行列式的计算技巧与方法总结
行列式的计算技巧与方法总结

存档编号赣南师学院学士学位论文行列式的若干计算技巧与方法目录摘要 (1)关键字 (1)Abstract (1)Key words (1)引言 (2)1.行列式的概念及性质 (2)1.1 n阶行列式的定义 (2)1.2 行列式的性质 (3)2.行列式计算的几种常见技巧和方法 (5)2.1 定义法 (5)2.2 利用行列式的性质 (6)2.3 降阶法 (9)2.4 升阶法(加边法) (11)2.5 数学归纳法 (12)2.6 递推法 (14)3. 行列式计算的几种特殊技巧和方法 (16)3.1 拆行(列)法 (16)3.2 构造法 (17)3.3 特征值法 (19)4. 几类特殊行列式的计算技巧和方法 (19)4.1 三角形行列式 (19)4.2 “爪”字型行列式 (20)4.3 “么”字型行列式 (21)4.4 “两线”型行列式 (23)4.5 “三对角”型行列式 (24)4.6 德蒙德行列式 (25)5.行列式的计算方法的综合运用 (27)5.1 降阶法和递推法 (28)5.2 逐行相加减和套用德蒙德行列式 (28)5.3 构造法和套用德蒙德行列式 (29)小结 (30)参考文献 (31)行列式的若干计算技巧与方法摘要:行列式是高等代数的一个基本概念,求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法.本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式的求值方法.如:化三角形法、降阶法和数学归纳法等多种计算方法以及Vandermonde行列式、“两线型”行列式和“爪”字型行列式等多种特殊行列式.并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征.关键词:行列式行列式的计算方法 Vandermonde行列式The Calculation of Determinant Abstract: The determinant is a basic concept of higher mathematics. The solution of determinant is the basic question, and each kind of complex higher order determinant has its special solution method. This paper mainly introduces the methods for calculation of determinant. For example, the triangle method, order reduction method,mathematical induction method and Vandermonde determinant, two linear determinant,claw type determinant and so on. The paper also analyzes the corresponding examples, and summarizes the characteristic of determinants corresponding to each method.Key words: Determinant The calculation of determinant Vandermonde determinant引言:行列式的计算是高等代数的重要容之一,也是学习过程的一个难点.对于低阶行列式,我们可以利用行列式的定义和性质计算.但对于高阶行列式,如果直接利用定义和性质计算,则计算量大,很难得到结果.因此,研究行列式的计算方法和技巧就显得十分必要.本文主要介绍了几种计算方法和技巧,还有一些特殊行列式的计算方法.1.行列式的概念及性质1.1 n 阶行列式的定义我们知道,二、三阶行列式的定义如下:22211211a a a a =21122211a a a a -,=333231232221131211a a a a a a a a a .312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a ---++从二、三阶行列式的在规律引出n 阶行列式的定义. 设有2n 个数,排成n 行n 列的数表nnn n nn a a a a a a a a a212222111211,即n 阶行列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积n 21nj j 2j 1a a a ⑴的代数和,这里n 21j j j 是n 21,,, 的一个排列,每一项⑴都按下列规则带有符号:当n 21j j j 是偶排列时, ⑴带正号;当n 21j j j 是奇排列时, ⑴带负号. 即nnn n nn a a a a a a a a a212222111211=()()n21n21n 21nj j 2j 1j j j j j j 1a a a τ∑-,这里∑n21j j j 表示对所有n 级排列求和.1.2 行列式的性质性质1 行列互换,行列式不变.即nna a a a a a a a a a a a a a a a a a n2n1n22212n12111nnn2n12n 22211n 1211= .性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即=nnn2n1in i2i1n 11211k k k a a a a a a a a ak nna a a a a a a a an2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即11121111211112111221212121212.n n n n n n n n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+ 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即k a a a ka ka ka a a a a a a nn n n in i i in i i n=21212111211nnn n in i i in i i na a a a a a a a a a a a 21212111211=0. 