互斥事件有一个发生的概率
高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

《互斥事件》互斥事件与对立事件是北师大版数学必修3第三章第2节的内容,新课标的要求是:理解互斥事件概念,掌握互斥事件和对立事件的区别和联系,为以后学习相互独立事件和次独立重复试验做好铺垫,因此这节课有着深化知识层面,拓展能力范围的作用,是本章的重要内容。
之 【知识与能力目标】理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。
【过程与方法目标】通过引导学生判断互斥事件和互为对立事件两个概念的对比学习,提高学生的类比、归纳、探寻事物的能力。
通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。
【情感与态度目标】通过课堂上学生独立思考、合作讨论,有意识、有目的的培养学生自主学习的学习习惯与协作共进的团队精神;让学生体验成功,激发其求知欲,树立求真知的信心;培养学生的辩证唯物主义观点。
◆ 教材分析◆教学目标【教学重点】:互斥事件和对立事件的概念以及互斥事件的概率计算公式。
【教学难点】:互斥事件与对立事件的区别与联系。
多媒体课件一、互斥事件1.互斥事件的定义:不能同时发生的两个事件称为互斥事件例如,在一个盒子里放有大小相同的10个小球,其中有7个红球,2个绿球,1个黄球.从盒中摸出1个小球得到的结果可能是红球,也可能是绿球或黄球,并且只能是其中一种情况.我们把“从盒中摸出1个小球,得到红球”叫做事件A ,“从盒中摸出1个小球,得到绿球”叫做事件B ,“从盒中摸出1个小球,得到黄球”叫做事件C ,那么这里的事件A 、事件B 、事件C 中的任何两个是不可能同时发生的.事件A 与事件B 、事件B 与事件C 都是互斥事件.从集合的角度来看,事件A 与事件B 是互斥事件,则事件A 所包含的基本事件构成的集合与事件B 所包含的基本事件构成的集合的交集是空集.2.互斥事件有一个发生的概率设A 、B 为互斥事件,当事件A 、B 有一个发生时,我们把这个事件记作A+B .事件A+B 发生的概率等于事件A 、B 分别发生的概率的和,即P (A+B )=P (A )+P (B ),此公式也称概率和公式.例如上例中“从盒中摸出1个小球,得到红球”叫做事件A ,则P (A )=0.7;“从盒中摸出1个小球,得到绿球”叫做事件B ,则P (B )=0.2.若记“从盒中摸出1个小球,得到红球或绿球”为事件D ,则D=A+B ,此时P (D )=P (A )+P (B )=0.7+0.2=0.9.3.一般地,如果事件A1,A2,…,An 中的任何两个都是互斥事件,就说事件A1,A2,…,An 彼此互斥.从集合的角度看,几个事件彼此互斥是指由各个事件所含的结果组成的集合彼此没有公共元素,即两两交集都是空集.一般地,如果事件A 1,A 2,…,A n 两两互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)◆ 教学重难点 ◆ ◆ 课前准备◆◆ 教学过程。
概率(一)

北京四中撰稿:安东明审稿:严春梅责编:张杨概率(一)目标认知重点:概率与频率的区别,概率的加法公式,对古典概形的理解与判断.难点:互斥事件与对立事件的确定,对古典概形的理解与判断.学习内容:第一部分事件与概率一、随机现象与随机事件1.必然现象与随机现象:必然现象:在一定的条件下必然发生的现象(强调在一定条件下).随机现象:在一定的条件下可能发生也可能不发生的现象(事先很难预料).例如:(1)地球上,向上抛一块石头,石头会落到地面上;(2)在标准状态下,水在100o C下沸腾;(3)掷一枚硬币,正面向上;(4)从粉笔盒中取粉笔,取出的是红粉笔.对于现象我们通过观察与实验(统称为试验)得出所需要的规律性.2.事件与事件空间在同样条件下重复进行试验时,始终不发生的结果称为不可能事件,一定发生的结果称为必然事件,有可能发生也可能不发生的结果成为随机事件.基本事件:在试验中不能再分的最简单的随机事件,其他事件可以用它们来描述的事件.基本事件空间:所有基本事件构成的集合.例如:下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①在标准大气压下,水加热至沸腾;②某人买彩票中奖;③将一根长为a的铁丝,随意折两下,构成一个三角形;④连续两次抛一枚硬币,两次都出现正面朝上;⑤当时,二、随机事件的频率与概率通过掷硬币的实验的结果理解频率与概率的区别.一般地,在次重复的试验中,事件A发生的频率,当很大时,总在某个常数附近摆动,随着的增加,摆动的幅度越来越小,这时就把这个常数叫做事件A的概率,记作.(注:P是概率一词的英文Probability的第一个字母)很明显,是0和1之间的一个数,即.=0是什么意思? 这时我们称事件为不可能事件,如太阳从西边升起;=1是什么意思? 这时我们称事件为必然事件,如地球绕着太阳转.不可能事件和必然事件虽然具有确定性,但它们可视为随机事件的两个极端情况,这样我们可完整认识随机事件,完整地理解概率的意义.这里,我们需要区分“频率”和“概率”这两个概念.(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映随机事件出现的可能性;(2)概率是一个客观常数,它反映了随机事件的属性.随机事件的两个特征:(1)结果的随机性:在相同的条件下进行重复的试验时,如果试验的结果不止一个,那么在试验前难以预料哪种结果将发生;(2)频率的稳定性:即大量重复试验时,任意结果(事件) 出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小,这一常数就成为该事件的概率.例如:对某种子在两种不同条件下进行发芽试验,在乙条件下结果如表2 :①填写表中的发芽率(用计算器计算,结果保留三个有效数字)②在甲条件下发芽的概率约是___0.90______;在乙条件下发芽的概率是___0.85______;当试验的种子数很多时,选择在___甲______条件下进行发芽较适宜.三、互斥事件的概率(概率的加法公式)1.互斥事件与互斥事件有一个发生的概率互斥事件:不可能同时发生的两个事件叫做互斥事件.如果事件中的任何两个都是互斥事件,那么就称事件彼此互斥.互斥事件有一个发生的概率:如果事件互斥,那么事件(即中有一个发生)的概率等于事件分别发生的概率的和.即:如果事件彼此互斥,那么事件(即中有一个发生)的概率等于事件分别发生的概率的和.即:2.对立事件与对立事件的概率对立事件:如果事件是两个互斥的事件,且事件必有一个发生,那么事件叫做对立事件,记作.(从集合的角度来看:事件所含结果构成的集合与事件所含结果构成的集合互为补集)对立事件的概率:根据对立事件定义知,是一个必然事件,必然事件的概率为,而事件与事件互斥,因此对立事件的概率和为1,即:,.注意:一定要分清互斥事件与对立事件的区别.四、例题选讲:1.掷两枚骰子,所得的点数之和为6的概率为______________.分析:写出基本事件空间,得到基本事件的个数.解答:掷两枚骰子的基本事件空间共有36个基本事件,即:,所得的点数之和为6的事件共有5个基本事件,所得的点数之和为6的概率.评述:显然每次都要写出基本事件空间很麻烦,而我们需要的只是基本事件的个数,因此我们可以应用前面所学的两个计数原理,以及排列组合的知识来解决问题.2.从1,2,3,4,5中任取三个数组成没有重复数字的三位数,求:所得数为偶数的概率.分析:利用排列的知识得到三位数的总个数及偶数的个数.解答:从1,2,3,4,5中任取三个数组成没有重复数字的三位数的个数:,从1,2,3,4,5中任取三个数组成没有重复数字的三位偶数的个数:,所得数为偶数的概率评述:概率的问题实际上就是两个排列组合的问题.大家可把1,2,3,4,5换成0,1,2,3,4同样解决这个问题,结果应该是.3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为______________.