近世代数第一章小结
近世代数杨子胥最新版题解_答复习过程

近世代数杨子胥最新
版题解_答
近世代数
第一章基本概念
§1. 1
1.
4.
5.
近世代数题解§1. 2 2.
3.
近世代数题解§1. 3
1. 解 1)与3)是代数运算,2)不是代数运算.
2. 解这实际上就是M中n个元素可重复的全排列数n n.
3. 解例如A B=E与A B=AB—A—B.
4.
5.
近世代数题解§1. 4
1.
2.
3.解 1)略 2)例如规定
4.
5.略
近世代数题解§1. 5
1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.
2.略
3.
4.
5.
§1. 6
1.
2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;
3)是等价关系;4)是等价关系.
3. 解 3)每个元素是一个类,4)整个实数集作成一个类.。
近世代数-文档资料

06.09.2020
11:21
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
ห้องสมุดไป่ตู้
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
图。 问题:n个点的图中互不同构的图有多少个?
06.09.2020
11:21
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。
问题:用n个开关可以构造出多少种不同的 开关线路?
了几十年。
06.09.2020
11:21
伽利略死后,直到19世纪末期,他的理 论才由别的数学家加以进一步的发展和系统 的阐述。
这样一门具有悠久历史、充满许多有趣 问题和故事的数学分支,在近代又得到了蓬 勃发展和广发应用,出现了许多应用与某一 领域的专著,正吸引越来越多的科技人员和 学生来学习和掌握它。
利用近世代数的方法可得到更高效的检 错码与纠错码。
06.09.2020
11:21
7. 几何作图问题
古代数学家们曾提出一个有趣的作图问题:用 圆规和直尺能做出哪些图形?
而且规定所用的直尺不能有刻度和不能在其上 做记号。为什么会提出这样的问题呢?
一方面是由于生产发展的需要,圆规、直尺是 丈量土地的基本工具,且最初的直尺是没有刻度 的;另一方面,从几何学观点看,古人认为直线与 圆弧是构成一切平面图形的要素。据说,古人还认 为只有使用圆规与直尺作图才能确保其严密性。且 整个平面几何学是以圆规与直尺作为基本工具。
近世代数第一章

第一讲教学目的与教学要求:掌握集合元素、子集、真子集。
集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用; 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明; 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合律的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用。
教学方法:启发式与讲授式结合教学措施:教学课件、黑板板书与口授教学法。
教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。
集合中的每个事物叫做这个集合的元素(简称元)。
定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。
(1)集合的要素:确定性、相异性、无序性。
(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。
若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,。
表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。
2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。
例:{}41≤≤∈=a Z a a A 且。
显然例6中的A 就是例5的A 。
3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之间的关系。
(3)集合的蕴含(包含)定义:若集B 中每个元素都属于集A ,则称B 是A 的子集,记为A B ⊂,否则说B 不是A 的子集,记为A B ⊄. 定义:设A B ⊂,且存在B a A a ∉∈但,那么称B 是A 的真子集,否则称B 不是A 的真子集。
近世代数课件循环群

§4 循环群
我们来阐明 H ar .事实上,一方面, 显然, ar H .另一方面,由于 G a 且 H G ,对于任意的 hH ,可设 h an ,其 中 nZ .我们取整数 q 和 s ,使得
n qr s , 0 s r . 若 s 0 ,则
§4 循环群
as anqr an (ar )q h(ar )q H , 这与 r 为 N 中的最小数矛盾.因此 s 0 ,从而,
((s, n), (t, n)) ( t , n) ((s, t), n) (s, n) (s, t)
((s, t), n)
§4 循环群
(s, n) ( t , n) (s, t)
( st , n) ([s, t] n) . (s, t)
§4 循环群