性质5 把一行的倍数加到另一行,行列式不变.即=+++nn n n kn k k kn in k i k i na a a a a a ca a ca a ca a a a a2121221111211nnn n kn k k in i i n a a a a a a a a a a a a 21212111211. 性质6 对换行列式中两行的位置,行列式反号.即nn n n kn k k ini i n a a a a a a a a a a a a 21212111211=-nnn n in i i kn k k n a a a a a a a a a a a a21212111211.性质7 行列式一行(或列)元素全为零,则行列式为零.即00000nn1-n n,n2n1n 11-n ,11211=a a a a a a a a.2、行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:1321000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nnnn nnB A BC A •=0, nn nn nnnnnn B A B C A •=0. 例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D .当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-1100010000001100001010001D 133221.110100001100010000110001000001100011000113322113322nn n nn n a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nnna c a c a cb b b a2211210,nnn c a c a c a a b b b2211012,nnn b b b a a c a c a c 211122,121122a b b b c a c a c a nn n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解.4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D . 再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ. 5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .小结本文主要介绍了行列式计算的一些技巧和方法,还有一些特殊行列式的计算技巧,通过归纳和总结这些技巧和方法,让读者在计算行列式时游刃有余.然而在这么多方法面前,我们需要多观察、多思考,这样便于我们更加轻松地解决有关行列式的问题,也让我们更加灵活的运用这些方法和技巧来解决实际问题.参考文献:[1]北大数学系代数小组. 高等代数(第三版)[M].:高等教育,2003:50~104.[2]钱. 高等代数题解精粹[M].:中央民族大学,2002:24~58[3]家保,中华,陆一南.若干类型行列式计算方法.科学技术学院学报(自然科学版),2012年3月,30(2).[4]鹏辉.行列式的计算技巧.学院报,2011年4月,33(4).[5]丁冰.三线型行列式的计算.科技通报,2012年2月,28(2).[6]龚德仁.高阶行列式计算的若干技巧.课外阅读(中下).2012年03期.[7]新功.行列式的计算方法探讨.师大学学报(自然科学版),2011年7月,28(4).[8]王爱霞.关于n阶行列式的计算方法与技巧的探讨.教育学院学报.2012年第1期.[9] 樊正华,徐新萍.浅谈行列式的计算方法.教育学院学报(自然科学),2011年2月,27(1).[10]卢潮辉.三对角行列式的计算. 职业技术学院学报,2010年3月,9(2).[11] 林.求n阶行列式的几种方法和技巧. 科技信息报,2007年第8期.[12]“爪”字型和“么”字型行列式的计算.理科教学研究(短文集锦),2006年第4期.。
行列式的计算方法总结

行列式的计算方法总结行列式是数学中一类特殊的数值,它可以用于解决各种数学问题,如线性方程组的解、二次行列式的特征根以及三角形的面积等。
它的计算方法也颇为多样,各种行列式的计算方法可以归纳总结如下:第一种是规则式子求行列式的方法,即规则式子求行列式的值。
这种方法包括常见的拆分积式法,它可以用来计算简单行列式,其解算步骤如下:把行列式的第一行和其他所有行有序的放在一起,按列乘以每列的分量,然后把乘积相加,即可求出行列式的值。
另一种常用的计算行列式的方法是运用行列式的转置法则,这也是一种简单的计算行列式的方法,它的解算步骤如下:先把行列式的行和列都交换一下,然后把交换后的新行列式进行上面第一种规则式子求行列式的求值,便可求出行列式的值。
此外,还有多元函数求行列式的方法,以及行列式求导、求偏导数的方法。
多元函数求行列式的方法就是将行列式用多元函数的形式表示出来,然后用函数定义求和解决之。
行列式求导、求偏导数的方法就是将行列式的变量替换为一个新的变量,然后进行积分,并求出偏导数,最终得到行列式的值。
最后一种常用的计算行列式的方法是拆解行列式的方法,这是一种比较复杂的行列式计算方法。
它的解算步骤如下:先把行列式拆解成几个子行列式,然后逐步把子行列式拆解为更小的子行列式,最终得到一个最小子行列式,将其值替换到初始行列式中计算,即可求出该行列式的值。
以上是行列式的计算方法总结,由于行列式的类型众多,其计算方法也多如牛毛,仅有上述几种计算方法是不够的,若想解决复杂的行列式计算,还需要运用其他更加复杂的计算方法,如克莱姆法、罗宾逊法、孟加拉法等。
此外,计算行列式还需要掌握矩阵运算的基础知识,运用高等数学知识,才能解决复杂的行列式计算问题。
总之,行列式的计算是一件非常有技巧性的事情,找到合适的计算方法,解决行列式计算的难题,有助于提高数学的解题能力。
行列式的计算方法总结

行列式的计算方法总结行列式的计算方法有哪些呢?可能大部分同学并不知道。
为了普及知识。
下面是由小编为大家整理的“行列式的计算方法总结”,仅供参考,欢迎大家阅读。