解答:这4张卡片中随机抽取2张共有中选法,这4张卡片中随机抽取2张数字之和为奇数共有,取出的2张卡片上的数字之和为奇数的概率为.第二部分古典概型实例:1.掷一(两)枚硬币;2.用1、2、3、4、5组成没有重复数字的两位数;3.投掷两粒相同骰子,其数字的和;4.从三男两女五个人中选两个人参加会议;通过实例我们可以发现上述实验具有两个特征:(1)有限性:在试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性:在试验中,可能出现的结果(基本事件)的可能性是均等的.具备上述两个特征的试验称为古典概型.一般地,对于古典概型,如果试验的个基本事件为由于基本事件是两两互斥,那么根据互斥事件的概率的加法公式得:又因为每个基本事件发生的可能性相等,即:,因此每个基本事件发生的概率为.如果随机事件包含着个基本事件,那么随机事件的概率,即在古典概型中,.因此在解决古典概型的概率时,要把基本事件的总数以及满足特殊要求的基本事件数找出来,这就与排列组合的知识联系在一起了.例题选讲:1.一个口袋中装有编号为1、2的2个白球和编号为1、2、3的3个黑球.(1)从中摸出两个球,求:两球恰好颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.解:(1)记“摸出两个球,两球恰好颜色不同”为事件A,摸出两个球共有方法C=10种,其中,两球一白一黑有C·C=6种,则;(2)记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为事件B,按要求一共有种方法,事件B中包含:种方法,则.2.把张卡片分别写着2、4、6、7、8、11、12、13任取两张,求:这两张卡片上数字互质的概率.()解:记“所取两张卡片上数字互质”为事件A,8张卡片任取两张共有,2、4、6、7、8、11、12、13中质数:2、7、11、13,和数4、6、8、12事件A共有:,.课后练习:1.现有一批产品共有10件,其中8件为正品,2件为次品.如果从中取出一件,然后放回,再取一件,则连续3次取出的都是正品的概率为______________.2.盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取2张,则抽出的2张卡片上最大的数字是4的概率是______________.3.在某地的奥运火炬传递活动中,有编号为1,2,3,…,12的12名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为______________.练习答案:1.P(A)==0.5122.3.。
2023年高考数学真题实战复习(2022高考+模考题)专题22 概率问题(解析版)

专题22 概率问题【高考真题】1.(2022·全国乙理)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 ____________.1.答案 310解析 从5名同学中随机选3名的方法数为35C 10=,甲、乙都入选的方法数为13C 3=,所 以甲、乙都入选的概率310P =,答案为310. 2.(2022·全国甲理) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 2.答案 635解析 从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的 有6612m =+=个,故所求概率1267035m P n ===.故答案为635. 3.(2022·全国甲文) 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片 上的数字之积是4的倍数的概率为( )A .15 B .13 C .25D .23 3.答案 C 解析 从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选C . 4.(2022·新高考Ⅰ) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .234.答案 D 解析 从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不 互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选D . 5.(2022·全国乙理) 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为123, , p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的比赛次序无关 B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大5.答案 D 解析 该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为12,则此时连胜两盘的概率为p 甲,则21321331231211(1)(1)(1)(1)22p p p p p p p p p p p p p =-+-+-+-⎡⎤⎡⎤⎣⎦⎣⎦甲123123()2p p p p p p =+-;记该棋手在第二盘与乙比赛,且连胜两盘的概率为p 乙,则123123213123(1)(1)()2p p p p p p p p p p p p p =-+-=+-乙.记该棋手在第二盘与丙比赛,且连胜两盘的概率为p 丙.则132132312123(1)(1)()2p p p p p p p p p p p p p =-+-=+-丙则()123123213123123()2()20p p p p p p p p p p p p p p p p p -=+--+-=-<⎡⎤⎣⎦甲乙,()213123312123231()2()20p p p p p p p p p p p p p p p p p -=+--+-=-<⎡⎤⎣⎦乙丙,即p p <甲乙,p p <乙丙,则该棋手在第二盘与丙比赛,p 最大.选项D 判断正确;选项BC 判断错误;p 与该棋手与甲、乙、丙的比赛次序有关.选项A 判断错误.故选D .【知识总结】1.古典概型的概率公式P (A )=事件A 包含的样本点数试验的样本点总数. 2.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 3.相互独立事件同时发生的概率:若A ,B 相互独立,则P (AB )=P (A )·P (B ).4.互斥事件至少有一个发生的概率:若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).5.条件概率公式设A ,B 为随机事件,且P(A)>0,则P (B |A )=P (AB )P (A ). 6.全概率公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i =1nP (A i )P (B |A i ).【题型突破】题型一 古典概型1.(2021·全国甲)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .451.答案 C 解析 方法一 (将4个1和2个0视为完全不同的元素)4个1分别设为1A ,1B ,1C ,1D ,2个0分别设为0A ,0B ,将4个1和2个0随机排成一行有A 66种排法,将1A ,1B ,1C ,1D ,排成一行有A 44种排法,再将0A ,0B 插空有A 25种排法,所以2个0不相邻的概率P =A 44A 25A 66=23. 方法二 (含有相同元素的排列)将4个1和2个0安排在6个位置,则选择2个位置安排0,共有C 26种排法;将4个1排成一行,把2个0插空,即在5个位置中选2个位置安排0,共有C 25种排法.所以2个0不相邻的概率P =C 25C 26=23. 2.已知多项选择题的四个选项A ,B ,C ,D 中至少有两个选项正确,规定:如果选择了错误选项就不得 分.