2016年新人教版八年级数学下册期中复习试题(四)
2016年八年级下册数学期中和期末考试试卷各两套及完整答案

2016年八年级下册数学期中和期末考试试卷各两套及完整答案北师大版八年级数学下册期中测试题(一)姓名班级考号得分:(考试时间:100分钟 满分:100分)1. 用科学记数法表示0.000043为。
2.计算:计算()=⎪⎭⎫ ⎝⎛+--1311 ; 232()3y x=__________; a b b b a a -+-= ;yx x x y xy x 22+⋅+=。
3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。
4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是;在每一象限内y 随x 的增大而。
5. 如果反比例函数x my =过A (2,-3),则m=。
6.设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是.7.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是m.8.三角形的两边长分别为3和5,要使这个三角形是直角三角 A D 形,则第三条边长是.9.如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点PE使PE+PB 的值最小,则最小值为10.如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响,则造成影响的时间为秒。
二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等 13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是()A . 1.5,2,3a b c ===B .7,24,25a b c ===C .6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)kyk x=≠的图像大致是()15.如图所示:数轴上点A 所表示的数为a ,则a 的值是(A.16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .6三、解答题:17.(8分)计算:(1)xy y x y x ---22 (2)22111a a aa a ++---18.(6分)先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(8分)解方程: (1)1233x x x=+-- (2)482222-=-+-+x x x x x20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。
最新人教版八年级(下)期中模拟数学试卷(含答案)

最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D. ,,4.点(3,-1)到原点的距离为 A.B .3C .1 D5.已知实数x 、y()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为A. 100B.150C.200D. 2507.()21计算的结果为A.28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为 A1) B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形EB .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD 的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分) 11= .12.在实数范围内分解因式:52x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分)ABCD第15题图17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1.ABODFCE(1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长; (2)求证:PC ⊥CF .23.(本题10分)已知在Rt △ABC 中,∠ACB=90°.(1)如图1,点O 是AB 的中点,OM ⊥AC 于M ,求证:AM=CM ;CBDA2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B 11.2 12.(x x 13. 14. 40︒ 15. 9416. 217.(1)解:原式=263⨯=. (4分) (2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分)114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°, ∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC = 185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒,AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴= 又∵AM AM '= MAF MAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =,在Rt MCN ∆中,222MN MC =,2222222M C M N M NBM D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN 周长的最小值为.(12分)最新八年级下册数学期中考试题及答案AD FB N 图3CM EM人教版八年级下学期期中数学试卷八年级数学一、选择题1、若二次根式5-x 有意义,则x 的取值范围是( a )A 、5≥xB 、5≤xC 、5 xD 、5 x 2、下面各式是最简二次根式的是( d )A 、8B 、21C 、9D 、2 3、下列各组数中不能作为直角三角形的三边长的是( c )A 、6,8,10B 、5,12,13C 、1.5,2,3D 、9,12,15 4、下列计算正确的是( c ) A 、532=+ B 、3223=- C 、632=⨯ D 、322324= 5、在平面直角坐标系中,点P (1,-3)到原点的距离是( b )A 、4B 、10C 、22D 、无法确定 6、如图所示,在平行四边形ABCD 中,已知AC=3cm ,若△ABC 的周长为9cm , 则平行四边形的周长为( b )A 、6cmB 、12cmC 、16cmD 、11cm 7、下列命题是真命题的是( c )A 、一组对边平行,另一组对边相等的四边形是平行四边形B 、对角线互相垂直的平行四边形是矩形C 、四条边相等的四边形是菱形D 、对角线相等的矩形是正方形8、甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发, 他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示, 根据图像信息,以上说法正确的是( d )A 、甲和乙两人同时到达目的地;B 、甲在途中停留了0.5h;C 、相遇后,甲的速度小于乙的速度;D 、他们都骑了20km9、已知菱形的面积为24cm ²,一条对角线长为6cm ,则这个菱形的边长是( b )cm A 、8 B 、5 C 、10 D 、410如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于E ,PF ⊥CD 于 F ,连接EF ,给出下列四个结论:①AP=EF,②△APD 一定是等腰三角形,G ,③∠PFE=∠BAP,④PD=2EC.其中正确结论的序号是( d ) A 、①②④ B 、②④ C 、①②③ D 、①③④ 二、填空题11、=÷218__3_____12、在实数范围内因式分解:32-x =__)3)(3(-+x x _13、如图,在直角三角形ABC 中,点D 为AC 的中点,BC=3,AB=4,则BD=____2.5______ 14、“全等三角形的对应角相等”的逆命题 对应角相等的三角形是全等三角形 ,这个命题是__假__命题。
最新人教版八年级下册数学《期中考试题》(附答案)

2021年人教版数学八年级下册期中测试学校________ 班级________ 姓名________ 成绩________一. 选择题中自变量x的取值范围为()1.函数y x-1A. x>1B. x≠1C. x≥1D. 任意实数2.下列图形中,是轴对称图形的是()A. B. B. C. D.3.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )A. 5cmB. 4cmC. 3cmD. 不能确定4.如图,在□ABCD中,BE平分∠ABC,若∠D=64°,则∠AEB等于()A. 64°B. 32°C. 116°D. 30°5.下列能够判定一个四边形是平行四边形的条件是()A. 一对邻角的和为180°B. 两条对角线互相垂直C. 一组对角相等D. 两条对角线互相平分6.正比例函数y=2x的图象向左平移1个单位后所得函数解析式为( )A. y=2x+1B. y=2x﹣1C. y=2x+2D. y=2x﹣27.某校要从四名学生中选拔一名参加市风华小主播大赛,在校的挑战赛中,四名学生的平均成绩x 和方差如表所示,如果要选一名成绩高且发挥稳定的学生参赛,那么应选的学生是( )A. 甲B. 乙C. 丙D. 丁 8.对一组数据:2,2,1,3,3 分析不正确的是( ) A. 中位数是1B. 众数是3和2C. 平均数是2.2D. 方差是0.56 9.检查一个门框是否为矩形,下列方法中正确的是( ) A. 测量两条对角线,是否相等 B. 测量两条对角线,是否互相平分 C. 测量门框的三个角,是否都是直角 D. 测量两条对角线,是否互相垂直10.根据如图所示的程序计算:若输入自变量x 的值为32,则输出的结果是( )A.72B.94C.12D.3211.下列关于一次函数 y =-x +2 的图象性质的说法中,不正确的是( ) A. 直线与 x 轴交点的坐标是(0,2) B. 直线经过第一、二、四象限 C. y 随 x 的增大而减小D. 与坐标轴围成的三角形面积为 212.如图,在一个内角为60°菱形 ABCD 中,AB =2,点P 以每秒1cm 的速度从点A 出发,沿AD→DC 的路径运动,到点C 停止,过点P 作PQ ⊥BD ,PQ 与边AD (或边CD )交于点Q ,△ABQ 的面积y (cm 2)与点P 的运动时间x (秒)的函数图象大致是( )A. B. C. D.二. 填空题13.已知y与x成正比例,且x=1时,y=-2,则当x=-1 时,y=___________.14.如图,在Rt△ABC中,∠ACB=90°,D 为AB 中点,CD=2,则AB=__________.15.如图,已知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是________.16.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.17.如图,菱形ABCD的对角线AC与BD相交于点O,若AC=8,AD=5,则菱形ABCD的面积为____________.18.如图,平面直角坐标系中,正方形OBAC的顶点A的坐标为(8,8),点D,E分别为边AB,AC上的动点,且不与端点重合,连接OD,OE,分别交对角线BC于点M,N,连接DE,若∠DOE=45°,以下说法正确的是________(填序号).①点O到线段DE的距离为8;②△ADE的周长为16;③当DE∥BC时,直线OE的解析式为y=22x;④以三条线段BM,MN,NC为边组成的三角形是直角三角形.三. 解答题19.