k Z ,使得 r k[s, t].所以 b ar a[s, t] . (2)假设| a | n . 由于 b H ,因此| b | | | as | ;由于 b K ,
因此| b | | | at | .也就是说, n|n,n|n,
(r, n) (s, n) (r, n) (t, n)
h an aqr (ar )q ar . 由 此 可 见 H ar . 所 以 H ar . 这 就 是 说, H 是循环群.□
§4 循环群
命 题 4.2 设 G a 是 一 个 有 限 循 环 群,| a | n , r 是任意一个整数.那么
| ar | n , (r, n)
令 s | ar | .根据命题 3.12, s | n .另一方 (r, n)
§4 循环群
面,由于 (ar )s e 且| a | n ,根据命题 3.12,
n | (rs) ,从而, n | (rs) .由于 ( n , r) 1,
大一高等代数第一章知识点总结

大一高等代数第一章知识点总结导读:在大一高等代数第一章学习中,我们了解了数学中的代数运算、集合论、函数与映射、二次函数等重要基础知识。
本文将对这些知识点进行总结和归纳,帮助读者更好地理解和掌握这些概念。
一、代数运算1. 代数运算的基本性质:加法和乘法运算的结合律、交换律和分配律。
这些性质是进行代数运算的基础,通过它们可以将复杂的代数式简化,或将代数式转换为更方便计算的形式。
2. 代数运算的逆元:对于加法运算,零是唯一的单位元,每个元素都有唯一的相反元;对于乘法运算,一是唯一的单位元,每个非零元素都有唯一的倒数。
3. 代数方程与不等式:代数方程是由字母和数构成的等式,通过方程解的求解过程,可以得到含有未知数的具体数值;不等式则是不等关系构成的不等式。
二、集合论1. 集合的概念:集合是由一定规则约定所组成的一种对象的整体。
2. 集合的运算:包括交集、并集、补集和差集等。
运用这些运算可以对集合元素进行组合或筛选,从而得到满足一定条件的集合。
3. 集合的表示方法:包括列举法、描述法、乘积集和无穷集等。
不同的表示方法适用于不同的问题求解。
三、函数与映射1. 函数的概念:函数是两个集合之间的一种对应关系,每个自变量对应唯一的因变量。
2. 函数的性质:包括定义域、值域、单调性、奇偶性等。
这些性质描述了函数的基本特征,可以帮助我们更好地理解和分析函数。
3. 映射的概念:映射是一种更广义的函数,它可以是一对一的、多对一的或一对多的关系。
四、二次函数1. 二次函数的概念与性质:二次函数是一种具有二次项和一次项的一元多项式函数。
它的图像呈现抛物线形状,关键点包括顶点、焦点和对称轴等。
2. 二次函数的图像与方程:通过观察二次函数的图像可以了解其方程的特征,反之也可以通过方程描述二次函数的图像。
3. 二次函数的应用:二次函数在实际生活中有广泛应用,如物体抛出运动、摄影中焦距的调整等。
通过掌握二次函数的性质和应用,能够更好地理解和解决相关实际问题。
代数学引论近世代数第一章答案精品

代数学引论近世代数第一章答案精品第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3. 设G 是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1) a(bc)=(ab)c; (2) 由ab=ac 推出a=c; (3) 由ac=bc 推出a=b;证明G 在该乘法下成一群. 证明:[方法1]设G={a 1,a 2,…,a n },k 是1,2,…,n 中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j ------------<1> a i a k a j a k ------------<2>再由乘法的封闭性可知G={a 1,a 2,…,a n }={a k a 1, a k a 2,…, a k a n }------------<3> G={a 1,a 2,…,a n }={a 1a k , a 2a k ,…, a n a k }------------<4> 由<1>和<3>知对任意a t G, 存在a m G,使得a k a m =a t .由<2>和<4>知对任意a t G, 存在a s G,使得a s a k =a t .由下一题的结论可知G 在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。
近世代数1
第一章§1.1集合§1.2映射与变换教学内容:集合,子集,集合相等的概念集合关系及运算的定义和性质映射,单射,满射,双射,逆映射的定义及例子变换,置换等的定义及例子映射的象及逆象的定义,映射的乘法教学重点:集合的关系及运算,映射变换的定义,映射的乘法在很多课程中都学过有关集合的知识,一些基本的概念和结论不再重复,这里,只复习一下不太熟悉的知识,并在符号上做一个统一的规定。
1、用Z表示整集合,Z*表示非零整数集,用ψ表示有理数集,ψ*表示非零有理数数集等。
Z+ ,ψ+…R,C…2、AB表示A是B的子集,A=B或ABAB表示A是B的真子集,即B中有不存在A的元素AB表示A不是B的子集AB表示A不是B的真子集A=BAB且BA3、如果集合A含有无穷多个元素,则记为=,如果A含有n个元素,则记为=n。
(A的阶),有+=+4、称集合A-B={aaA, aB}为集合A与B的差集。
易知有A-B=A5、集合A有很多子集,将A的所有子集放在一起(包括空集)也组成一个集合,称为A的幂集,记作P(A)。