若某题的正确答案是ABC ,某考生随机选了两个选项,则其得分的概率为( )A .12B .310C .16D .3112.答案 A 解析 由题意得,从4个选项里选两个选项,共有C 24=6(种)方法,从3个正确选项里选择两个选项,共有C 23=3(种)方法.由古典概型的概率公式得所求的概率为P =36=12. 3.有4个大小、形状相同的小球,装在一个不透明的袋子中,小球上分别标有数字1,2,3,4.现每次有放 回地从中随机取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第4次停止摸球的概率,利用计算机软件产生随机数,每1组中有4个数字,分别表示每次摸球的结果,经随机模拟产生了以下21组随机数:1314 1234 2333 1224 3322 1413 31244321 2341 2413 1224 2143 4312 24121413 4331 2234 4422 3241 4331 4234由此可以估计恰好在第4次停止摸球的概率为( )A .23B .13C .27D .5213.答案 C 解析 由题意得,直到标有偶数的球都取到过就停止,且恰好在第4次停止摸球,表示所得 到的4个数中包含2和4,且前3次只能出现2或4中的一个(不限次数),第4次又摸到另外一个偶数,有1234,1224,3124,1224,4312,2234,共有6组,所以恰好在第4次停止摸球的概率P =621=27. 4.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( )A .114B .37C .47D .344.答案 C 解析 从4双不同尺码的鞋子中随机抽取3只的方法为C 38,这3只鞋子中任意两只都不成 双,选取的方法为C 34×23,所以所求概率为P =C 34×23C 38=47. 5.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .1205.答案 D 解析 由题意知,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有12 543,13542,14 532,23 541,24 531,34 521,共6个,所以恰好为“凸数”的概率为P =6120=120. 6.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的 上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为________.6.答案 16解析 设齐王的上、中、下三个等次的马分别记为a ,b ,c ,田忌的上、中、下三个等次的 马分别记为A ,B ,C ,双方各出上、中、下等马各1匹分组分别进行1场比赛,所有的可能为Aa ,Bb ,Cc ,田忌得0分;Aa ,Bc ,Cb ,田忌得1分;Ba ,Ab ,Cc ,田忌得1分;Ba ,Ac ,Cb ,田忌得1分;Ca ,Ab ,Bc ,田忌得2分;Ca ,Ac ,Bb ,田忌得1分,田忌得2分的概率为P =16. 7.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分 为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .11167.答案 A 解析 在所有重卦中随机取一重卦,其基本事件总数n =26=64,恰有3个阳爻的基本事件数为C 36=20.故在所有重卦中随机取一重卦,该重卦恰有3个阳爻的概率p =2064=516. 8.“六艺”出自《周礼·地官司徒·保氏》,是指礼、乐、射、御、书、数.已知某人觉得“君子不学礼无 以立”,而其两个孩童对“数”均有浓厚兴趣,该人依据自己能力,只能为每个孩童选择六艺中的四艺进行培养,若要令该人和两个孩童对所选的四艺都满意,那么两个孩童至少有一个选到“御”的概率为( )A .12B .34C .59D .458.答案 B 解析 依题意,所选四艺要令该人和两个孩童都满意,则四艺中必选“礼”,“数”,两个孩童再分别从剩余的四艺“乐”、“射”、“御”、“书”中选两艺,共有n =C 24·C 24=36(种)等可能选法,其中两孩童都不选“御”共有C 23·C 23=9(种)等可能选法,其概率为936=14,则两孩童至少有一个选到“御”的概率p =1-14=34. 9.甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗,每家医院恰有1人预约.已知A 医院接种的是只需要打一针的腺病毒载体新冠疫苗,B 医院接种的是需要打两针的灭活新冠疫苗,C 医院接种的是需要打三针的重组蛋白新冠疫苗,问:甲不接种只打一针的腺病毒载体新冠疫苗且丙不接种需要打三针的重组蛋白新冠疫苗的概率等于( )A .13B .23C .12D .199.答案 C 解析 甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗的情况有A 33=6种,符合题意的情况有3种,故所求概率为P =36=12.故选C . 10.北斗导航系统由55颗卫星组成,于2020年6月23日完成全球组网部署,全面投入使用.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗,一名天文爱好者从七颗星中随机选两颗进行观测,则玉衡和天权至少一颗被选中的概率为( )A .1021B .1121C .1142D .521 10.答案 B 解析 从七颗星中随机选两颗,共有C 72=21种可能的结果,玉衡和天权至少一颗被选中共有C 21C 51+C 22=11种可能的结果,所以所求概率P =1121.故选B . 题型二 相互独立事件与独立重复试验11.(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立11.答案 B 解析 事件甲发生的概率P (甲)=16,事件乙发生的概率P (乙)=16,事件丙发生的概率P (丙) =56×6=536,事件丁发生的概率P (丁)=66×6=16.事件甲与事件丙同时发生的概率为0,P (甲丙)≠P (甲)P (丙),故A 错误;事件甲与事件丁同时发生的概率为16×6=136,P (甲丁)=P (甲)P (丁),故B 正确;事件乙与事件丙同时发生的概率为16×6=136,P (乙丙)≠P (乙)P (丙),故C 错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D 错误.12.某国产杀毒软件的比赛规则为每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响,则( )A .该软件通过考核的概率为18B .该软件在第三轮考核被淘汰的概率为18C .该软件至少能够通过两轮考核的概率为23D .在此次比赛中该软件平均考核了6524轮 12.答案 ABD 解析 设事件A i (i =1,2,3,4)表示“该软件能通过第i 轮考核”,则P (A 1)=56,P (A 2)=35, P (A 3)=34,P (A 4)=13.该软件通过考核的概率为P (A 1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A 4)=56×35×34×13=18,选项A 正确;该软件在第三轮考核被淘汰的概率为P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=56×35×14=18,选项B 正确;该软件至少能够通过两轮考核的概率为1-P (A 1)-P (A 1A 2)=1-16-56×25=12,选项C 不正确;设在此次比赛中,该软件考核了Y 轮,∴Y 的可能取值为1,2,3,4,P (Y =1)=P (A 1)=16,P (Y =2)=P (A 1A 2)=56×25=13,P (Y =3)=P (A 1A 2A 3)=18,P (Y =4)=P (A 1A 2A 3)=56×35×34=38,∴E (Y )=1×16+2×13+3×18+4×38=6524,故选项D 正确. 13.