行列式的计算方法总结第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)第三、行列式的计算最重要的两个性质:(1)对换行列式中两行(列)位置,行列式反号(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。
拓展阅读:行列式的性质有哪些?行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的所有的元素都乘以同一数k,等于用数k乘此行列式;行列式如果有两行(列)元素成比例,则此行列式等于零;若行列式的某一列(行)的元素都是两数之和,则这个行列式是对应两个行列式的和;把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数。
当我们写的时候,写成一个表是为了方便的反映函数的物性。
当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看。
为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理。
行列式的计算方法和技巧大总结

计算n 阶行列式的若干方法举例1.利用行列式定义直接计算例 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n n n a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算(1999数二(5)题)记行列式347534453542333322212223212---------------x x x x x x x x x x x x x x x x 为)(x f ,则方程0)(=x f 的根的个数为( ).1)(A .2)(B .3)(C .4)(D求解:347534453542333322212223212)(---------------=x x x x x x x x x x x x x x x x x f 37342213310122112----------=x x x x x x 671212212673412133001220012------=--------=x x x x x x x x x x)1(5)12)(5)((5512121-=+---=----=x x x x x x x故0)1(5)(=-=x x x f 有两个根,故应选)(B .四阶行列式4433221100000000a b a b b a b a 的值等于 ( ).)(43214321b b b b a a a a A - .)(43214321b b b b a a a a B + ).)()((43432121b b a a b b a a C -- ).)()((41413232b b a a b b a a D --求解:原式33224133224143322143322100000a b b a b b a b b a a a b a b b a b a a b b a a -=-=))((41413232b b a a b b a a --=。
行列式的计算技巧窍门情况总结

行列式的若干计算技巧与方法目录摘要 (1)关键字 (1)1•行列式的概念及性质 (2)1.1 n阶行列式的定义 (2)1.2行列式的性质 (2)2•行列式计算的几种常见技巧和方法 (4)2.1定义法 (4)2.2利用行列式的性质 (5)2.3降阶法 (7)2.4升阶法(加边法) (9)2.5数学归纳法....................................................... 1.1...2.6递推法........................................................... 12…3. ............................................................................................................ 行列式计算的几种特殊技巧和方法. (14)3.1拆行(列)法.................................................... 1.4..3.2 构造法.......................................................... 1.7...3.3特征值法......................................................... 1.8…4. 几类特殊行列式的计算技巧和方法 (19)4.1三角形行列式..................................................... 1.9..4.2 “爪”字型行列式.............................................. 1.9.. 4.3 “么”字型行列式............................................... 21.. 4.4 “两线”型行列式.............................................. 22. 4.5 “三对角”型行列式............................................. 23.4.6 范德蒙德行列式................................................. 25..5. 行列式的计算方法的综合运用....................................... 26. 5.1降阶法和递推法.................................................. 27.. 5.2逐行相加减和套用范德蒙德行列式. (27)5.3构造法和套用范德蒙德行列式 (28)小结................................................................. 29....参考文献............................................................. .3.0....