=(=n)映射是函数的推广,函数的定义中要求有两个数集,而映射中,是一般的集合6、定义:设A,B是两个集合,如果有一个法则,他对于A中每个元素,在B中都有一个唯一确定的元素y与它对应,则称为从A到B的映射。
这种关系常表示为:AB 或:xy 或y=(x)xy且称y为x在之下的像,称x为y在之下的原像或逆像。
由定义可知,映射必须满足三个条件:①A中每个元素都有像,②A中元素的像是唯一的,③A中元素的像在B里。
例:P6例1-6例1.不是映射,不满足①例2.不是映射,不满足②例3.不是映射,不满足③例4.是映射,不单不满例4.是映射,不单,满例6.是映射,单不满7、映射是函数概念的推广,是对应法则,A是定义域,B包含值域,根据B是否与值域相等,可将映射区分为是否是满射。
A中不同元素的像可能相同,也可能不同,据此可区分映射是否为单射。
近世代数习题解答
近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如A B=E与A B=AB—A—B.4.5.近世代数题解§1. 41.2.3.解1)略2)例如规定4.5.略近世代数题解§1. 51. 解1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个子群且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对H中任意元素a和任意正整数m都有a m∈H.由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有ϕ个生成元而且a k是生成元⇔(k n)=1);两个生成元,n阶循环群a有)(n2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n(n =1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群 G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M 上的全体变换作成的集合T (M ),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M >1时T (M )只能作成半群,而不能作成群.三、习题§2. 5解答1. 解 作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解 G 作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…i k)-1=(i k,…,i2,i1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换σ,τ求置换στσ-1的方法.n次对称群s n的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。
近世代数教学课件
并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A
近世代数课件(全)--1-2运算律,同态同构
2012-9-19
定义3
设
则称
是集合A的代数运算,若 a , b A, 都 有 a b=b a.
满足交换律.
定理2 如果 A 的代数运算 同时满足 交换律和结合律,那么 a 1 a 2 a n 中的元的次序可以任意掉换.
2012-9-19
定义4
是一个B×A到A的代数运算,⊕是一个A
n 0
0不在N中,矛盾。
( N , ) 与 (N , ) 不同构.
2012-9-19
作业: 证明: (1) { N ,}与 { N ,} (2) { Z , }与 { Z ,} (3)
{Q , }与 {Q ,}
不同构(普通乘法).
不同构.
(其中 Q
不同构. 为非零有理数集).
都是整数中
通常的加法“+”,现作
: ( A , ) ( A , )其 中 ( n ) n , n A
,那么
2012-9-19
是同构映射.
定理5 如果 ( A , , ) 和( A , , ) 同构,那么 (1) 满足结合律 也满足结合律 ; (2) (3)
的代数运算.若 , ⊕对于B的任何b,A的任何
a 1 , a 2 ,都有
a (b c ) ( a b ) ( a c )
则说 , ⊕适合第一分配律. 类似地可定义第二分配律. 如果⊕适合结合律 , , ⊕适合第一分配律,则
b B , a1 , a 2 , a n A, 都 有 a ( b1 b 2 b n ) ( a b1 ) ( a b 2 ) ( a b n )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章小结
本章主要研究群的有关问题:定义性质、子群及不变子群、三类重要的群——变换群、置
换群、循环群、同态与同构,主要内容有:
一、 基本概念
子集--相等集合交集集合集合运算并集积集(笛卡儿积)单射映射满射预备知识双射映射变换代数运算等价关系与分类
),,,,)AbelabGabbaabGabbaGGnGGn交换群(阿贝尔群(有)
非交换群(,使
群定义
有限群—阶
无限群—阶
子群
子群正规子群
群
陪集--商群
变换群——由一个非空集合的若干一一变换构成的群
三种重要群置换群——由元有限集合的若干一一变换(置换)构成的群
循环群——每个元素都是某个元的幂
同态存在保运算的映射
两个群的关系
同构存在保运算的一一映射
单位元、逆元、元素的阶、子群在群中的指数 .