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.13.答案 0.18 解析 由题意知,甲队以3∶2获胜,则甲队第五场必胜,前四场“主客主主”中胜两局,有两种情况:一种为三个主场胜两场,一种为客场胜一场主场胜一场,其概率为C 23×0.62×0.4×0.5×0.5+C 13×0.6×0.42×0.5×0.5=0.18.14.小明在做一个与扔质地均匀的正六面体骰子有关的游戏,规定:若骰子1点或2点向上,则小明前进1步,若骰子3点或4点向上,则小明前进2步,若骰子5点或6点向上,则小明前进3步.小明连续扔了三次骰子,则他一共前进了8步的概率是( )A .127B .227C .19D .2914.答案 C 解析 易知小明三次共前进了8步时,只能是2次前进3步,1次前进2步的情况.根据题意得,前进1步、前进2步、前进3步的概率相同,均为13.故所求概率P =C 32×(13)2×(13)1=19.故选C .15.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能15.答案 B 解析 方法一中每箱中的黑球被选中的概率为110,所以至少摸出一个黑球的概率p 1=1-⎝⎛⎭⎫91020.方法二中每箱中的黑球被选中的概率为15,所以至少摸出一个黑球的概率p 2=1-⎝⎛⎭⎫4510.p 1-p 2=⎝⎛⎭⎫4510-⎝⎛⎭⎫91020=⎝⎛⎭⎫4510-⎝⎛⎭⎫8110010<0,则p 1<p 2.16.(多选)甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的 是( )A .目标恰好被命中一次的概率为12+13B .目标恰好被命中两次的概率为12×13C .目标被命中的概率为12×23+12×13D .目标被命中的概率为1-12×2316.答案 B D 解析 甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,在A 中,目标恰好被命中一次的概率为12×13+12×23=12,故A 错误;在B 中,由相互独立事件概率乘法公式得目标恰好被命中两次的概率为12×13=16,故B 正确;在C 、D 中,目标被命中的概率为1-⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13=23,故C 错误,D 正确.故选B 、D . 17.甲、乙两人进行象棋比赛,采取五局三胜制(当一人先赢3局时获胜,比赛结束).棋局以红棋与黑棋对阵,两人执色轮流交换,执红棋者先走.假设甲执红棋时取胜的概率为23,执黑棋时取胜的概率为12,各局比赛结果相互独立,且没有和局.若比赛开始,甲执红棋开局,则甲以3∶2获胜的概率为________.17.答案 1354解析 甲以3∶2获胜,则第5局甲获胜,前四局甲两胜两负.根据规则,甲执红棋开局, 则前四局甲执棋顺序是“红黑红黑”,第5局甲执红棋.前四局甲取胜可能的情况是:①甲2次执红棋取胜;②甲2次执黑棋取胜;③甲1次执红棋和1次执黑棋取胜.故概率为⎝⎛⎭⎫233⎝⎛⎭⎫1-122+⎝⎛⎭⎫1-232×122×23+⎣⎡⎦⎤C 2123⎝⎛⎭⎫1-23·C 2112⎝⎛⎭⎫1-12×23=1354. 18.如图,已知电路中3个开关闭合的概率都是12,且是相互独立的,则灯 亮的概率为( )A .38B .12C .58D .7818.答案 C 解析 由题意,灯泡亮包括三个开关都闭合,只有下边的开关闭合,只有上边两个闭合,下边闭合上边闭合一个,这四种情况是互斥的,每一种情况中的事件都是相互独立的,所以灯泡亮的概率为12×12×12+12×12×12+12×12×12+2×12×12×12=58.故选C . 19.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以2∶0领先,则下列说法中正确的有________(填序号).①甲队获胜的概率为827;②乙队以3∶0获胜的概率为13; ③乙队以3∶1获胜的概率为29;④乙队以3∶2获胜的概率为49. 19.答案 ①②③ 解析 对于①,在乙队以2∶0领先的前提下,若甲队获胜,则第三、四、五局均为甲队取胜,所以甲队获胜的概率为P 1=⎝⎛⎭⎫233=827,故①正确;对于②,乙队以3∶0获胜,即第三局乙队获胜,概率为13,故②正确;对于③,乙队以3∶1获胜,即第三局甲队获胜,第四局乙队获胜,概率为23×13=29,故③正确;对于④,若乙队以3∶2获胜,则第五局为乙队取胜,第三、四局乙队输,所以乙队以3∶2获胜的概率为23×23×13=427,故④错误. 20.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为( )A .225B .310C .110D .32520.答案 C 解析 分两种情况:①后四球胜方依次为甲乙甲甲,概率为P 1=12×35×12×25=350;②后四 球胜方依次为乙甲甲甲,概率为P 2=12×25×12×25=125.所以所求事件概率为:P 1+P 2=110. 题型三 条件概率与全概率21.2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P (B |A )=( )A .13B .12C .23D .3421.答案 D 解析 ∵P (AB )=12,P (A )=23,∴P (B |A )=P (AB )P (A )=1223=34.故选D . 22.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出2个球,记事件A 为“取出的2个球颜色不同”,事件B 为“取出1个红球,1个白球”,则P (B |A )等于( )A .16B .313C .59D .2322.答案 B 解析 ∵篮子里装有2个红球,3个白球和4个黑球,∴依题意,得P (A )=C 12C 13+C 12C 14+C 13C 14C 29 =1318.又∵取出2个球的颜色不同,且1个球为红球,1个球为白球的概率为P (AB )=C 12C 13C 29=16,∴P (B |A )=P (AB )P (A )=161318=313. 23.某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P (A |B )等于( )A .16B .310C .12D .3523.答案 D 解析 根据条件概率的计算公式可得,P (A |B )=P (AB )P (B )=36×3536=35. 24.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .310B .13C .38D .2924.答案 B 解析 设A ={甲第一次拿到白球},B ={甲第二次拿到红球},则P (AB )=A 12A 13A 210=115,P (A ) =C 12C 110=15,所以P (B |A )=P AB P A =13. 25.某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A .0.155B .0.175C .0.016D .0.09625.答案 B 解析 设事件B 1表示“被保险人是‘谨慎的’”,事件B 2表示“被保险人是‘一般的’”,事件B 3表示“被保险人是‘冒失的’”,则P (B 1)=20%,P (B 2)=50%,P (B 3)=30%.设事件A 表示“被保险人在一年内发生事故”,则P (A |B 1)=0.05,P (A |B 2)=0.15,P (A |B 3)=0.30.由全概率公式,得P (A )= i =13P(B i )P (A |B i )=0.05×20%+0.15×50%+0.30×30%=0.175.26.已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )A .1100B .160C .150D .13026.