被测信号的特点与相关性, 对被噪声淹没的微弱有用信号进行提取和测量 微弱信号检测的目的是从噪声中提取出有用信 号,或用一些新技术和新方法来提高检测系统 输入输出信号的信噪比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档