已知函数y=(2-m)x+m-1,若函数图象过原点,求出此函数的解析式.20.如图,直线l1:y=kx+b(k≠0)与x轴交于点A(3,O),与y轴交于点B(0,3),直线l 2:y=2x与直线l1相交于点C.(1)求直线l1的解析式;(2)求点C的坐标和△AOC的面积.21.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.已知一次函数y=kx+b图象平行于y=-2x+1,且过点(2,-1),求:(1)这个一次函数的解析式;(2)画出该一次函数图象:根据图象回答:当x取何值时不等式kx+b>3.23.如图1,□ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD 是菱形;(2)若∠ADC=60°,BE=2,求BD的长.24.4月23日是世界读书日,某校为了营造读书好、好读书、读好书的书香校园,决定采购《简·爱》、《小词大雅》两种图书供学生阅读,通过了解,购买2本《简·爱》和3本《小词大雅》共需168元,购买3本《简·爱》和2本《小词大雅》共需172元.(1)求一本《简·爱》和《小词大雅》的价格分别是多少元;(2)若该校计划购买两种图书共300本,其中《简·爱》的数量不多于《小词大雅》数量,且不少于100件.购买《简·爱》m本,求总费用W元与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,学校在团购书籍时,商家店铺中《简·爱》正进行书籍促销活动,每本书箱降价a元(0<a <8),求学校购书的的最低总费用W1的值.25.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx-4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.26.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在平行四边形,矩形,菱形、正方形中,一定是十字形的有 ; ②若凸四边形ABCD 是十字形,AC =a ,BD =b ,则该四边形的面积为 ;(2)如图1,以等腰Rt △ABC 的底边AC 为边作等边三角形△ACD ,连接BD ,交AC 于点O , 当 3-1≤S 四边形≤23-2 时,求BD 的取值范围;(3)如图2,以十字形ABCD 的对角线AC 与BD 为坐标轴,建立如图所示的平面直角坐标系xOy ,若计 十字形ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为:S 1,S 2,S 3,S 4,且同时满足列四个条件:12S S S =;② 4S S S =ABCD 的周长为32:④∠ABC =60°; 若E 为OA的中点,F 为线段BO 上一动点,连接EF ,动点P 从点E 出发,以1cm/s 的速度沿线段EF 匀速运动到点F ,再以2cms 的速度沿线段FB 匀速运动到点B ,到达点B 后停止运动,当点P 沿上述路线运动 到点B 所需要的时间最短时,求点P 走完全程所需的时间及直线EF 的解析式.答案与解析一. 选择题中自变量x的取值范围为()1.函数y x-1A. x>1B. x≠1C. x≥1D. 任意实数【答案】C【解析】【分析】由题意直接根据被开方数大于等于0列不等式进行计算求解即可.【详解】解:由题意得,x-1≥0,解得:x≥1.故选:C.【点睛】本题考查函数自变量的范围,注意掌握一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.下列图形中,是轴对称图形的是()A. B. B. C. D.【答案】A【解析】【分析】由题意直接根据轴对称图形的概念对各选项进行依次判断即可.【详解】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )A. 5cmB. 4cmC. 3cmD. 不能确定【答案】B【解析】【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC=22-=22AB BC-=4(cm),53∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.4.如图,在□ABCD中,BE平分∠ABC,若∠D=64°,则∠AEB等于()A. 64°B. 32°C. 116°D. 30°【答案】B【解析】【分析】∠,再运用平行线性质和角平分线性质进行分析即可求解.由题意根据对角相等得出ABC【详解】解:∵四边形ABCD 是平行四边形,∠D =64°, ∴64ABC D ∠=∠︒=, ∵BE 平分∠ABC ,//AD BC , ∴16432,,2ABE EBC AEB EBC ︒︒∠=∠=⨯=∠=∠ ∴32AEB ABE ︒∠=∠=. 故选:B.【点睛】本题考查平行四边形相关,熟练掌握平行四边形对角相等以及平行线性质和角平分线的性质是解题的关键.5.下列能够判定一个四边形是平行四边形的条件是( ) A. 一对邻角的和为180° B. 两条对角线互相垂直 C. 一组对角相等 D. 两条对角线互相平分【答案】D 【解析】 【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可. 【详解】解:根据平行四边形的判定可知D 正确. 故选:D .【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法. 6.正比例函数y =2x 的图象向左平移1个单位后所得函数解析式为( ) A. y =2x +1 B. y =2x ﹣1C. y =2x +2D. y =2x ﹣2【答案】C 【解析】 【分析】依据一次函数图象平移的规律(左加右减)即可得出平移后的函数解析式.【详解】正比例函数y =2x 的图象向左平移1个单位后所得函数解析式为y =2(x +1), 即y =2x +2.故选:C.【点睛】本题主要考查了一次函数图象的性质,熟练掌握相关概念是解题关键.7.某校要从四名学生中选拔一名参加市风华小主播大赛,在校的挑战赛中,四名学生的平均成绩x和方差如表所示,如果要选一名成绩高且发挥稳定的学生参赛,那么应选的学生是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】根据题意首先比较出四名学生的平均成绩的高低,判断出乙、丙两名学生的平均成绩高于甲、丁两名学生;然后比较出乙、丙的方差,判断出发挥稳定的是哪名学生,即可确定应选择哪名学生去参赛.【详解】解:∵9>8,∴乙、丙两名学生的平均成绩高于甲、丁两名学生,又∵1<1.2,∴丙的方差小于乙的方差,∴丙发挥稳定,∴要选一名成绩高且发挥稳定的学生参赛,则应选择的学生是丙.故选:C.【点睛】本题主要考查方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.对一组数据:2,2,1,3,3 分析不正确的是()A. 中位数是1B. 众数是3和2C. 平均数是2.2D. 方差是0.56【答案】A【解析】【分析】根据题意分别利用中位数的定义以及众数的定义和平均数的求法以及方差公式分别计算与判断即可得出答案.【详解】解:A. 2,2,1,3,3按从小到大排列为:1,2,2, 3,3,中位数是2 ,故此选项符合合题意;B. 2,2,1,3,3 中,3和2出现的次数最多,众数是3和2,故此选项不合题意;C. 平均数是(22133)5 2.2++++÷=,故此选项不合题意;D. 方差是22222(2 2.2)(2 2.2)(1 2.2)(3 2.2)(3 2.2)0.565-+-+-+-+-=,故此选项不合题意. 故选:A.【点睛】本题主要考查中位数的定义以及众数的定义和平均数的求法以及方差公式,熟练掌握相关计算方法是解题的关键.9.检查一个门框是否为矩形,下列方法中正确的是( )A. 测量两条对角线,是否相等B. 测量两条对角线,是否互相平分C. 测量门框的三个角,是否都是直角D. 测量两条对角线,是否互相垂直【答案】C【解析】【分析】对角线相等的平行四边形是矩形或有三个角是直角的四边形是矩形的原理即可突破此题.【详解】解:根据“三个角是直角的四边形是矩形”可以得到测量门框的三个角,是否都是直角即可检验该四边形是不是矩形,故选C .【点睛】本题考查矩形的判定.10.根据如图所示的程序计算:若输入自变量x 的值为32,则输出的结果是( )A. 72B. 94C. 12D. 32【答案】C【解析】【分析】根据x 的值得出应该输入的公式,计算即可.【详解】根据题意得y=-32+2= 12 即输入的结果为12 故答案选C.【点睛】本题考查的知识点是函数值,解题的关键是熟练的掌握函数值.11.下列关于一次函数 y =-x +2 的图象性质的说法中,不正确的是( )A. 直线与 x 轴交点的坐标是(0,2)B. 直线经过第一、二、四象限C. y 随 x 的增大而减小D. 与坐标轴围成的三角形面积为 2 【答案】A【解析】【分析】根据题意由题目中的函数解析式利用一次函数图象的性质可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:A. 直线与 x 轴交点的坐标是(2,0),直线与 y 轴交点的坐标是(0,2),故当选;B. y =-x +2的图象中10,20k b =-<=>,有直线经过第一、二、四象限,故排除;C. y =-x +2的图象中10k =-< ,有y 随 x 的增大而减小,故排除;D. 由一次函数 y =-x +2可知与坐标轴的交点坐标分别为(0,2)和(2,0), 与坐标轴围成的三角形面积为12222⨯⨯=,故排除. 故选:A.【点睛】本题考查一次函数图象上点的坐标特征以及一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.12.如图,在一个内角为60°的菱形ABCD中,AB=2,点P以每秒1cm的速度从点A出发,沿AD→DC 的路径运动,到点C停止,过点P 作PQ⊥BD,PQ 与边AD(或边CD)交于点Q,△ABQ的面积y(cm2)与点P 的运动时间x(秒)的函数图象大致是()A. B. C. D.【答案】C【解析】【分析】由题意根据动点P的运动过程分两种情况说明:①PQ与边CD交于点Q时,过点D作DE⊥AB于点E,根据在边长为2一个内角为60°的菱形ABCD中,即可求当0≤x≤2时,y=3;②当PQ与边AD交于点Q 时,过点Q作QE⊥AB于点E,即可求当2<x≤4时,y=-3x+43,进而可判断,△ABQ的面积y(cm2)与点P的运动时间x(秒)的函数图象.【详解】解:①PQ与边CD交于点Q时,如图,过点D作DE⊥AB于点E,∴∠DEA=90°,在边长为2一个内角为60°的菱形ABCD中,AD=DC=2,∠DAB=60°,∴AE=1,22DE=-=213∴1123322ABQ S AB DE ==⨯⨯=, 即当0≤x ≤2时,3y =. 该函数图象是平行于x 轴的一段线段;②当PQ 与边AD 交于点Q 时,如图,过点Q 作QE ⊥AB 于点E ,∴∠QEA=90°,∵PQ ⊥BD ,∴∠DFP=∠DFQ=90°, ∵四边形ABCD 是菱形,∴BD 平分∠ADC ,∴∠CDB=∠ADB ,DF=DF , ∴△DFP ≌△DFQ (ASA ),∴DP=DQ ,∵AD=DC=2,∴AQ=PC=4-x ,∴在Rt △AQE 中,∠QAE=60°, ∴33(4)QE AQ x ==-, ∴1123(4)34322ABQ S AB QE x x ==⨯-=-+即当2<x ≤4时,343y x =-+,该函数图象是y 随x 的增大而减小的一段线段.所以△ABQ 的面积y (cm 2)与点P 的运动时间x (秒)的函数图象大致是选项C .故选:C .【点睛】本题考查动点问题的函数图象,解决本题的关键是根据动点的运动过程分两种情况画图说明. 二. 填空题13.已知y 与x 成正比例,且x =1时,y =-2,则当x=-1 时,y =___________.【答案】2【解析】【分析】根据题意设y=kx(k是常数,且k≠0),再把x=1,y=-2代入求出正比例函数的解析式,进而代入x=-1即可求得y值.