答案 B 解析 设B 表示汽车中途停车修理,A 1表示公路上经过的汽车是货车,A 2表示公路上经过的汽车是客车,则P (A 1)=23,P (A 2)=13,P (B |A 1)=0.02,P (B |A 2)=0.01,则由全概率公式,可知一辆汽车中途停车修理的概率为P (B )=P (A 1)P (B |A 1)+P (A 2)·P (B |A 2)=23×0.02+13×0.01=160. 27.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是( )A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A )=1227.答案 ABC 解析 P (A )=C 13C 15=35,故A 正确;P (AB )=C 13C 12C 15C 14=310,故B 正确;P (B |A )=P AB P A =31035= 12,故C 正确;P (A )=1-P (A )=1-35=25,P (A B )=C 12C 13C 15C 14=310,P (B |A )=P A B P A =31025=34,故D 错误.28.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C ) B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=1228.答案 ABD 解析 由已知得P (A )=24×24+24×24=12,P (B )=P (C )=24=12,所以P (A )=P (B )=P (C ), 则A 中结论正确;P (AB )=24×24=14,P (AC )=14,P (BC )=14,所以P (BC )=P (AC )=P (AB ),则B 中结论正确;事件A ,B ,C 不相互独立,故P (ABC )=18错误,即C 中结论错误;P (B |A )=P AB P A =1412=12,则D 中结论正确.29.有三个箱子,分别编号为1,2,3.1号箱装有1个红球、4个白球,2号箱装有2个红球、3个白球,3号箱装有3个红球.某人从三个箱子中任取一箱,从中任意摸出一球,取得红球的概率为________.29.答案 815 解析 记事件A i 为“球取自于i (i =1,2,3)号箱”,记事件B 为“取得红球”,B 发生总是 伴随着A 1,A 2,A 3之一同时发生,即B =A 1B +A 2B +A 3B ,且A 1B ,A 2B ,A 3B 两两互斥,P (A 1)=P (A 2)=P (A 3)=13,P (B |A 1)=15,P (B |A 2)=25,P (B |A 3)=1,所以P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=13×15+13×25+13×1=815. 30.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.06B .任取一个零件是次品的概率为0.052 5C .如果取到的零件是次品,且是第2台车床加工的概率为27D .如果取到的零件是次品,且是第3台车床加工的概率为2730.答案 BC 解析 记A i 为事件“零件为第i (i =1,2,3)台车床加工”,记B 为事件“任取一个零件为次 品”,则P (A 1)=0.25,P (A 2)=0.3,P (A 3)=0.45.对于A ,即P (A 1B )=P (A 1)·P (B |A 1)=0.25×0.06=0.015,故A 错误;对于B ,P (B )=P (A 1)·P (B |A 1)+P (A 2)·P (B |A 2)+P (A 3)·P (B |A 3)=0.25×0.06+0.3×0.05+0.45×0.05=0.052 5,故B 正确;对于C ,P (A 2|B )=P (A 2)·P (B |A 2)P (B )=0.3×0.050.052 5=27,故C 正确;对于D ,P (A 3|B )=P (A 3)·P (B |A 3)P (B )=0.45×0.050.052 5=37,故D 错误.。
22 高中数学概率的问题

专题22高中数学概率的问题【知识总结】1.古典概型的概率公式P (A )=事件A 包含的样本点数试验的样本点总数. 2.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 3.相互独立事件同时发生的概率:若A ,B 相互独立,则P (AB )=P (A )·P (B ).4.互斥事件至少有一个发生的概率:若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).5.条件概率公式设A ,B 为随机事件,且P(A)>0,则P (B |A )=P (AB )P (A ). 【高考真题】1.(2022·全国乙理)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 ____________.2.(2022·全国甲理) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 3.(2022·全国甲文) 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15B .13C .25D .23 4.(2022·新高考Ⅰ) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16 B .13 C .12 D .235.(2022·全国乙理) 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为123, , p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的比赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大【题型分类】题型一 古典概型1.(2021·全国甲)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .452.已知多项选择题的四个选项A ,B ,C ,D 中至少有两个选项正确,规定:如果选择了错误选项就不得 分.若某题的正确答案是ABC ,某考生随机选了两个选项,则其得分的概率为( )A .12B .310C .16D .3113.有4个大小、形状相同的小球,装在一个不透明的袋子中,小球上分别标有数字1,2,3,4.现每次有放 回地从中随机取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第4次停止摸球的概率,利用计算机软件产生随机数,每1组中有4个数字,分别表示每次摸球的结果,经随机模拟产生了以下21组随机数:1314 1234 2333 1224 3322 1413 31244321 2341 2413 1224 2143 4312 24121413 4331 2234 4422 3241 4331 4234由此可以估计恰好在第4次停止摸球的概率为( )A .23B .13C .27D .5214.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( )A .114B .37C .47D .345.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个 五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .1206.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的 上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为________.7.