学习体会与建议...................................................... 31...摘要:行列式是高等代数的一个基本概念,求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法•本文主要 介绍了求行列式值的一些常用方法和一些特殊的行列式的求值方法.如:化三角 形法、降阶法和数学归纳法等多种计算方法以及 Van dermo nde 行列式、"两线 型”行列式和“爪”字型行列式等多种特殊行列式•并对相应例题进行了分析和 归纳,总结了与每种方法相适应的行列式的特征. 关键词:行列式计算方法 1 .行列式的概念及性质1.1 n 阶行列式的定义我们知道,二、三阶行列式的定义如下: ai2a 22 =a 11a 22 a 12a 21 , an a 12 a 13a 21 a22 a23 a 31 a 32 a 33 a ii a 21a 11a 22a 33 a 12a 23a 31 a 13a 21a 32a 11a 23a 32 a 12a 21 a 33 a 13a 22a 31 -从二、三阶行列式的内在规律引出 n 阶行列式的定义.设有n 2个数,排成n 行n 列的数表a 11a 12a 1na 21 a 22 a 2na n1 a n2 a nn即n 阶行列式.这个行列式等于所有取自不同行不同列的 n 个元素的 乘积a1j 1 a 2j 2anj n时,⑴带负号.1.2行列式的性质性质1行列互换,行列式不变.a 11 a 12 a 1na 11 a 21 a n1a 21 a 22 a 2na 12 a 22 a n2a n1 a n2 a nna 1 n a 2n a nn的代数和,这里 j 1 j 2j n 是1,2, , n 的一个排列,每一项⑴都按下列规 则带有符号:当j 1 j 2j n 是偶排列时,⑴带正号;当jj 2 j n 是奇排列aiia12a1 na21a22j 1j 2j nJ 1J 2 j na1j 1a 2j 2anj n ,an2ann这里j 1j2表示对所有n 级排列求和.=0.性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列a 11a i2a inaiiai2ainka M ka i2 ka ink a i1a i2aina n1 a n2 a nnan1an2ann式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的 各行(或列)全与原来行列式的对应的行(或列)一样.即么行列式为零.即a ii a i2 a ina ii a i2 a ina ii3i2S ina ii a i2a inkka iika i2ka ina iia i2a ina nia n2a nna nia n2a nn性质3如果行列式的某一行(或列)是两组数的和,那么该行列a i1a i2K a in M M MM b i c b 2 C 2K b n ( MMM M a nia n2Ka nna ii a i2K a in MM MM bb 2 K b n M M MMa ni a n2K a nna ii a i2K ainM M M MG C 2 K C n MM M Ma ni a n2Ka nn性质4如果行列式中有两行(或列)对应元素相同或成比例,即性质5把一行的倍数加到另一行,行列式不变.即a11 a i2 a ln a11 a i2 a lna i1 ca ki a i2 ca k2 a in ca kn a i1 a i2 a ina k1 a k2 a kn a k1 a k2 a kna n1 a n2 a nn a n1 a n2 a nn 性质6对换行列式中两行的位置,行列式反号.即a11 a i2 a in a11 a i2 a i na i1 a i2 a in a k1 a k2 a kna k1 a k2 a kn —a i1 a i2 a ina ni a n2 a nn a ni a n2 a nn性质7行列式一行(或列)元素全为零,则行列式为零.即a i1 a i2 a i, n-1 a in0 0 0 0 0.a n1 a n2 a n,n-1 a nn2、行列式的几种常见计算技巧和方法2.1定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.10 0解析:这是一个四级行列式,在展开式中应该有 4 24项,但由于出现很多的零,所以不等于零的项数就大大减少•具体的说,展开 式中的项的一般形式是a ij i a 2j 2 a 3j 3a 4j 4 .显然,如果j i 4,那么a“,从而这个项就等于零•因此只须考虑j i 4的项,同理只须考虑j 2 3, j 3 2, j 4 1的这些项,这就是说,行列式中不为零的项只有2.2利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形 •该方法适用于低阶行列式.计算行列式814823832841,而 4321 6,所以此项取正号•故 0 0 0 0 0 2 0 30 4 00 1 0 _ 0 = 04321a 14a 23a 32a 4124.2.2.1化三角形法上、下三角形行列式的形式及其值分别如下:a n a na nb n解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的1倍加到下面各行便可使主对角线下方的元素全部变为零•即:化为上三角形.解:将该行列式第一行的 1倍分别加到第2,3•••( n 1)行上去,可得1 a 1 b 1 a2 1a 1a 2an a 12 a 13a 1n0 a22a 23a 2n0 0 a 33 a 3n0 0 a nna 110 0 a 21 a 22 00 a 31a 32a 33a ii a 22a nn,a ii a 22a nn・a n1a n2 a n3a nn1 a 1 a2 K a n0 b0 0M M M O M 0 0 0 Kb nD n 1bb z K b n . 