【详解】解:已知y与x成正比例,设y=kx(k是常数,且k≠0),k=-,即该正比例函数的解析式为:y=-2x,把x=1时,y=-2代入,得2y=-⨯-=.又把x=-1代入y=-2x,得到(2)(1)2故答案为:2.【点睛】本题考查正比例函数相关,熟练运用待定系数法建立函数解析式以及熟练掌握待定系数法是解题的关键.14.如图,在Rt△ABC中,∠ACB=90°,D 为AB 中点,CD=2,则AB=__________.【答案】4【解析】【分析】由题意根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,以此进行分析计算即可.【详解】解:∵Rt△ABC中,∠ACB=90°,D 为AB 中点,CD=2,∴AB=2CD=2×2=4.故答案为:4.【点睛】本题考查直角三角形的性质,注意掌握直角三角形斜边上的中线等于斜边的一半的性质,熟记此性质是解题的关键.15.如图,已知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是________.【答案】x=2【解析】试题分析:∵已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),∴关于x的方程kx+3=﹣x+b的解是x=2,故答案为x=2.考点:一次函数与一元一次方程.16.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.【答案】2【解析】【分析】根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12DO=2.【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12 BD,∴OD=12BD=4,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.故答案为2.【点睛】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.17.如图,菱形ABCD的对角线AC与BD相交于点O,若AC=8,AD=5,则菱形ABCD的面积为____________.【答案】24【解析】【分析】由题意先根据勾股定理求得BD ,再根据菱形的面积等于对角线乘积的一半进行运算即可求出答案.【详解】解:∵菱形ABCD 的对角线AC 与BD 相交于点O ,AC =8,AD =5, ∴22824,543,26AO DO BD DO =÷==-===,∴菱形ABCD 的面积为11862422AC BD ⨯⨯=⨯⨯=. 故答案为:24.【点睛】本题主要考查菱形的性质,注意掌握利用对角线求菱形面积的方法以及勾股定理的应用. 18.如图,平面直角坐标系中,正方形OBAC 的顶点A 的坐标为(8,8),点D ,E 分别为边AB ,AC 上的动点,且不与端点重合,连接OD ,OE ,分别交对角线BC 于点M ,N ,连接DE ,若∠DOE =45°, 以下说法正确的是________(填序号).①点O 到线段DE 的距离为8;②△ADE 的周长为16;③当DE ∥BC 时,直线OE 的解析式为y =2x ; ④以三条线段BM ,MN ,NC 为边组成的三角形是直角三角形.【答案】①②④.【解析】【分析】如图(见解析),过点O 作OG DE ⊥于点G ,OF OD ⊥,交AC 延长线于点F ,①先根据正方形的性质可得,90OB OC BOC =∠=︒,从而可得45BOD COE ∠+∠=︒,再根据角的和差可得45COF COE ∠+∠=︒,从而可得BOD COF ∠=∠,然后根据三角形全等的判定定理与性质可得OD OF =,ODB F ∠=∠,最后根据三角形全等的判定定理与性质即可得;②在①的基础上可证BOD GOD ≅,COE GOE ≅,再根据三角形全等性质可得,BD GD CE GE ==,然后根据三角形的周长公式、等量代换即可得;③先根据平行线的性质可得45ADE ABC ∠=∠=︒,从而可得Rt ADE 是等腰直角三角形,设CE x =,则BD x =,从而可得2DE x =,然后在Rt ADE 中利用勾股定理可求出x 的值,从而可得点E 的坐标,最后利用待定系数法求出直线OE 的解析式即可;④设,,BM a MN b NC c ===,先根据正方形的性质可得BC =,从而可得a b c ++=OB BN CM OC=,然后代入化简,利用勾股定理逆定理即可得. 【详解】如图,过点O 作OG DE ⊥于点G ,OF OD ⊥,交AC 延长线于点 F四边形OBAC 是正方形,点A 的坐标为(8,8)8,90OB OC AB AC BOC OBA A OCA ∴====∠=∠=∠=∠=︒45DOE ∠=︒45BOD COE ∴∠+∠=︒OF OD ⊥,即90DOF ∠=︒9045EOF DOE ∴∠=︒-∠=︒,即45COF CO F E EO ∠+∠==∠︒BOD COF ∴∠=∠在BOD 和COF 中,90BOD COF OB OC OBD OCF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BOD COF ASA ∴≅OD OF ∴=,ODB F ∠=∠在ODE 和OFE △中,45OD OF DOE FOE OE OE =⎧⎪∠=∠=︒⎨⎪=⎩()ODE OFE SAS ∴≅,ODE F OED OEF ∴∠=∠∠=∠ODB ODE ∴∠=∠,即ODB ODG ∠=∠在BOD 和GOD △中,90ODB ODG OBD OGD OD OD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()BOD GOD AAS ∴≅8OB OG ∴==即点O 到线段DE 的距离为8,说法①正确由①已证:BOD GOD ≅BD GD ∴=同理可证:COE GOE ≅CE GE ∴=则ADE 的周长为AD DE AE AD GD GE AE ++=+++ AD BD CE AE =+++()()AD BD CE AE =+++AB AC =+88=+16=即说法②正确四边形OBAC 是正方形90,45A ABC ∴∠=︒∠=︒//DE BC45ADE ABC ∴∠=∠=︒Rt ADE ∴是等腰直角三角形AD AE ∴=AB AD AC AE ∴-=-,即BD CE = 设CE x =,则BD x =,且08x <<8,2AD AE AC CE x DE GD GE BD CE x ∴==-=-=+=+=在Rt ADE 中,由勾股定理得:222AD AE DE +=,即222(8)(8)(2)x x x -+-=解得8x =或8x =-(不符题设,舍去) ∴点E的坐标为8)设直线OE 的解析式为y kx =将点8)代入得:88k =,解得1k =则直线OE 的解析式为1)y x =,说法③错误设,,BM a MN b NC c ===,则,CM MN NC b c BN BM MN a b =+=+=+=+由正方形的性质得BC =BM MN NC BC ∴++==a b c ++=整理得2()642a b c ++= 四边形OBAC 是正方形45OBN MCO DBM ∴∠=∠=∠=︒,//AB OC45,DOE DBM BMD OMN ∠=∠=︒∠=∠180180DOE OMN DBM BMD ∴︒-∠-∠=︒-∠-∠,即ONM BDM ∠=∠//AB OCBDM MOC ∴∠=∠ONM MOC ∴∠=∠,即ONB MOC ∠=∠在BON △和CMO △中,45OBN MCO ONB MOC ∠=∠=︒⎧⎨∠=∠⎩BON CMO ∴~OB BN CM OC ∴=,即88a b b c +=+ 2()()()642a b c a b b c ++∴++== 整理得222b a c =+,即222MN BM NC =+由勾股定理逆定理可知,以三条线段,,BM MN NC 为边组成的三角形是直角三角形则说法④正确综上,说法正确的是①②④故答案为:①②④.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质、利用待定系数法求正比例函数的解析式、相似三角形的判定与性质等知识点,这是一道较难的综合题,通过作辅助线,构造全等三角形是解题关键.三. 解答题19.已知函数y =(2-m)x +m -1,若函数图象过原点,求出此函数的解析式.【答案】y x =【解析】【分析】根据题意将点(0,0)代入函数y =(2-m)x +m -1,即可求出m 的值进而得出函数的解析式.【详解】解:∵函数y =(2-m)x +m -1过原点,∴将点(0,0)代入函数y =(2-m)x +m -1,有10m -=,解得1m =,∴此函数的解析式为:y =(2-1)x +1-1=x ,即y x =.【点睛】本题考查求函数解析式,熟练掌握用待定系数法求函数解析式是解题的关键.20.如图,直线l 1:y =kx +b (k≠0)与x 轴交于点A (3,O ),与y 轴交于点B (0,3), 直线l 2:y =2x 与直线l 1相交于点C .(1)求直线 l 1 的解析式;(2)求点C 的坐标和△AOC 的面积.【答案】(1)3y x =-+;(2)点C 的坐标为(1,2), △AOC 的面积为3.【解析】【分析】(1)根据题意直接利用待定系数法代入A (3,0),B (0,3)进行计算求解即可得出直线 l 1 的解析式;(2)根据题意联立直线l 1和直线l 2,求出点C 的坐标,再以OA 为底利用三角形面积计算公式求出△AOC 的面积.【详解】解:(1)∵直线l 1:y =kx +b (k≠0)与x 轴交于点A (3,0),与y 轴交于点B (0,3),∴将A (3,0),B (0,3)代入y =kx +b (k≠0)有:033k b b =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩, ∴直线 l 1 的解析式为:3y x =-+.(2)根据题意联立直线l 1和直线l 2,有32y x y x =-+⎧⎨⎩=,解得21y x =⎧⎨=⎩, 即点C 的坐标为(1,2);∵A (3,0),点C 的坐标为(1,2)∴OA=3,以OA 为底的高2h =,∴△AOC 的面积为:1123322h OA =⨯⨯=. 【点睛】本题考查一次函数图象和几何图形,熟练掌握利用待定系数法求解析式和三角形面积计算公式运用数形结合思维分析是解题的关键.21.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50,32;(2)16,15;(3)768.【解析】【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数;(3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人,∵16100%32% 50⨯=,32m∴=.故答案为:50;32. (2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元);本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.已知一次函数y=kx+b的图象平行于y=-2x+1,且过点(2,-1),求:(1)这个一次函数的解析式;(2)画出该一次函数的图象:根据图象回答:当x 取何值时不等式 kx +b >3.【答案】(1)y=-2x+3;(2)图像见解析,当x <0时, kx +b >3.【解析】【分析】(1)由一次函数的性质知k=-2,,又由图像过点(2,-1),代入y=-2x+b 可得b 的值,即可得到答案;(2)由(1)求得的解析式中,利用两点法作出图象即可,观察图象,可得答案.【详解】解:(1)根据题意,设这个一次函数的解析式为y=-2x+b ,又由过点(2,-1),代入y=-2x+b ,可得-4+b=-1,∴b=3,∴一次函数的解析式为y=-2x+3;(2)当x=0时,y=3.如图,由图像可知,当x <0时, kx +b >3.【点睛】本题考查了一次函数的性质,函数解析式的求法,以及利用函数图像解不等式,解题时注意数形结合思想的运用.23.