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分 为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .11168.“六艺”出自《周礼·地官司徒·保氏》,是指礼、乐、射、御、书、数.已知某人觉得“君子不学礼无 以立”,而其两个孩童对“数”均有浓厚兴趣,该人依据自己能力,只能为每个孩童选择六艺中的四艺进行培养,若要令该人和两个孩童对所选的四艺都满意,那么两个孩童至少有一个选到“御”的概率为( )A .12B .34C .59D .459.甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗,每家医院恰有1人预约.已知 A 医院接种的是只需要打一针的腺病毒载体新冠疫苗,B 医院接种的是需要打两针的灭活新冠疫苗,C 医院接种的是需要打三针的重组蛋白新冠疫苗,问:甲不接种只打一针的腺病毒载体新冠疫苗且丙不接种需要打三针的重组蛋白新冠疫苗的概率等于( )A .13B .23C .12D .1910.北斗导航系统由55颗卫星组成,于2020年6月23日完成全球组网部署,全面投入使用.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗,一名天文爱好者从七颗星中随机选两颗进行观测,则玉衡和天权至少一颗被选中的概率为( )A .1021B .1121C .1142D .521题型二 相互独立事件与独立重复试验11.(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立12.某国产杀毒软件的比赛规则为每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响,则( )A .该软件通过考核的概率为18B .该软件在第三轮考核被淘汰的概率为18C .该软件至少能够通过两轮考核的概率为23D .在此次比赛中该软件平均考核了6524轮13.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.14.小明在做一个与扔质地均匀的正六面体骰子有关的游戏,规定:若骰子1点或2点向上,则小明前进1步,若骰子3点或4点向上,则小明前进2步,若骰子5点或6点向上,则小明前进3步.小明连续扔了三次骰子,则他一共前进了8步的概率是( )A .127B .227C .19D .2915.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能16.(多选)甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的 是( )A .目标恰好被命中一次的概率为12+13B .目标恰好被命中两次的概率为12×13C .目标被命中的概率为12×23+12×13D .目标被命中的概率为1-12×2317.甲、乙两人进行象棋比赛,采取五局三胜制(当一人先赢3局时获胜,比赛结束).棋局以红棋与黑棋对阵,两人执色轮流交换,执红棋者先走.假设甲执红棋时取胜的概率为23,执黑棋时取胜的概率为12,各局比赛结果相互独立,且没有和局.若比赛开始,甲执红棋开局,则甲以3∶2获胜的概率为________.18.如图,已知电路中3个开关闭合的概率都是12,且是相互独立的,则灯 亮的概率为( )A .38B .12C .58D .7819.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以2∶0领先,则下列说法中正确的有________(填序号).①甲队获胜的概率为827;②乙队以3∶0获胜的概率为13; ③乙队以3∶1获胜的概率为29;④乙队以3∶2获胜的概率为49. 20.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为( )A .225B .310C .110D .325题型三 条件概率与全概率21.2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P (B |A )=( )A .13B .12C .23D .3422.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出2个球,记事件A 为“取出的2个球颜色不同”,事件B 为“取出1个红球,1个白球”,则P (B |A )等于( )A .16B .313C .59D .2323.某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P (A |B )等于( )A .16B .310C .12D .3524.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .310B .13C .38D .2925.某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A .0.155B .0.175C .0.016D .0.09626.已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )A .1100B .160C .150D .13027.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是( )A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A )=1228.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C ) B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=1229.有三个箱子,分别编号为1,2,3.1号箱装有1个红球、4个白球,2号箱装有2个红球、3个白球,3号箱装有3个红球.某人从三个箱子中任取一箱,从中任意摸出一球,取得红球的概率为________.30.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.06B .任取一个零件是次品的概率为0.052 5C .如果取到的零件是次品,且是第2台车床加工的概率为27D .如果取到的零件是次品,且是第3台车床加工的概率为27。
高考数学 分类题库考点24 随机事件的概率、互斥事件有一个发生的概率、彼此独立事件同时发生的概率

考点24 随机事件的概率、互斥事件有一个发生的概率、彼此独立事件同时发生的概率1.(2020·江西高考文科·T9)有n 位同窗参加某项选拔测试,每位同窗能通过测试的概率都是p (01)p <<,假设每位同窗可否通过测试是彼此独立的,那么至少有一名同窗通过测试的概率 为( )(A )(1)n p - (B )1n p - (C )n p (D )1(1)np -- 【命题立意】此题要紧考查对立事件的概率、彼此独立事件同时发生的概率.【思路点拨】直接解决问题较困难时,可考虑逆向思维,从对立面去着手.【标准解答】选D.所有同窗都不通过的概率为,)1(n p - 故至少有一名同窗通过的概率为.)1(1np -- 2.(2010·湖北高考理科·T4)抛掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,那么事件,A B 中至少有一件发生的概率是( )(A )512 (B )12 (C )712 (D )34【命题立意】此题要紧考查等可能事件、对立事件、彼此独立事件,和彼此独立事件有一个发生的概率的求法,考查公式应用能力和运算求解能力.【思路点拨】由()()()P A B P A P B P AB +=+-()和P AB P A P B =()()(),算出()P A ,()P B 代入即可.或由对立事件的概率公式用1减去,A B 都不发生的概率即可.【标准解答】选C.方式一:用间接法考虑.事件A ,B 一个都不发生的概率为451615()()()212C P AB P A P B C =⋅=⨯=1516C 5C 12=. 