二、 主要结论
1.群的基本性质: 1)——5),定理1.2.1,1.2.2;
2.元素阶的性质:定理1.2.3---1.2.4
3.子群的判别条件(重点)
为群 的非空子集. 则 为 的子群的充分必要条件是:
(1) 任给 , 有 ,任给 , 有 .
(2)任给 , 有 .
(3)任给 , 有 (只适合有限子集)
子群的性质:子群的交集仍是子群
4.陪集、商群性质
设 是 的子群, 则
(1)aH=Ha=H当且仅当 a∈H
(2)当且仅当 , ;
(3) 当且仅当 , ;
(4) 的任何两个左(右)陪集或者完全相同, 或者无公共元素. 因此 可以表示成一些不相交的左(右)陪
集之并.
(5)(拉格朗日定理) 有限群 的任一子群 的阶数是群 的阶数的因子.且|G|=|H|[G:H](6)有限群
的任一元素a 的阶都是群 的阶数的因子.即|a|||G|
(7)设 为有限群. , 则对任意的 , .
5. 正规(不变)子群的判别条件
N是群 的子群,则N是G的不变子群的充要条件是
(1) 任意的 , 都有 aN=Na
(2)
, ;
(3)
, , .
6. 变换群、置换群、循环群的结论
(1) 一个集合A的所有一一变换作成一个变换群。
(2)(凯莱定理) 任一群都同构于一个变换群.
推论:任一个有限群都同构于一个置换群.
(3) 个元素的全体置换关于置换的乘法构成群.
(4) 每一置换可唯一表为若干个不相交轮换(循环置换)的乘积
(5) 每一循环置换都可以表为若干个对换的乘积.
(6) 每一置换都可表为若干个对换的乘积
(7)设 为群, , 则|a|=|a-1|
(8)设 为群, ,ΙaΙ=n且 , 则 .
(9)设 为群, , 如果 |a|=n,则 |ar|=n/d (d=(r,n))
(10) 设 为 阶循环群, . 则 为 的生成元的充分必要条件是
(11) 循环群必是交换群.
(12)循环群的子群必是循环群
(13)设 为循环群, 且G=(a)则
如果 , 则 ;
如果 , 则
7. 同态、同构性质
(1)
设G是一个群,G 是一个非空集合,若G与G对于它们的乘法来说同态,则G也是一个群
(2) 定理1.8.2 设 与G是群, 是 到G的同态映满射.
1) 如果 是 的单位元, 则 是G的单位元;
2) 对于任意的 , 是 在G中的逆元. 即
(3) 定理1.8.3-----满射、单射的条件
(4) 定理1.8.4——同态映射保子群、正规子群.
(5) 定理1.8.5------同态基本定理
三、 基本方法与题型
1、群的判别----定义法
2、子群的判别方法(四种方法):定义法; 定理1;定理2;定理3(有限);
3、 正规子群的判别方法(四种方法):定义法; 定理1)-3);
4、求有限群的子群方法:(重点掌握循环群的子群求法)
1)确定子群的可能阶数; 2)按阶数确定可能的子集;3)判断哪个是子群。
5、求正规子群方法:1)求子群; 2)判别哪些子群是正规子群(交换群的子群都是正规子群)
6、求陪集:定义法
7、求商群方法:按定义
8、计算置换的乘积、逆、阶----定义方法
9、把置换表成不相连的循环置换的乘积或对换的乘积
10、 求元素的阶:1)定义方法 2)有关性质
11、判别循环群方法:定义法
12、同态、同构映射的判断:定义方法
13、群同态、同构的证明:构造同态或同构映射
14. 单、满、双射的判断----定义法
15.等价关系的判断 ----定义法,传递性