如图1,□ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD 是菱形;(2)若∠ADC=60°,BE=2,求BD的长.【答案】(1)见详解;(2)43【解析】【分析】(1)首先根据平行四边形的性质和已知条件推出四边形OAEB是矩形,从而得出OA⊥OB,即可得证;(2)由(1)得四边形OAEB是矩形,四边形ABCD是菱形,从而推出OA=BE=2,∠ODA=∠ODC=30°,由此可得在Rt△OAD中,OD=tan OA ODA,即可得出BD.【详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,∵OE=CD,∴AB=OE,∵AE∥BD,BE∥AC,∴四边形OAEB是平行四边形,∴四边形OAEB是矩形,∴OA⊥OB,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)由(1)可知四边形OAEB是矩形,∴OA=BE=2,由(1)得四边形ABCD是菱形,∴∠ODA=∠ODC ,AC ⊥BD ,又∵∠ADC =60°,∴∠ODA=∠ODC=30°,∴在Rt △OAD 中,OD=tan OA ODA ∠3=∴BD=2OD=【点睛】本题考查了菱形的性质和判定,平行四边形的性质,特殊三角函数值,掌握知识点是解题关键.24.4月23日是世界读书日,某校为了营造读书好、好读书、读好书的书香校园,决定采购《简·爱》、《小词大雅》两种图书供学生阅读,通过了解,购买2本《简·爱》和3本《小词大雅》共需168元,购买3本《简·爱》和2本《小词大雅》共需172元.(1)求一本《简·爱》和《小词大雅》的价格分别是多少元;(2)若该校计划购买两种图书共300本,其中《简·爱》的数量不多于《小词大雅》数量,且不少于100件.购买《简·爱》m 本,求总费用W 元与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,学校在团购书籍时,商家店铺中《简·爱》正进行书籍促销活动,每本书箱降价a 元(0< a <8),求学校购书的的最低总费用W 1的值.【答案】(1)一本《简·爱》的价格是36元,一本《小词大雅》的价格是32元;(2)总费用W 元与m 之间的函数关系式为:W=4m+9600(100≤m ≤150);(3)当4<a <8时,W 1=-150a+10200;当a=4时,W 1=9600;当0<a <4时,W 1=-100a+10000.【解析】【分析】(1)根据题目中的等量关系列方程组求解即可;(2)根据总费用=数量×单价即可得出解析式,根据《简·爱》的数量不多于《小词大雅》数量,且不少于100件即可算出取值范围;(3)根据(2)中的解析式求出降价后的解析式W=(4-a )m+9600(100≤m ≤150),再分①当-4<4-a <0,即4<a <8时,②当4-a=0,即a=4时,③当0<4-a <4,即0<a <4时,三种情况讨论即可.【详解】解:(1)设一本《简·爱》的价格是x 元,一本《小词大雅》的价格是y 元,由题意得2316832172x y x y +=⎧⎨+=⎩,解得3632 xy=⎧⎨=⎩,答:一本《简·爱》的价格是36元,一本《小词大雅》的价格是32元;(2)学校购买《简·爱》m本,则购买《小词大雅》(300-m)本,∴W=36m+32(300-m)=4m+9600,故总费用W元与m之间的函数关系式为:W=4m+9600,∵《简·爱》的数量不多于《小词大雅》数量,且不少于100件,∴300100m m m⎩-⎧⎨≤≥解得150100 mm⎧⎨⎩≤≥,故m的取值范围是100≤m≤150,综上:总费用W元与m之间的函数关系式为:W=4m+9600(100≤m≤150);(3)W=(36-a)m+32(300-m)=(4-a)m+9600(100≤m≤150),∵0<a<8,∴-4<4-a<4,①当-4<4-a<0,即4<a<8时,W随m的增大而减小,当m=150时,W min=-150a+10200,②当4-a=0,即a=4时,W min=9600,③当0<4-a<4,即0<a<4时,W随m的增大而增大,当m=100时,W min=-100a+10000,综上:当4<a<8时,W1=-150a+10200,当a=4时,W1=9600,当0<a<4时,W1=-100a+10000.【点睛】本题考查了一元一次不等式的实际应用,一次函数的实际应用,一次函数与不等式的关系,根据题意找出等量关系是解题关键.25.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx-4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.。
2016年八年级数学下学期期中复习测试题二新人教版

一、选择题 ( 每题 3 分,共 12 题, 共计 36 分)1. 以下计算正确的选项是〔 〕A.(3)23B.( π 3.2) 2π 3.2 C.(2 6) 224D.( 3)232. 以下式子是最简二次根式的是〔〕A.1 B.2 C.2a 2D.8223.△ ABC 中,∠ A=∠B= 1∠ C ,那么它的三条边之比为〔〕4A.1 : 1:B.1:: 2C.1::D.1 :3 :14. 能够判定一个四边形是矩形的条件是( )A. 对角线互相平分且相等B. 对角线互相垂直平分C. 对角线相等且互相垂直D. 对角线互相垂直5. 假设等腰三角形的腰长为 10,底边长为 12,那么底边上的高为 ()A.6B.7C.8D.96. □ABCD 的对角线交于点 O ,且 AB=5,△ OCD 的周长为23,那么□ ABCD 的两条对角线的和是〔〕A.18B.28C.36D.467. 在矩形 ABCD 中 ,AB=3,BC=4,那么点 A 到对角线 BD 的距离为 ()A.B.2C.D.8. 如图 ,AB=BC=CD=DE=1,且 BC ⊥ AB,CD ⊥ AC,DE ⊥ AD,那么线段 AE 的长为 ( )A.1.5B.2C.2.5D.39. 如图 , 在△ ABC 中 ,D,E,F 分别为 BC,AC,AB 边的中点 ,AH ⊥ BC 于 H,FD=8, 那么 HE 等于( )A.20B.16C.12D.810. 如图 所示为一种“羊头〞形图案 , 其作法是 : 从正方形①开场 , 以它的一边为斜边 , 向外作等腰直角三角形 , 然后再以其直角边为边 , 分别向外作正方形②和② , ⋯,依此类推 , 假设正方形①的面积为 64, 那么正方形⑤ 的面积为〔〕A.2B.4C.8D.1611. 如图 , 矩形纸片 ABCD 中, 点 E 是 AD 的中点 , 且 AE=1,BE 的垂直平分线MN 恰好过点 C. 那么矩形的一边AB一、选择题 ( 每题 3 分,共 12 题, 共计 36 分)1. 以下计算正确的选项是〔 〕A.(3)23B.( π 3.2) 2π 3.2 C.(2 6) 224D.( 3)232. 以下式子是最简二次根式的是〔〕A.1 B.2 C.2a 2D.8223.△ ABC 中,∠ A=∠B= 1∠ C ,那么它的三条边之比为〔〕4A.1 : 1:B.1:: 2C.1::D.1 :3 :14. 能够判定一个四边形是矩形的条件是( )A. 对角线互相平分且相等B. 对角线互相垂直平分C. 对角线相等且互相垂直D. 对角线互相垂直5. 假设等腰三角形的腰长为 10,底边长为 12,那么底边上的高为 ()A.6B.7C.8D.96. □ABCD 的对角线交于点 O ,且 AB=5,△ OCD 的周长为23,那么□ ABCD 的两条对角线的和是〔〕A.18B.28C.36D.467. 在矩形 ABCD 中 ,AB=3,BC=4,那么点 A 到对角线 BD 的距离为 ()A.B.2C.D.8. 如图 ,AB=BC=CD=DE=1,且 BC ⊥ AB,CD ⊥ AC,DE ⊥ AD,那么线段 AE 的长为 ( )A.1.5B.2C.2.5D.39. 如图 , 在△ ABC 中 ,D,E,F 分别为 BC,AC,AB 边的中点 ,AH ⊥ BC 于 H,FD=8, 那么 HE 等于( )A.20B.16C.12D.810. 如图 所示为一种“羊头〞形图案 , 其作法是 : 从正方形①开场 , 以它的一边为斜边 , 向外作等腰直角三角形 , 然后再以其直角边为边 , 分别向外作正方形②和② , ⋯,依此类推 , 假设正方形①的面积为 64, 那么正方形⑤ 的面积为〔〕A.2B.4C.8D.1611. 如图 , 矩形纸片 ABCD 中, 点 E 是 AD 的中点 , 且 AE=1,BE 的垂直平分线MN 恰好过点 C. 那么矩形的一边AB一、选择题 ( 每题 3 分,共 12 题, 共计 36 分)1. 以下计算正确的选项是〔 〕A.(3)23B.( π 3.2) 2π 3.2 C.(2 6) 224D.( 3)232. 以下式子是最简二次根式的是〔〕A.1 B.2 C.2a 2D.8223.△ ABC 中,∠ A=∠B= 1∠ C ,那么它的三条边之比为〔〕4A.1 : 1:B.1:: 2C.1::D.1 :3 :14. 能够判定一个四边形是矩形的条件是( )A. 对角线互相平分且相等B. 对角线互相垂直平分C. 对角线相等且互相垂直D. 对角线互相垂直5. 假设等腰三角形的腰长为 10,底边长为 12,那么底边上的高为 ()A.6B.7C.8D.96. □ABCD 的对角线交于点 O ,且 AB=5,△ OCD 的周长为23,那么□ ABCD 的两条对角线的和是〔〕A.18B.28C.36D.467. 在矩形 ABCD 中 ,AB=3,BC=4,那么点 A 到对角线 BD 的距离为 ()A.B.2C.D.8. 如图 ,AB=BC=CD=DE=1,且 BC ⊥ AB,CD ⊥ AC,DE ⊥ AD,那么线段 AE 的长为 ( )A.1.5B.2C.2.5D.39. 如图 , 在△ ABC 中 ,D,E,F 分别为 BC,AC,AB 边的中点 ,AH ⊥ BC 于 H,FD=8, 那么 HE 等于( )A.20B.16C.12D.810. 如图 所示为一种“羊头〞形图案 , 其作法是 : 从正方形①开场 , 以它的一边为斜边 , 向外作等腰直角三角形 , 然后再以其直角边为边 , 分别向外作正方形②和② , ⋯,依此类推 , 假设正方形①的面积为 64, 那么正方形⑤ 的面积为〔〕A.2B.4C.8D.1611. 如图 , 矩形纸片 ABCD 中, 点 E 是 AD 的中点 , 且 AE=1,BE 的垂直平分线MN 恰好过点 C. 那么矩形的一边AB一、选择题 ( 每题 3 分,共 12 题, 共计 36 分)1. 以下计算正确的选项是〔 〕A.(3)23B.( π 3.2) 2π 3.2 C.(2 6) 224D.( 3)232. 以下式子是最简二次根式的是〔〕A.1 B.2 C.2a 2D.8223.△ ABC 中,∠ A=∠B= 1∠ C ,那么它的三条边之比为〔〕4A.1 : 1:B.1:: 2C.1::D.1 :3 :14. 能够判定一个四边形是矩形的条件是( )A. 对角线互相平分且相等B. 对角线互相垂直平分C. 对角线相等且互相垂直D. 对角线互相垂直5. 假设等腰三角形的腰长为 10,底边长为 12,那么底边上的高为 ()A.6B.7C.8D.96. □ABCD 的对角线交于点 O ,且 AB=5,△ OCD 的周长为23,那么□ ABCD 的两条对角线的和是〔〕A.18B.28C.36D.467. 在矩形 ABCD 中 ,AB=3,BC=4,那么点 A 到对角线 BD 的距离为 ()A.B.2C.D.8. 如图 ,AB=BC=CD=DE=1,且 BC ⊥ AB,CD ⊥ AC,DE ⊥ AD,那么线段 AE 的长为 ( )A.1.5B.2C.2.5D.39. 如图 , 在△ ABC 中 ,D,E,F 分别为 BC,AC,AB 边的中点 ,AH ⊥ BC 于 H,FD=8, 那么 HE 等于( )A.20B.16C.12D.810. 如图 所示为一种“羊头〞形图案 , 其作法是 : 从正方形①开场 , 以它的一边为斜边 , 向外作等腰直角三角形 , 然后再以其直角边为边 , 分别向外作正方形②和② , ⋯,依此类推 , 假设正方形①的面积为 64, 那么正方形⑤ 的面积为〔〕A.2B.4C.8D.1611. 