那么事件,A B 中至少有一件发生的概率71()12P AB =-=, 故C 正确. 方式二:11117()()()()()()()()262612P A B P A P B P AB P A P B P A P B +=+-=+-=+-⨯=., 或117()1()1(1)(1)2612P A B P A B +=-+=---=. 【方式技术】彼此独立事件至少有一个发生的概率有两种求解的方式:(1)()()()P A B P A P B P AB +=+-()()()P A P B =+-P A P B ()().(2) ()1()1()1()()P A B P A B P A B P A P B +=-+=-⋅=-.3.(2020·江西高考理科·T11)一名国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王疑心大臣作弊,他用两种方式来检测.方式一:在10箱中各任意抽查一枚;方式二:在5箱中各任意抽查两枚.国王用方式一、二能发觉至少一枚劣币的概率别离记为1p 和2p ,那么( )(A )12p p = (B )12p p < (C )12p p > (D )以上三种情形都有可能【命题立意】此题要紧考查互斥事件有一个发生的概率、对立事件的概率、彼此独立事件同时发生的概率.【思路点拨】先求1p 和2p ,然后再比较大小.【标准解答】选B.101)10099(1-=p ,10522)10098(1])991009899[(1-=⨯⨯-=p ,可见12p p <. 4.(2020·湖北高考理科·T6)将参加夏令营的600名学生编号为:001,002,… ,600.采纳系统抽样方式抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001 到300在第1营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )(A )26,16,8 (B )25,17,8 (C )25,16,9 (D )24,17, 9【命题立意】此题要紧考查考生对系统抽样的明白得,考查等差数列的概念和考生的运算求解能力.【思路点拨】由系统抽样的特点先算出被抽掏出来的相邻两个号码的距离,然后将被抽掏出来的号码按从小到大的顺序排成一列组成一个等差数列,最后借用等差数列的通项公式计算出各个营区被抽掏出来的人数。
高三一轮复习《互斥事件、独立事件与条件概率》

高三一轮复习《互斥事件、独立事件与条件概率》考纲考点:1、互斥事件的意义,会用互斥事件的概率加法公式计算事件的概率2、独立事件的意义,会用独立事件的概率乘法公式计算事件的概率3、条件概率的概念,会用条件概率公式计算条件概率考情分析:互斥事件、独立事件(相互独立事件同时发生、独立重复)与条件概率是高考考查的中点内容,主要以应用题形式考查,以现实生活为背景,但实质仍是对互斥事件、独立事件与条件概率的考查。
考查中选、填、解答题中都可出现。
理科试题中往往与分布列、期望结合起来考查。
试题总体难度不大。
知识点:1、互斥事件: 叫做互斥事件互斥事件A 、B 有一个发生的概率计算公式:,则)(B A P = 。
2、对立事件: 叫做对立事件;A 的对立事件通常用 表示,且)(A p = 。
对立事件与互斥事件的关系: 。
3、独立事件:(1)若A 、B 为两个事件,如果 ,则称事件A 与B 相互独立,即相互独立事件同时发生的概率满足乘法公式。
(2)独立重复试验:在相同条件下重复做n 次试验,各次试验结果相互不影响,那么就称为n 次独立重复试验。
若每次试验事件A 发生的概率都为p ,则n 次独立重复试验中事件A 恰好发生k 次的概率)(k P n = 。
4、条件概率:对于两个事件A 和B ,在已知事件A 发生的条件下事件B 发生的概率,称为事件A 发生的条件下事件B 的 。
记为 ,且)|(A B P = 。
题型一、事件的判断1、下列说法正确的是( )A 、事件A 、B 中至少有一个发生的概率一定比A 、B 恰有一个发生的概率大B 、只有当事件A 、B 为对立事件时,A 、B 中至少有一个发生的概率才等于事件A 发生的概率加上B 事件发生的概率C 、互斥事件一定是对立事件,对立事件不一定是互斥事件D 、互斥事件不一定是对立事件,对立事件一定是互斥事件2、从装有3个红球和2个白球的口袋内任取2个球,那么互斥而不对立的是( )A 、至少有一个白球;都是白球B 、至少有一个白球;至少有一个红球C 、至少有一个白球;都是红球D 、恰有一个白球;恰有2个红球3、掷一颗质地均匀的骰子,观察所得的点数a ,设事件A=“a 为3”,B=“a 为4”,C=“a 为奇数”,则下列结论正确的是( )A 、A 与B 为互斥事件 B 、A 与B 为对立事件C 、A 与C 为对立事件D 、A 与C 为互斥事件题型二、互斥事件与对立事件的概率及应用1、中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是73,乙夺得冠军的概率是41,那么中国队夺得女子乒乓球单打冠军的概率 。
高中数学11.1概率
第十一章概率与统计一概率【考点阐述】随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.【考试要求】(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.【考题分类】(一)选择题(共8题)1.(福建卷理5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是()A.16625B.96625C.192625D.256625【标准答案】B【试题解析】由222444196 (2)55625 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算【易错提醒】容易记成二项展开式的通项,当然这题因为数字的原因不涉及.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.2.(福建卷文5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是()A.12125B.16125C.48125D.96125【标准答案】C【标准答案】由212334148 (2)55125 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算【易错提醒】容易记成二项展开式的通项.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.3.(江西卷理11文11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.1180B.1288C.1360D.1480【标准答案】C.【标准答案】一天显示的时间总共有24601440⨯=种,和为23总共有4种,故所求概率为1360. 4. (辽宁卷理7文7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .34【答案】:C 【解析】:本小题主要考查等可能事件概率求解问题。
事件的相互独立性
所以,合三个臭皮匠之力把握就大过诸葛亮.
练习:甲, 乙两人同时向敌人炮击,已知甲击中敌机的概 率为0.6, 乙击中敌机的概率为0.5, 求敌机被击中的概 率.
解设 A={ 甲击中敌机 }, B={ 乙击中敌机 }, C={敌机被击中 }
则 C A B. 依题设, P ( A) 0.6, P ( B) 0.5 由于 甲,乙同时射击,甲击中敌机并不影响乙击中 敌机的可能性,所以 A与B独立,进而 A 与 B 独立.
事件的互独立性
复习回顾
①什么叫做互斥事件?什么叫做对立事件? 不可能同时发生的两个事件叫做互斥事件;如 果两个互斥事件有一个发生时另一个必不发生,这 样的两个互斥事件叫对立事件. ②两个互斥事件A、B有一个发生的概率公式是什 么? P(A+B)=P(A)+(B) ③若A与A为对立事件,则P(A)与P(A)关系 如何?