例2计算行列式D n 11a 1a 22.2.2连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列) 后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计 算•这类计算行列式的方法称为连加法.当行列式每两行的值比较接近时,可采用让邻行中的某一行减或 者加上另一行的若干倍,这种方法叫滚动消去法.解:2.2.3 计算行列式 D nX iX iX i nX ii 1nX ii 1滚动消去法D nX 1mX 1 X iX 2 mX 2X 2X 2 m X 2X 2 mX 2 X 2 m X 2X nX nX nX nX n 0XnX X n X n X n mnX i m .i 11 2 2 1 例4计算行列式D n 3 2 n n 1 1 2 3 n 1 n1 11 1 1D n 1 111 11 11 1 11 2 3 n 1 n 11 0 0 0 0 2n 21 1 0 0 01 1 11解:从最后一行开始每行减去上- 2.2.4逐行相加减3n 1 n2n 2n 11n 3n 2 n 2n 221「,有1 2 3n1n2 0 022 221 1 111对于有些行列式,虽然前n但却为零•用连加法明a 1 a 1 0 0 0a 2 a 2 0 0 例5计算行列式D0 0 a s0 00 00 a n a r11111显不行,这是我们可以尝试用逐行相加减的方法.解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:2.3降阶法将高阶行列式化为低阶行列式再求解.2.3.1按某一行(或列)展开例6 解行列式D n解:按最后一行展开,得2.3.2按拉普拉斯公式展开行•由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的 和等于行列式D.即M n A n ,其中A i 是子式M i 对应的代数余子式.a 10 0a 2 0a 3a nn2n1 a 1 a 2a na na n 2a 2 a 1n 1 n 2D n a 1x a 2xa n 1X拉普拉斯定理如下:设在行列式 D中任意选定了 k 1 k n-1个D M 1A 1 M 2A 2例7解行列式D n解:从第三行开始, 到第二列,得D nA nnC nnA nnB nnC nnB nnA nn ?B nn,A nn?B nn -每行都减去上一行; 再从第三列开始,每列都加ab2.4升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质 化简算出结果,这种计算行列式的方法叫做升阶法或加边法•升阶法 的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利 用行列式的性质把绝大多数元素化为 0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.1 1 1 11 10 1 1 0解:使行列式D 变成n 1阶行列式,即1 1 1 0 0 1 0 1 0D再将第一行的 1倍加到其他各行,得:解行列式D=1 1 1 1 1 1 0 1 1 01 1 1 1 1 0 1 0 1D=(n 1)110 1 00 0 1D2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出 假设,再利用数学归纳法去证明•对于高阶行列式的证明问题,数学 归纳法是常用的方法.cos 1 0 0 012cos 1 0 0 例9计算行列式D n0 1 2 cos0 00 00 2cos 112 cos解:用数学归纳法证明1 1 0 0 0 01 0 0 1从第二列开始,每列乘以1加到第一列,得:1 1 0 0 0 01 00 1当n 1时,D 1cos猜想,D n cosn假设当n k 时,结论成立.即:D k cosk .现证当n k 1时,结论 也成立.cos1 0 0 012cos 1 0 0 当 n k 1 时,D k 10 1 2cos0 00 0 2 cos 112cos将D k 1按最后一行展开,得cos 1 012 cos 1D k 1k 1 k 11?2cos0 1 2 cos0 0 0 2 coscos1 0 01 2 cos 1 0,k 1 k10 1 2 cos0 0 0 12cos D k D k 1 .因为当n 2时,D 2cos 1 1 2cos2cos 2 1 cos2由上可知,当n1 , n 2时,结论成立.D k coskD k 1 cos k 1 cos k cosk cos sin k sin所以D k 1 2cos D k D k 12cos cosk cosk cos sin k sincosk cos sin k sincos k 1 .这就证明了当n k 1时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立.即:D n cosn .2.6递推法技巧分析:若n阶行列式D满足关系式aD n bD n 1 cD n 2 0.则作特征方程2ax bx c 0.①若0,则特征方程有两个不等根,则D n Ax;1 Bx;1.②若0,则特征方程有重根X1 X2,则D n A nB x;1.在①②中,A,B均为待定系数,可令n 1,n2求出.9 5 0 0 0 0 0 4 9 5 0 0 0 0例10 计算行列式D n 0 4 9 50 0 00 0 0 0 4 9 5 J0 0 0 0 0 4 97解:按第一列展开,得D n 9D n 1 20 D n 2.即D n 9D n 1 20D n 2 0-作特征方程x2 9x 20 0.解得X i 4, X2 5.则D n A?4n1 B?5n1.当n 1 时,9 A B ;当n 2 时,61 4A 5B .