如图 , 矩形纸片 ABCD 中, 点 E 是 AD 的中点 , 且 AE=1,BE 的垂直平分线MN 恰好过点 C. 那么矩形的一边AB一、选择题 ( 每题 3 分,共 12 题, 共计 36 分)1. 以下计算正确的选项是〔 〕A.(3)23B.( π 3.2) 2π 3.2 C.(2 6) 224D.( 3)232. 以下式子是最简二次根式的是〔〕A.1 B.2 C.2a 2D.8223.△ ABC 中,∠ A=∠B= 1∠ C ,那么它的三条边之比为〔〕4A.1 : 1:B.1:: 2C.1::D.1 :3 :14. 能够判定一个四边形是矩形的条件是( )A. 对角线互相平分且相等B. 对角线互相垂直平分C. 对角线相等且互相垂直D. 对角线互相垂直5. 假设等腰三角形的腰长为 10,底边长为 12,那么底边上的高为 ()A.6B.7C.8D.96. □ABCD 的对角线交于点 O ,且 AB=5,△ OCD 的周长为23,那么□ ABCD 的两条对角线的和是〔〕A.18B.28C.36D.467. 在矩形 ABCD 中 ,AB=3,BC=4,那么点 A 到对角线 BD 的距离为 ()A.B.2C.D.8. 如图 ,AB=BC=CD=DE=1,且 BC ⊥ AB,CD ⊥ AC,DE ⊥ AD,那么线段 AE 的长为 ( )A.1.5B.2C.2.5D.39. 如图 , 在△ ABC 中 ,D,E,F 分别为 BC,AC,AB 边的中点 ,AH ⊥ BC 于 H,FD=8, 那么 HE 等于( )A.20B.16C.12D.810. 如图 所示为一种“羊头〞形图案 , 其作法是 : 从正方形①开场 , 以它的一边为斜边 , 向外作等腰直角三角形 , 然后再以其直角边为边 , 分别向外作正方形②和② , ⋯,依此类推 , 假设正方形①的面积为 64, 那么正方形⑤ 的面积为〔〕A.2B.4C.8D.1611. 如图 , 矩形纸片 ABCD 中, 点 E 是 AD 的中点 , 且 AE=1,BE 的垂直平分线MN 恰好过点 C. 那么矩形的一边AB。
2016年新人教版八年级数学下册期中复习试题(五)

八年级数学下册期中复习题 五一、选择题:(每小题3分,共12题,共计36分)1.要使式子2131a a a -++有意义,则a 应满足( ) A.1a ≤且13a ≠- B.1a ≤ C.13a ≠- D.1a ≤且13a ≠ 2.若y <x <0,则222y xy x +-+222y xy x ++=( )A.2xB.2yC.-2xD.-2y3.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距( )A.50cmB.100cmC.140cmD.80cm4.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A.3.5B.4.2C.5.8D.7第4题图 第5题图 第6题图5.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD6.如图,在Rt △ABC 中,∠C=900,D 为AC 上一点,DA=DB=5,△DAB 面积为10,则DC 的长是( )A.4B.3C.5D.4.57.已知四边形ABCD,有以下四个条件:①AB ∥CD;②AB=CD;③BC//AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )A.6种B.5种C.4种D.3种8.若等腰三角形的两边长分别为4和6,则底边上的高为( ).A.7B.724或C.24D.417或9.如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD,AC 、BD 相交于点O,OE ⊥BD 交AD 于E,则△ABE 的周长为( )A. 4cmB.6cmC.8cmD.10cm第9题图 第10题图 第11题图10.如图,在□ABCD 中,已知∠ODA=900,AC=10cm,BD=6cm,则AD 的长为( )A.4cmB.5cmC.6cmD.8cm 11.如图,已知矩形纸片ABCD,点E 是AB 的中点,点G 是BC 上的一点,︒>∠60BEG ,现沿直线EG 将纸片折叠,使点B 落在约片上的点H 处,连接AH,则与BEG ∠相等的角的个数为 ( )A.4B. 3C.2D.112.如图,已知121=A A , 9021=∠A OA , 3021=∠OA A 以斜边2OA 为直角边作直角三角形,使得 3032=∠OA A ,依次以前一个直角三角形的斜边为直角边一直作含300角的直角三角形,则20152016Rt A OA ∆的最小边长为( )A.22015B.22016C.201423⎛⎫ ⎪⎝⎭D.201523⎛⎫ ⎪⎝⎭二、填空题:(每小题3分,共6题,共计18分)13.已知a =21+,b =21-,则分式)2(222a ab ab a b a --÷-= 14.若边长为6cm 的菱形的两邻角度数之比为1:2,则该菱形的面积为 cm 2。
2016年八年级数学下学期期中复习测试题二新人教版

2016 年八年级数学下学期期中复习测试题二一、选择题 ( 每小题 3 分,共 12 题, 共计 36 分) 1. 下列计算正确的是()A.(3)23 B.( π 3.2) 2π 3.2 C.(2 6) 224D.( 3)232. 下列式子是最简二次根式的是()A.1 B.2 C.2a 2D.8223. 已知△ ABC 中,∠ A=∠B= 1∠ C ,则它的三条边之比为()4A.1 : 1:B.1: : 2C.1 ::D.1 :3 : 14. 能够判定一个四边形是矩形的条件是( )A. 对角线互相平分且相等B. 对角线互相垂直平分C. 对角线相等且互相垂直D. 对角线互相垂直5. 若等腰三角形的腰长为 10,底边长为 12,则底边上的高为 ()A.6B.7C.8D.96. □ABCD 的对角线交于点 O ,且 AB=5,△ OCD 的周长为 23,则□ ABCD 的两条对角线的和是()A.18B.28C.36D.467. 在矩形 ABCD 中 ,AB=3,BC=4,则点 A 到对角线 BD 的距离为 ()A.B.2C.D.8. 如图 ,AB=BC=CD=DE=1,且 BC ⊥ AB,CD ⊥ AC,DE ⊥ AD,则线段 AE 的长为 ( )A.1.5B.2C.2.5D.39. 如图 , 在△ ABC 中 ,D,E,F 分别为 BC,AC,AB 边的中点 ,AH ⊥ BC 于 H,FD=8, 则 HE 等于 ( )A.20B.16C.12D.810. 如图 所示为一种“羊头”形图案 , 其作法是 : 从正方形①开始 , 以它的一边为斜边 , 向外作等腰直角三角形 , 然后再以其直角边为边 , 分别向外作正方形②和② , ⋯,依此类推 , 若正方形①的面积为 64, 则正方形⑤ 的面积为()A.2B.4C.8D.1611. 如图 , 矩形纸片 ABCD 中, 点 E 是 AD 的中点 , 且 AE=1,BE 的垂直平分线MN 恰好过点 C. 则矩形的一边 AB的长度为()1A.1B.C.D.2第11题图 第12题图12. 如图 , 在矩形 ABCD 中,AB = 4cm,AD = 12cm,P 点在 AD 边上以每秒 1 cm 的速度从 A 向 D 运动 , 点 Q 在 BC 边上 , 以每秒 4 cm 的速度从 C 点出发 , 在 CB 间往返运动 , 两点同时出发 , 待 P 点到达 D 点为止 , 在这段时间 内,线段 PQ 有 次平行于 AB () A.1B.2C.3D.4二、填空题 :( 每小题 3 分, 共 6 题, 共计 18 分)13. 最简二次根式2b 1 与 a 1 7 b 是同类二次根式,则a= , b= .14. 一个等腰直角三角形中 , 它的斜边与斜边上的高的和是18cm,那么此直角三角形的直角边为cm.15. 一个四边形的边长依次为 a,b,c,d, 且 a 2+b 2 +c 2+d 2-2ac-2bd=0, 则这个四边形的形状是.16. 如图 , 矩形纸片 ABCD 中,AB=5 cm,点 E 在 BC 上 , 且 AE=EC.若将纸片沿 AE 折叠 , 点 B 恰好与 AC 上的点 B ′ 重合 , 则 BC=________ cm.第11题图第12题图17. 如图,在平面直角坐标系中, 四边形 AOBC 是菱形.若点 A 的坐标是( 3,4),则菱形的周长为 ,点 C 的坐标是.18. 如图 , 矩形 ABCD 中 ,AB=3,BC=4, 点 E 是 BC 边上一点 , 连接 AE ,把∠ B 沿 AE 折叠,使点B 落在点 B ’处 ,当△ CEB ’为直角三角形时,BE 的长为 _________.二、综合题 :( 共6题,共计 66分)19.( 本小题 8 分) 分析探索题:细心观察如图,认真分析各式,然后解答问题.x k b 1 . c o mOA 22S 1= ;2=() +1=2OA22S=;3=() +1=32OA 2 2S 3= ⋯4 =( ) +1=4( 1)请用含有 n ( n 为正整数)的等式 S =;n2( 2)推算出 OA 10=.( 3)求出 S2 2 2 2 的值.1+S +S +⋯ +S232020.( 本小题 8 分) 已知 a b8,ab 8, 化简b a并求值 .ab21. ( 本小题 10 分 ) 如图已知在平面直角坐标系中, S ABC 30 , ∠ABC=450, BC=12,求 AB 及 AC 的长度 .22.( 本小题 10 分 ) 如图,正方形 ABCD 的对角线 AC 、 BD 相交于点 O ,∠ OCF=∠ OBE .求证: OE=OF .323.( 本小题 10 分) 如图 , △ABC中 ,AB=4,AC=3,AD 、 AE 分别是其角平分线和中线 , 过点 C 作 CG⊥AD于 F, 交AB于 G,连接 EF, 求线段 EF的长 .24.( 本小题 10 分 ) 如图 , 在菱形 ABCD中 , ∠A=60 ,E 、F 分别是 AD、 CD上的两点 , 且 AE=DF.(1)求证:△ ABE≌△ DBF;(2)若 AB=6,E、 F 为动点 , 连接 EF,始终满足 AE=DE,连接 EF, 求△ BEF面积的最小值 .25.( 本小题 10 分) 如图 , 在正方形 ABCD中 , 点 E,F 分别在 BC,CD上移动 , 但 A 到 EF的距离 AH始终保持与 AB 长相等,问在 E、 F 移动过程中 :(1)∠ EAF的大小是否有变化?请说明理由.(2)△ ECF的周长是否有变化?请说明理由.4(3) 当 EH=2,HF=3时 , 求正方形ABCD的边长 AB.5。
2016年4月八年级期中数学试题3
12015-2016学年度第二学期期中考试八年级数学试卷一、选择题(每题3分,共30分) 1. 要使代数式 有意义,则x 的A . 最大值是B . 最小值是C . 最大值是D . 最小值是2. 若b b -=-3)3(2,则b 满足的条件是A .b>3B .b<3C .b ≥3D .b ≤3 3. 合并的是A B . C . D4.如图,Rt △ABC 中,∠C =90°,AB =15cm ,则正方形ADEC 与正方形BCFG 的面积和为 A .150cm 2 B .200cm 2 C .225cm 2D .无法计算5.满足下列条件的三角形中,不是直角三角形的是A. 三内角之比为1∶2∶3B. 三边长的平方之比为1∶2∶3C. 三边长之比为3∶4∶5D. 三内角之比为3∶4∶5 6.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动A. 9分米B. 15分米C. 5分米D. 8分米7. 一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是A .88°,108°,88°.B .88°,104°,108°.C .88°,92°,92° .D .88°,92°,88°.8.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量其中三个角是否都为直角第4题图13232712323x -2RP DC B A EF第9题图 9. 如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不变D .线段EF 的长与点P 的位置有关10.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( ) A . 1 B .3C. 2D .3+1二、填空题(每题3分,共18分)11. 在实数范围内分解因式32-x =12. 平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 。