答:在这段时间内线路正常工作的概率是0.973
练习: 已知诸葛亮解出问题的概率为0.8,臭皮匠 老大解出问题的概率为0.5,老二为0.45,老三为 0.4,且每个人必须独立解题,问三个臭皮匠中 至少有一人解出的概率与诸葛亮解出的概率比 较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为
1 P( A B C ) 1 0.5 0.55 0.6 0.835
1 概率为 ,乙机床加工的零件是一等品而丙机床加工的零件 4 1 9
不是一等品的概率为 12,甲丙两台机床加工的零件都是一等 2 品的概率为 。
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的 概率;
6(06,四川)某课程考核分理论与实验两部分进行, 每部分考核成绩只记“合格”与“不合格”,两部分 都合格则该课程考核合格。甲、乙、丙三人在理论考 核中合格的概率分别为0.9、0.8、0.7;在实验考核中 合格的概率分别为0.8、0.7、0.9。所有考核是否合格 相互之间没有影响。 (1)求甲、乙、丙三人在理论考核中至少有两人合 格的概率;
高中数学第十一章知识点复习总结(精华版)——概率
高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验. 考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.§11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.互斥对立iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξnNkn MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k k n b a C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nk n k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.n n 2211期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。
北京四中---高中数学高考综合复习 专题三十三 概率
高中数学高考综合复习专题三十三概率一、知识网络二、高考考点1、等可能性事件的概率问题;2、互斥事件有一个发生的概率问题;3、相互独立事件同时发生的概率问题;4、上述概率公式的综合运用问题。
三、知识要点(一)随机事件的概率1.随机事件在一定的条件下必然发生的事件,叫做必然事件;在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
2.随机事件的概率在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,并在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
必然事件的概率为1;不可能事件的概率为0;随机事件的概率P(A)∈[0,1]。
提醒:注意频率与概率的区别和联系。
设随机事件A在n次试验中发生了m次,则比值叫做随机事件A的频率(或相对频率),在大量重复试验中,随着试验次数的增加,事件A发生的频率有稳定性——总在某个常数附近摆动,并且随着试验次数的不断增多,这种摆动的幅度越来越小,此时,这个常数即为随机事件A的概率,概率可以看作频率在理论上的期望值。
3.等可能性事件的概率(古典概型)(1)等可能性事件如果在随机试验中可能出现有限个不同的试验结果,并且这些试验结果出现的可能性都相等,那么这一试验中的某一事件A称为等可能性事件。
(2)古典概型公式(Ⅰ)基本事件一次试验连同可能出现的每一个结果称为一个基本事件。
认知:基本事件是不可能再分的事件,一次试验中只能出现一个基本事件。
通常一次试验中的某一事件A由几个基本事件组成。
(Ⅱ)概率公式如果一次试验中可能出现的结果有n个(即此试验由n个基本事件组成),而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率(Ⅲ)集合解释在一次试验中,等可能出现的n个结果组成一个集合Ⅰ(这n个结果就是集合Ⅰ的n个元素),各基本事件均对应于集合Ⅰ的含有1个元素的子集,包含m个结果的事件A对应于含有m个元素的子集A,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互斥事件有一个发生的概率的习题课
-1-
互斥事件有一个发生的概率
1.若A表示四件产品中至少有一件是废品的事件,B表示废品不少于两件的事件,试问
对立事件A、B各表示什么?
(A表示四件产品中没有废品的事件;B表示四件产品中没有废品或只有一件废品的事
件.)
2.一个射手进行一次射击,试判断下面四个事件A、B、C、D中有哪些是互斥事件?
事件A:命中的环数大于8;
事件B:命中的环数大于5;
事件C:命中的环数小于4;
事件D:命中的环数小于6.
(事件A与C、事件A与D、事件B与C分别为互斥事件)
3.某市派出甲、乙两支球队参加全省足球冠军赛.甲乙两队夺取冠军的概率分别是73和
41.试求该市足球队夺得全省足球冠军的概率.( 28
19
)
4.如果事件A、B互斥,那么( B )
A.A+B是必然事件
B. A+B是必然事件
C. A与B一定互斥
D. A与B一定不互斥
5.下列说法中正确的是( D )
A.事件A、B中至少有一个发生的概率一定比A、B中恰有一个发生的概率大
B.事件A、B同时发生的概率一定比事件A、B恰有一个发生的概率小
C.互斥事件一定是对立事件,对立事件不一定是互斥事件
D.互斥事件不一定是对立事件,对立事件一定是互斥事件
6.回答下列问题:
(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否
得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?
(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50.那么能否得
出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?
(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为221.由于“不出现正面”
是上述事件的对立事件,所以它的概率等于1-221=43.这样做对吗?说明道理.
解: (1)不能.因为甲命中目标与乙命中目标两事件不互斥.
(2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件.
(3)不对.因为“不出现正面”与“同时出现正面”不是对立事件,故其概率和不为1.
7.战士甲射击一次,问:
互斥事件有一个发生的概率的习题课
-2-
(1)若事件A(中靶)的概率为0.95,A的概率为多少?
(2)若事件B(中靶环数大于5)的概率为0.7,那么事件C(中靶环数小于6)的概率为多
少?事件D(中靶环数大于0且小于6)的概率是多少?
(答案:(1)0.05 (2)P(C)=0.3 P(D)=0.25)
8.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.在正常生产情况下出现乙级品
和丙级品的概率分别为3%和1%.求抽验一只是正品(甲级)的概率.( 0.96)
9.在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是
同色球的概率及全是异色球的概率.
(全是同色球的概率为443,全是异色球的概率为113)
10.某单位36人的血型类别是:A型12人,B型10人,AB型8人,O型6人.现从这
36人中任选2人,求此2人血型不同的概率.( 4534)
11.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次
只取一个.试求:
(1)取得两个红球的概率;
(2)取得两个绿球的概率;
(3)取得两个同颜色的球的概率;
(4)至少取得一个红球的概率.
(答案: .(1) 157 (2)151 (3) 158 (4) 1514)
12.在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?
(答案:9641)
例题:
[例1]袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:
(1)摸出2个或3个白球;
(2)至少摸出1个白球;
(3)至少摸出1个黑球.
解:从8个球中任意摸出4个共有48C种不同的结果.记从8个球中任取4个,其中恰有
1个白球为事件A1,恰有2个白球为事件A2,3个白球为事件A3,4个白球为事件A4,恰有
i
个黑球为事件Bi,则
(1)摸出2个或3个白球的概率
P1=P(A2+A3)=P(A2)+P(A
3
)
76737
3
CCCC
CC
4813354
8
232
5
(2)至少摸出1个白球的概率
P2=1-P(B
4
)=1-0=1
(3)至少摸出1个黑球的概率
互斥事件有一个发生的概率的习题课
-3-
P3=1-P(A
4
)=1-1413CC4845
[例2]盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取
一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.
解:从6只灯泡中有放回地任取两只,共有62=36种不同取法.
(1)取到的2只都是次品情况为22=4种.因而所求概率为91364.
(2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次
品;及第一次取到次品,第二次取到正品.因而所求概率为
P
=9436423624
(3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.
因而所求概率为
P
=1-9891
[例3]从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选
机会.如果选得同性委员的概率等于21,求男女生相差几名?
解:设男生有x名,则女生有36-x名.选得2名委员都是男性的概率为
3536)1(CC2362
xx
x
选得2名委员都是女性的概率为
3536)35)(36(CC236236
xx
x
以上两种选法是互斥的,又选得同性委员的概率等于21,得
213536)35)(36(3536)1(
xxxx
解得x=15或x=21
即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.
总之,男女生相差6名.