解得A 16,B 25,所以D n5n 14n1.3、行列式的几种特殊计算技巧和方法3.1拆行(列)法3.1.1概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值•拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和.3.1.2例题解析1 a1a2 0 0 01 1 a2a3 0 0例11 计算行列式D n 0 1 1 a30 00 0 0 1 a n 1 a n0 0 0 1 1 a n 解:把第一列的元素看成两项的和进行拆列,得D n1a 1D n 1a 1 0a 2D n a21a3a 31 a n 11a n a na 2 a 2 1a 3 a 3a n 1a 2 a 2 1a 3 a 3a na n 0 0 0a n 1a n a n上面第一个行列式的值为 所以D n 1 a 1 1 a 2 1 a 3 a 3a n1a n a n这个式子在对于任何n 都成立, 因此有3.2构造法3.2.1概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值.3.2.2例题解析解:虽然D n 不是范德蒙德行列式,但可以考虑构造 n 1阶的范德蒙德 行列式来间接求出D n 的值.构造n 1阶的范德蒙德行列式,得1 a 1ni11a ji 1 j 11a i 1 a 2D n 2例12 求行列式D n1 1 x 1x 2 2 X 12 X 2n 2 X1 n X1n 2 X 2 n X21 X n2 X nn 2 Xn n XnA1 2n ・3.3特征值法3.3.1概念及计算方法是n 级矩阵A 的全部特征值,则有公式故只要能求出矩阵A 的全部特征值,那么就可以计算出 A 的行列其中,X 1 2 X 1n 2 X 1 n 1 X1 n X1按第 X 2 2 X 2n 2 X 2 n 1 X2 n X2X n2X nn 2X nn 1X nn Xnn 2 X n 1 X nXn 1列展开,得f X A,n 1A 2」 n 1X的系数为A n ,n 11X1n又根据范德蒙德行列式的结果知f X X X 1X 2 A n,n 1 X1D nX n A n D n .X in由上式可求得X n 1的系数为X 1 X 2X n X inX j故有D n X 1X 2 X n1 j iX inX jn1,n 1X,X j式.3.3.2例题解析例13 若1, 2,n是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为A 1 2 n ,贝UA 可逆 A 01 2 n0 i 0i 1,2 n .即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1三角形行列式4.1.1概念形状像个三角形,故称为“三角形”行列式.4.1.2计算方法a 11 a 12a 13a 1 na 11a 22a 23 a 2na 21 a 22a 33 a 3na 31 a 32 a 33a nna n1 a n2 a n3 a nn形如这样的行列式,由行列式的定义可知,an a i2a i30 a 22a 230 0 a 330 0 a ii0 a 21a 22a 31 a 32a 33a ni a n2 a n3a nna i1 a 22 a nn ,a ii a 22a nn•4.2 “爪”字型行列式4.2.1概念a 。
行列式的计算技巧

行列式的计算技巧行列式是线性代数中的重要概念,广泛应用于各个领域。
行列式的计算是线性代数中的重要内容之一,掌握行列式的计算技巧对于解决各类问题至关重要。
本文将介绍一些行列式的计算技巧,帮助读者更好地理解和应用行列式。
一、行列式的定义在介绍行列式的计算技巧之前,我们需要先了解行列式的定义。
对于一个n阶矩阵A=(a[i][j]),其行列式记作,A,或det(A),定义为:A,=a[1][1]*a[2][2]*…*a[n][n]-a[1][n]*a[2][n-1]*…*a[n][1]其中a[i][j]表示矩阵A中第i行第j列的元素。
二、行列式计算的基本规则1.交换行列式的两行(列)会改变行列式的符号,即A,=-,A其中A'表示交换了两行(列)的行列式。
2.行列的一个倍数加到另一行(列)上,不改变行列式的值,即A,=,A其中A'表示将A的其中一行(列)的k倍加到另一行(列)上的行列式。
3.如果行列式的其中一行(列)的所有元素都为0,则行列式的值为0。
三、行列式计算的技巧1.利用初等行变换求行列式的值初等行变换是指对矩阵进行以下操作:(1)交换两行(2)一行乘以非零常数(3)一行加上另一行的k倍利用初等行变换可以把一个行列式转化成上三角形或下三角形的形式。
例如,对于一个三阶矩阵,可以通过初等行变换将其转化为上三角形,此时行列式的值等于主对角线上元素的乘积。
2.利用行列式的性质简化计算对于具有一定结构的矩阵,可以利用其特定的性质来简化行列式的计算。
(1)对角矩阵的行列式的值等于对角线上元素的乘积,即A,=a[1][1]*a[2][2]*…*a[n][n(2)三角矩阵的行列式的值等于主对角线上元素的乘积,即A,=a[1][1]*a[2][2]*…*a[n][n(3)如果行列式的其中一行(列)的所有元素都相同,则行列式的值等于该行(列)的任一元素乘以n-1次该元素的幂,即A,=a[1][1]^(n-1)*a[2][2]^(n-1)*…*a[n][n]^(n-13.利用行列式的性质化简计算行列式具有一些性质,利用这些性质可以将行列式的计算简化。
一般技巧求解行列式
一般技巧求解行列式要解行列式,可以使用多种一般技巧。
本文将介绍其中一些常用的方法。
1. 展开法:行列式可以通过展开法进行求解。
展开法可以根据行列式的定义,将行列式展开为一系列的代数式相加。
例如,对于一个3阶行列式:| a b c || d e f || g h i |我们可以选择第一行展开:| a b c | = a * | e f | - b * | d f | + c * | d e || h i | | g i | | g h |然后可以通过继续展开这些子行列式,直到得到一个只有一个元素的行列式为止。
最终相加这些代数式就可以得到行列式的值。
2. 初等行变换:行列式的值不受初等行变换的影响,因此可以通过进行初等行变换简化行列式的计算。
初等行变换包括以下三种操作:(1) 交换两行的位置。
(2) 用一个非零常数乘某一行。
(3) 用一个行乘另一行再加到第三行上。
利用初等行变换,可以将行列式变为上三角形行列式或者对角行列式的形式,从而简化计算。
3. 行列式的性质:行列式具有一些性质,利用这些性质可以更方便地进行计算。
(1) 行列式与其转置行列式相等。
(2) 如果行列式有两行(列)完全相同,则行列式的值为0。
(3) 如果行列式的某一行(列)有一个元素等于0,那么行列式的值为0。