(常考题)人教版初中数学八年级数学下册第四单元《一次函数》测试题(包含答案解析)(4)
一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 3.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2) 4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2B .3C .4D .5 8.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 9.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 10.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个 11.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 12.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-二、填空题13.如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)15.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.16.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.17.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 18.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.19.已知一次函数12y kx k =-(k 是常数)和21y x =-+.(1)无论k 取何值,12y kx k =-(k 是常数)的图像都经过同一个点,则这个点的坐标是_______;(2)若无论x 取何值,12y y >,则k 的值是_______.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题21.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.已知点(2,﹣4)在正比例函数y =kx 的图象上.(1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.24.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数=y x 分别交x 轴、y 轴于A 、B 两点,∴()3,0A ,(B ,3,OA OB ∴==∴AB ==, ∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒,1122AE AB ∴==⨯=3BE ∴===又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.B解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.3.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.4.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 6.D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案.【详解】 解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.9.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.10.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 11.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.12.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题13.()()或()或()【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况分别求解即可【详解】解:(1)联立两个方程组得将①代入②得:解得:将代入①得:∴点坐标为()故答解析:(25,65) (0,25)或(0,2-或(0,2+ 【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况,分别求解即可【详解】解:(1)联立两个方程组得22112y x y x =-+⎧⎪⎨=+⎪⎩①② 将①代入②得:22=112x x -++ 解得:2=5x 将2=5x 代入①得:5=6y ∴点M 坐标为(25,65)故答案为:(25,65) (2)由22y x =-+得 当x=0时,y=2故B(0,2)以BM 为一腰时,有两种情况当BME 以M 为顶点时,设E 点坐标为(0,y ) 则66255y -=- 解得:25y = 故E 点坐标为(0,25) 当BME 以B 为顶点时,设E 点坐标为(0,y )∵5= 若E 在B 下方则y=25- 若E 在B 上方则y=2故E 点坐标为(0,25-)或(0,25+)故答案为:(0,25)或(0,25-)或(0,25+) 【点睛】 本题考查两直线相交问题及等腰三角形的性质,熟练掌握等要三角形的定义及性质是解本题的关键14.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 15.(22021-122020)【分析】首先利用待定系数法求得直线的解析式然后分别求得B1B2B3…的坐标可以得到规律:Bn (2n-12n-1)据此即可求解【详解】解:∵B1的坐标为(11)点B2的坐标解析:(22021-1,22020)【分析】首先利用待定系数法求得直线的解析式,然后分别求得B 1,B 2,B 3…的坐标,可以得到规律:B n (2n -1,2n-1),据此即可求解.【详解】解:∵B 1的坐标为(1,1),点B 2的坐标为(3,2),∴正方形A 1B 1C 1O 1边长为1,正方形A 2B 2C 2C 1边长为2,∴A 1的坐标是(0,1),A 2的坐标是:(1,2),代入y=kx+b 得:12b k b ⎧⎨+⎩==, 解得:11k b ⎧⎨⎩==, 则直线的解析式是:y=x+1.∵A 1B 1=1,点B 2的坐标为(3,2),∴点A 3的坐标为(3,4),∴A 3C 2=A 3B 3=B 3C 3=4,∴点B 3的坐标为(7,4),∴B 1的纵坐标是:1=20,B 1的横坐标是:1=21-1,∴B 2的纵坐标是:2=21,B 2的横坐标是:3=22-1,∴B 3的纵坐标是:4=22,B 3的横坐标是:7=23-1,∴B n 的纵坐标是:2n-1,横坐标是:2n -1,则B n (2n -1,2n-1).∴B 2021的坐标是:(22021-1,22020),故答案为:(22021-1,22020).【点睛】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.16.【分析】根据正方形的性质得到点AC 关于直线OB 对称连接CD 交OB 于P连接PAPD则此时PD+AP的值最小求得直线CD的解析式为y=-x+2由于直线OB 的解析式为y=x解方程组得到P()即可【详解】解解析:44 , 33⎛⎫⎪⎝⎭【分析】根据正方形的性质得到点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,求得直线CD的解析式为y=-12x+2,由于直线OB的解析式为y=x,解方程组得到P(43,43)即可.【详解】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=2,∴C(0,2),A(2,0),∵D为AB的中点,∴AD=12AB=1,∴D(2,1),设直线CD的解析式为:y=kx+b,∴212k bb+⎧⎨⎩==,∴122kb⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为:y=-12x+2,∵直线OB的解析式为y=x,∴122y xy x⎧-+⎪⎨⎪⎩==,解得:x=y=43, ∴P (43,43), 故答案为:(43,43). 【点睛】 本题考查了正方形的性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确求出直线CD 的解析式是解题的关键.17.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点解析:4【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3, ∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .18.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩,∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.19.(20)-1【分析】(1)解析式变形为y =k (x ﹣2)即可得到无论k 取何值y1=kx ﹣2k (k 是常数)的图象都经过点(20);(2)由题意可知y1的图象始终在y2上方得到两函数不相交平行即可得出k =解析:(2,0) -1【分析】(1)解析式变形为y =k (x ﹣2),即可得到无论k 取何值,y 1=kx ﹣2k (k 是常数)的图象都经过点(2,0);(2)由题意可知,y 1的图象始终在y 2上方,得到两函数不相交,平行,即可得出k =﹣1.【详解】解:(1)∵y =kx ﹣2k =k (x ﹣2),∴当x =2时,y =0,∴这个点的坐标是(2,0),故答案为(2,0);(2)∵无论x 取何值,y 1>y 2,∴y 1的图象始终在y 2上方,∴两个函数平行,∴k =﹣1,故答案为﹣1.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,难度适中.20.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴AB AM BM又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即可得到答案;(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y =kx 的图象上∴-4=2k解得:k =-2;(2)结合(1)的结论得:正比例函数的解析式为y =-2x∵点(-1,m )在函数y =-2x 的图象上∴当x =-1时,m =-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.24.(1)92922y x =-;(2)179 【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式; (2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键.。
2016新人教版八年级下册数学期末试卷及答案
条件的函数解析式 ______________________ .
18. ) 某市 2007 年 5 月份某一周的日最高气温 ( 单位 : ℃ ) 分别为 :25,28,30,29,31,32,28, 这
24. ( 9 分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终
点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的
2 倍,小颖在小亮出
发后 50 min 才乘上缆车,缆车的平均速度为 180 m/min.设小亮出发 x min 后行走的路
程为 y m .图中的折线表示小亮在整个行走过程中 y 与 x 的函数关系.
】
5
A.
4 5 C. 3
5
B.
2 6 D. 5
F
E
M
B
P
C
二、填空题(本题共 10 小题,满分共 30 分)
11. 48 -
1
3 + 3( 3 1) -3 0 3
3 2=
2
12.边长为 6 的大正方形中有两个小正方形,
的值为(
)
若两个小正方形的面积分别为
S1,S2,则 S1+S2
13. 平行四边形 ABCD的周长为 20cm,对角线 AC、 BD相交于点 O,若△ BOC的周长比△ AOB 的周长大 2cm,则 CD= cm 。
90
80
70
70
60
50
40
30 36
20
10
01
2
1
2
折线统计图
人教版数学八年级下册期中考试试卷4
2014-2015学年八年级下学期期中数学试卷一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.1.(3分)下列根式中,化简后能与进行合并的是()A.B.C.D.2.(3分)如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等3.(3分)在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADB度数为()A.15°B.17°C.16°D. 32°4.(3分)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.5.(3分)如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D. 2步6.(3分)若+=,0<x<1,则﹣=()A.﹣B.﹣2 C.±2 D.±7.(3分)如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.B.3C.4 D. 38.(3分)如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的()A.B.C.D.9.(3分)矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5 B.C.6 D.10.(3分)如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B. 4 C.3 D. 2二、填空题(共6小题,每小题3分,共18分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.(3分)①代数式在实数范围里有意义,则x的取值范围是;②化简的结果是;③在实数范围里因式分解x2﹣3= .12.(3分)成立的条件是.13.(3分)已知x=2﹣,代数式(7+4)x2+(2+)x+的值是.14.(3分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.15.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.16.(3分)如图,四边形ABCD中,∠ABE=90°,AB∥CD,AB=BC=6,点E 为BC边上一点,且∠EAD=45°,ED=5,则△ADE的面积为.三、解答题(共8小题72分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.17.(8分)①(+)+(﹣)②(2﹣3)÷.18.(8分)先简化,再求值:,其中x=.19.(8分)已知P为正方形ABCD的对角线AC上任意一点,求证:PB=PD.20.(8分)如图在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC= ,BC= .(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D 点的坐标.21.(8分)水池中有水,水面是一个边长为10尺的正方形,水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长度分别是多少?22.(10分)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.23.(10分)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)24.(12分)已知:如图,在△ABC中,A(a,0),B(b,0),C(0,c),且a、b、c满足b=,BD⊥AC于D,交y轴于E.(1)如图1,求E点的坐标;(2)如图2,过A点作AG⊥BC于G,若∠BCO=30°,求证:AG+GC=CB+BO;(3)如图3,P为第一象限任意一点,连接PA作PQ⊥PA交y轴于Q点,在射线PQ上截取PH=PA,连接CH,F为CH的中点,连接OP,当P点运动时(PQ 不过点C),∠OPF的大小是否发生变化?若不变,求其度数;若变化,求其变化范围.参考答案与试题解析一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.1.(3分)下列根式中,化简后能与进行合并的是()A.B.C.D.考点:同类二次根式.分析:先根据二次根式的性质把每个根式化成最简二次根式,再判断是否与是同类二次根式即可.解答:解:A、=2,与不能进行合并,故本选项错误;B、=3,与不能进行合并,故本选项错误;C、=,与不能进行合并,故本选项错误;D、=2,与能进行合并,故本选项正确;故选D.点评:本题考查了二次根式的性质和二次根式的定义的应用,主要考查学生的计算能力和辨析能力.2.(3分)如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等考点:三角形的面积.专题:压轴题.分析:根据三角形的面积公式来计算即可.解答:解:小矩形的长为a,宽为b,则①中的阴影部分为两个底边长为a,高为b的三角形,∴S=×a•b×2=ab;②中的阴影部分为一个底边长为a,高为2b的三角形,∴S=×a•2b=ab;③中的阴影部分为一个底边长为a,高为b的三角形,∴S=×a•b=ab;④中的阴影部分为一个底边长为a,高为b的三角形,∴S=×a•b=ab.∴①和②,③和④分别相等.故选D.点评:此题主要考查三角形面积公式的综合应用,关键是如何确定三角形的底边和高的长度.3.(3分)在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADB度数为()A.15°B.17°C.16°D. 32°考点:线段垂直平分线的性质.分析:首先连接AC,根据AM⊥CD,AN⊥BC,判断出四边形AMCN是圆内接四边形,进而求出∠BCD=106°;然后判断出∠ABD=∠ADB,根据∠ABC+∠ADC=∠ACB+∠ACD=106°,求出∠ADB的度数是多少即可.解答:解:如图,连接AC,,∵AM⊥CD,AN⊥BC,∴四边形AMCN是圆内接四边形,∴∠MAN+∠BCD=180°,∴∠BCD=180°﹣∠MAN=180°﹣74°=106°,∴∠BDC=180°﹣41°﹣106°=33°,∵M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,∴AB=AC=AD,∴∠ABD=∠ADB,∵∠ABC=∠ACB,∠ADC=∠ACD,∴∠ABC+∠ADC=∠ACB+∠ACD=106°,∵∠ABD=∠ADB,∠DBC=41°,∠BDC=33°,∴∠ADB=(106°﹣41°﹣33°)÷2=32°÷2=16°即∠ADB度数为16°.故选:C.点评:(1)此题主要考查了线段垂直平分线的性质,要熟练掌握,解答此题的关键是要判断出:∠ABD=∠ADB,∠ABC+∠ADC=∠ACB+∠ACD=106°.(2)此题还考查了等腰三角形的边角的关系,要熟练掌握.4.(3分)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.考点:列代数式(分式).专题:应用题.分析:房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.解答:解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.点评:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.(3分)如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D. 2步考点:勾股定理的应用.分析:少走的距离是AC+BC﹣AB,在直角△ABC中根据勾股定理求得AB的长即可.解答:解:在直角△ABC中,AB2=AC2+BC2AB===5m.则少走的距离是AC+BC﹣AB=3+4﹣5=2m=4步.故选C.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.6.(3分)若+=,0<x<1,则﹣=()A.﹣B.﹣2 C.±2 D.±考点:二次根式的化简求值.专题:计算题.分析:把已知条件两边平方得到(+)2=6,再根据完全平方公式得到(﹣)2+4=6,则利用二次根式的性质得|﹣|=,然后根据0<x<1,去绝对值即可.解答:解:∵+=,∴(+)2=6,∴(﹣)2+4=6,∴|﹣|=,∵0<x<1,∴﹣=﹣.故选A.点评:本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.7.(3分)如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.B.3C.4 D. 3考点:勾股定理;三角形的面积.专题:压轴题;网格型.分析:根据勾股定理计算出BC的长,再根据三角形的面积为3,即可求出点A 到边BC的距离.=(4﹣1﹣1﹣0.5):4=1.5:4=3:8,解答:解:S△ABC:S大正方形∵S△ABC=3,∴小正方形的面积为2,BC=2,点A到边BC的距离为6÷2=3,故选D.点评:此题考查了三角形的面积勾股定理的运用,关键是根据图形列出求三角形面积的算式.8.(3分)如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的()A .B .C .D .考点: 全等三角形的判定与性质;正方形的性质;旋转的性质.分析: 分两种情况探讨:(1)当正方形A 1B 1C 1O 边与正方形ABCD 的对角线重合时;(2)当转到一般位置时,由题求证△AEO ≌ △BOF ,故两个正方形重叠部分的面积等于三角形ABO 的面积,得出结论.解答: 解:(1)当正方形绕点OA 1B 1C 1O 绕点O 转动到其边OA 1,OC 1分别于正方形ABCD 的两条对角线重合这一特殊位置时,显然S 两个正方形重叠部分=S 正方形ABCD ,(2)当正方形绕点OA 1B 1C 1O 绕点O 转动到如图位置时.∵四边形ABCD 为正方形,∴∠OAB=∠OBF=45°,OA=OBBO ⊥AC ,即∠AOE+∠EOB=90°,又∵四边形A ′B ′C ′O 为正方形,∴∠A ′OC ′=90°,即∠BOF+∠EOB=90°,∴∠AOE=∠BOF ,在△AOE 和△BOF 中,∴△AOE ≌△BOF (ASA ),∵S 两个正方形重叠部分=S △BOE +S △BOF ,又S △AOE =S △BOF ,∴S 两个正方形重叠部分=S △ABO =S 正方形ABCD .综上所知,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.故选C.点评:此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点,正确的识别图形是解题的关键.9.(3分)矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5 B.C.6 D.