(4) 行列式的某一行(列)乘以一个非零常数,行列式的值等于原行列式的值乘以这个常数。
(5) 行列式的某一行(列)的元素乘以一个非零常数再加到另一行(列)对应元素上去,行列式的值不变。
利用这些性质,可以通过简化行列式的形式,减少计算量。
4. 克拉默法则:对于n阶方阵A的系数矩阵A和常数矩阵b,如果A的行列式不为0,则该方程组有唯一解,并且解为x = (Dx/D, Dy/D, Dz/D, ......, Dn/D),其中Dx表示把矩阵A 的第x列用向量b替换掉后,求得的行列式。
例如,对于二阶方阵:| a b || c d |方程组ax + by = e, cx + dy = f可以通过克拉默法则求解。
行列式化简计算技巧实题
行列式化简计算技巧和实题操练——Zachary一.技巧:技巧1:行列式与它的转置行列式的值相等,即D=D T111211121121222122221212n n n n n n nnnnnna a a a a a a a a a a a a a a a a a =技巧2:互换行列式的任意两行(列),行列式的值将改变正负号111212122221222111211212n n n n n n nnn n nna a a a a a a a a a a a a a a a a a =-技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面1111121111121221222222122211212n n nn n ni n n n n n nnn n nnb a b a b a a a a b a b a b a a a a bb a b a b a a a a ==∏技巧4:行列式具有分行(列)相加性11121111211112111221212121212n n n t t t t tn tn t t tn t t tn n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变111211112112112212121212n ns s sns t s t sn tnt t tn tt tn n n nnn n nna a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++=技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积111111111111111111110000m m nm mm m n m mm n nnn nmn nna a a ab b a ac c b b a a b b c c b b =技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和11(1,2,,)(1,2,,)nnik ik kj kj k k D a A i n a A j n ======∑∑二.解题方法:方法1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算1112112212212122a a a a a a a a =-,111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---方法2:上三角行列式,下三角行列式,主对角线行列式,副对角线行列式11121222100n nn ii i nna a a a a a a ==∏,112122112000nii i n n nna a a a a a a ==∏,1212()n nλλλλλλ=其余未写出元素均为零,1(1)2212(1)()n n n nλλλλλλ-=-其余未写出元素均为零方法3:若行列式中有两行(列)对应元素相等,则此行列式的值等于零0a a e i b b f j c c g k ddhl =方法4:若行列式中有一行(列)的元素全为零,则此行列式的值为零00000a e i b f jc g k dhl=方法5:若行列式中有两行(列)元素成比例,则此行列式的值等于零0a ka e i b kb f jc kc g k dkdhl=实题操练:计算下列行列式的值: 习题1:120114318--- 解答:1201141182(4)30(1)(1)0132(1)81(4)(1)4318--=⨯⨯+⨯-⨯+⨯-⨯--⨯⨯-⨯-⨯-⨯-⨯-=--习题3:12345678910111213141516解答:21431234113156785171091011129111113141516131151c c c c -=-习题4:3333333333333333x x x x ---+---+--解答:4122131414233333333333333333333333333333133313331333001333001333013330000000ii x x x x x x c c x x x x x x x r r x x x x r r x x x x r r xx x xr r x x x xx=-----+--+-+----+----------+--=-----------↔-=--∑习题5:11121314122223241323333414243444a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b解答:1112131412222324132333341424344422232412131412131411233334122333341322232414243444243444243444,a b a b a b a b a ba b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b =-+-按第一列展开1213142223242333341213141213142223242223242434442333342342342121423333412423333412234234,0,(b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b b b b D a a b b a b a b a b a b b a b a b a b a a a a a a a a =-=由于行列式和有两行元素成比例因此值为3234214124233334234222121412434232334243241421124332233423321421123223433414122123)()()()[()()]()()()()(b b b b b a b b a b a b a b a a a a a b b a b b a a b b a a b b a a b a b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -=-+--=--+-=---=--323443314111)()()i i i i i a b a b a b a b a b a b ++=--=--∏习题6:444443333322222(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)123411111a a a a a a a a a a a a a a a a a a a a ---------------- 解答:432122222533333444444321432122222,111111234(1)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)111114321(1)(1)(4)(3)(2)(1)(4)a a a a a D a a a a a a a a a a a a a a a a a a a a a a a a a a +++++++++----=-----------------=-------将行列式上下翻转后再左右翻转不难得3333344444(3)(2)(1)(4)(3)(2)(1)4!3!2!1!288a a a a a a a a a -------==习题7:12211000010000000001nn n x x x x a a a a x a -----+解答:111121232212112112121,1000100(1)00011,,,,,,n n n n n n n n n n n n n n n n n n n n nD x D xD a x x D xD a D xD a D xD a D xD a D x a x x x D x a x a x a x a +--------------=+--⇒=+=+=+=+=+=+++++按第一列展开得的递推公式将上述各式的两边分别乘以后全部相加并化简得:习题8:()aba b c dcd其余未写出元素均为零:解答:22(22)2122(1)2(1)2221,23,,2,221,23,,2,000000(1)0()()()n n n n nn n D n n n n n n a b c d abDa b cdcdD Dad bc Dad bc D ad bc --------=-==-==-=-将中的第行依此与第行行第行对调再将第列依此与第列列第列对调得鱼儿,在水中串上串下,吐着顽皮的泡泡;鸟儿从荷叶上空飞过,想亲吻荷花姑娘的芳泽。
行列式的计算方法常见
用数k乘以某一行, 等于用数k乘以此行 列式。
交换任意两行,行列 式的值不变。
范德蒙德行列式定义及性质
若某一行全为0,则此行列式为0。
若某一行是两组数的和,则此行列式可以拆分为两个行列式的和,其中每个行列 式分别由这两组数构成。
雅可比行列式定义及性质
01
02
03
行列式的计算方法常见
目录
• 行列式基本概念与性质 • 二阶与三阶行列式计算 • 高阶行列式计算技巧 • 克拉默法则与拉普拉斯展开定理 • 范德蒙德行列式和雅可比行列式 • 线性方程组与矩阵方程求解方法
01
行列式基本概念与性质
行列式定义及表示方法
行列式的定义
行列式是数学中的一个重要概念,它是一个数表,由n行n列元素按一定规则排列而成。行列式表示了线性方程 组系数矩阵的一种性质,可以用来判断线性方程组是否有解,以及解的唯一性雅可比行列式是 向量微积分中的一个重 要概念,特别是在求解 重积分和偏微分方程的 变量替换时。对于一个 从n维欧氏空间到n维欧 氏空间的函数映射,其 雅可比矩阵是一个n×n 的矩阵,其元素为函数 的偏导数。雅可比行列 式则是这个矩阵的行列 式。
性质:雅可比行列式具 有以下性质
若函数映射是可逆的, 则其雅可比行列式不等 于0。
拉普拉斯展开定理内容和证明
拉普拉斯展开定理(Laplace's Expansion Theorem)是行列式计算 中的一个重要定理。
证明过程可以通过数学归纳法和行列式的性 质进行,具体步骤包括验证n=1和n=2时的 基本情况,以及假设n-1时定理成立,推导n 时的情况。
它表明,在n阶行列式中,任意取定k行(列 ),由这k行(列)元素所组成的一切k阶子 式与其代数余子式的乘积之和等于行列式的 值。
行列式的计算
行列式的计算是学习高等代数的基石,它是求解线性方程组,求逆矩阵及求矩阵特征值的基础,但行列式的计算方法很多,综合性较强,在行列式计算中需要我们多观察总结,便于能熟练的计算行列式的值。
目前我们常用的计算行列式的方法有对角线法则,化为三角形行列式,拆分法,降阶法,升阶法,待定系数法和数学归纳法,乘积法,加边法。
1.对角线法则此法则适用于计算低阶行列式的值(如2阶,3阶行列式的值),即主对角线的元素的乘积减去辅或次对角线上的元素的乘积,其主要思想是根据2阶,3阶行列式的定义计算行列式的值。
2.化为三角行行列式利用行列式的性质,把行列式化为上(下)三角形行列式,再利用上(下)三角形行列式的结论,可得到相应行列式的值上(下)三角形行列式及其值(1)上三角形行列式为D=|■(■(a_11&a_12@0_ &a_22 )&■(a_13&…&a_1n@a_23&…&a_2n )@■(0_ &0_ @⋮&⋮@0_&0_ )&■(a_33&…&a_3n@⋮&⋮&⋮@0_ &…&a_nn ))|D=|■(■(a_11&a_12@0_&a_22 )&■(a_13&…&a_1n@a_23&…&a_2n )@■(0_ &0_ @⋮&⋮@0_&0_ )&■(a_33&…&a_3n@⋮&⋮&⋮@0_ &…&a_nn ))|=|■(■(a_11&0&0@a_21&a_22&0@a_31&a_32&a_33 )&■(⋯&0@⋯&0@⋯&0)@■(⋮&⋮&⋮@a_n1&a_n2&a_n3 )&■(⋮&⋮@⋯&a_nn ))| = a_11 a_12⋯a_nn即上(下)三角形行列式的值等于主对角线上的元素的乘积。