考点:勾股定理;矩形的性质.专题:压轴题.分析:过E作EG⊥CD于G,利用矩形的判定可得,四边形AEGD是矩形,则AE=DG,EG=AD,于是可求MG=DG﹣DM=1,在Rt△EMG中,利用勾股定理可求EM.解答:解:过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG,EG=AD,∴EG=AD=BC=7,MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中,EM====5.故选B.点评:本题考查了矩形的判定、勾股定理等知识,是基础知识要熟练掌握.10.(3分)如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B.4 C.3 D. 2考点:全等三角形的判定与性质;角平分线的性质;勾股定理;正方形的判定与性质.分析:过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=CD,再利用勾股定理列式求出CE,根据正方形的性质求出OC=OD=a,然后利用四边形OCED的面积列出方程求出a2,再根据正方形的面积公式列式计算即可得解.解答:解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,∵∠DCE=30°,∠CED=90°∴DE=a,CE=a,设DN=x,x+DE=CE﹣x,解得:x=,∴NE=x+a=,∵OE=NE,∴=•,∴a=1,=4∴S正方形ABCD故选B.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题(共6小题,每小题3分,共18分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.(3分)①代数式在实数范围里有意义,则x的取值范围是x≥1;②化简的结果是2a;③在实数范围里因式分解x2﹣3=(x+)(x﹣).考点:二次根式有意义的条件;实数范围内分解因式;二次根式的性质与化简.分析:①根据被开方数大于等于0列式计算即可得解;②根据二次根式的性质化简即可;③利用平方差公式分解因式即可.解答:解:①由x﹣1≥解得,x≥1;②=2a;③x2﹣3=(x+)(x﹣).故答案为:x≥1;2a;(x+)(x﹣).点评:本题考查了二次根式有意义的条件,利用二次根式的性质化简以及实数范围内的因式分解,二次根式的被开方数是非负数.12.(3分)成立的条件是x≥1.考点:二次根式的乘除法.分析:根据二次根式的乘法法则:•=(a≥0,b≥0)的条件,列不等式组求解.解答:解:若成立,那么,解之得,x≥﹣1,x≥1,所以x≥1.点评:此题的隐含条件是:被开方数是非负数.13.(3分)已知x=2﹣,代数式(7+4)x2+(2+)x+的值是2+.考点:二次根式的化简求值.分析:首先不所求的式子化成(2+)2x2+(2+)x+的形式,然后把x的值代入求解.解答:解:原式=(2+)2x2+(2+)x+=[(2+)x]2+(2+)(2﹣)+=[(2+)(2﹣)]2+(2+)(2﹣)+=1+1+=2+.点评:本题考查了二次根式的化简求值,正确对二次根式进行变形是关键.14.(3分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.考点:轴对称-最短路线问题;正方形的性质.专题:计算题;压轴题.分析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.点评:此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.15.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4).考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.专题:动点型.分析:当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.解答:解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).故答案为:(2,4)或(3,4)或(8,4).点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.16.(3分)如图,四边形ABCD中,∠ABE=90°,AB∥CD,AB=BC=6,点E 为BC边上一点,且∠EAD=45°,ED=5,则△ADE的面积为15.考点:全等三角形的判定与性质;正方形的判定与性质.分析:过A作AF⊥CD于F,在四边形ABCF是正方形,延长CB到G,使BG=DF,先证得△AGB≌△ADF得出AG=AD,∠EAD=∠GAE=45°,然后再证得△ADE≌△AGE,得出EG=ED=5,最后根据全等三角形的面积相等即可求得;解答:解:过A作AF⊥CD于F,在四边形ABCF是正方形,延长CB到G,使BG=DF,在△AGB与△ADF中,,∴△AGB≌△ADF(SAS),∴AG=AD,∠GAB=∠DAF,∴∠GAD=90°∵∠EAD=45°,∴∠GAE=45°,在△ADE与△AGE中,,∴△ADE≌△AGE(SAS),∴EG=ED=5,∴S△ADE=S△AGE=EG•AB=×5×6=15,故答案为15.点评:本题考查了三角形全等的判定和性质,正方形的性质,作出辅助线是解答本题的关键.三、解答题(共8小题72分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.17.(8分)①(+)+(﹣)②(2﹣3)÷.考点:二次根式的混合运算.专题:计算题.分析:①先把各二次根式化为最简二次根式,然后去括号后合并即可;②先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解答:解:①原式=4+2+2﹣=6+;②原式=(8﹣9)÷=﹣÷=﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(8分)先简化,再求值:,其中x=.考点:分式的化简求值.专题:计算题.分析:原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=,当x=+1时,原式==.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(8分)已知P为正方形ABCD的对角线AC上任意一点,求证:PB=PD.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:由四边形ABCD是正方形得到AB=AD,∠BAC=∠DAC,证得△BAP≌△DAP,得到PB=PD..解答:证明:∵四边形ABCD是正方形,∴AB=AD,∠BAC=∠DAC=45°,在△BAP和△DAP中,,∴△BAP≌△DAP(SAS),∴PB=PD.点评:本题主要考查了正方形,全等三角形的判定,通过构建全等三角形来得出相关的边和角相等是解题的关键.20.(8分)如图在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D 点的坐标.考点:平行四边形的性质;坐标与图形性质;勾股定理.分析:(1)直接利用网格得出:∠ABC的度数,再利用勾股定理得出BC的长;(2)利用平行四边形的性质得出D点位置即可.解答:解:(1)由图形可得:∠ABC=45°+90°=135°,BC==;故答案为:135°,2;(2)满足条件的D点共有3个,以A、B、C、D四个点为顶点的四边形为:平行四边形分别是▱ABCD1、▱ABD2C 和▱AD3BC.其中第四个顶点的坐标为:D1(3,﹣4)或D2(7,﹣4)或D3(﹣1,0).点评:此题主要考查了平行四边形的性质以及勾股定理,注意不要漏解.21.(8分)水池中有水,水面是一个边长为10尺的正方形,水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长度分别是多少?考点:勾股定理的应用.分析:找到题中的直角三角形,设水深为x尺,根据勾股定理解答.解答:解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.22.(10分)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.考点:矩形的性质;全等三角形的判定与性质;勾股定理;翻折变换(折叠问题).分析:(1)连接GE,根据点E是BC的中点以及翻折的性质可以求出BE=EF=EC,然后利用“HL”证明△GFE和△GCE全等,根据全等三角形对应边相等即可得证;(2)设GC=x,表示出AG、DG,然后在Rt△ADG中,利用勾股定理列式进行计算即可得解.解答:解:(1)GF=GC.理由如下:连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=.点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件EF=EC是解题的关键.23.(10分)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)考点:平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形.专题:压轴题.分析:(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.解答:(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠B AC=180°﹣60°=120°,∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,∴△AGC是等边三角形.点评:本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.24.(12分)已知:如图,在△ABC中,A(a,0),B(b,0),C(0,c),且a、b、c满足b=,BD⊥AC于D,交y轴于E.(1)如图1,求E点的坐标;(2)如图2,过A点作AG⊥BC于G,若∠BCO=30°,求证:AG+GC=CB+BO;(3)如图3,P为第一象限任意一点,连接PA作PQ⊥PA交y轴于Q点,在射线PQ上截取PH=PA,连接CH,F为CH的中点,连接OP,当P点运动时(PQ 不过点C),∠OPF的大小是否发生变化?若不变,求其度数;若变化,求其变化范围.考点:全等三角形的判定与性质;坐标与图形性质;勾股定理.分析:(1)由b=就可以得出a=c,就可以b的值为2及∠CAB=45°,再由BD⊥AC就可以求出∠DBA=45°,进而求出BO=OE就可以求出点E的坐标;(2)根据三角形的面积公式可以表示出AG=,由∠BCO=30°,∠BOC=90°由勾股定理就可以求出AG,GC,CB,BO的值就可以求出结论;(3)延长PF到M,使MF=PF,连接MC,MO就可以得出△MFC≌△PFH,就有MC=PH,∠CMF=∠HPF,进而就可以得出△MCO≌△PAO,从而得出OM=OP,∠MOC=∠POA,从而可以得出结论.解答:解:(1)如图1,∵b=∴a﹣c≥0,c﹣a≥0∴a=c,b=﹣2,B(﹣2,0)∴OA=OC,∠AOC=90°∴∠OAC=∠OCA=45°∵BD⊥AC∴∠BDA=90°,∠DBA=45°∵∠BOE=∠BEO=45°,∴OB=OE=2∴E(0,2)(2)证明:如图2,∵AG⊥BC,CO⊥AB∴S△ABC=OC•AB=BC•AG∴AG=∵∠BCO=30°,∠BOC=90°∴BC=2BO=4,CO==2∴OA=OC=2,AB=2+2∴AG===3+∵在Rt△AGB中,∠GBA=60°,∠GAB=30°∴BG=AB=1+,CG=BC﹣BG=4﹣1﹣=3﹣∴AG+GC=3++3﹣=6,∵BC+BO=4+2=6∴AG+GC=BC+BO(3)∠OPF=45°,大小保持不变.理由:如图3,延长PF到M,使MF=PF,连接MC,MO,∵F为CH的中点,∴FH=FC.在△MFC和△PFH中,∴△MFC≌△PFH(SAS),∴MC=PH,∠CMF=∠HPF∵PH=PA∴MC=PA,MC∥PQ,∴∠MCO=∠CQP.∵∠CQP+∠PQO=180°,∠PAO+∠OQP=360°﹣90°﹣90°=180°,∴∠MCO=∠PAO.在△MCO和△PAO中,∴△MCO≌△PAO(SAS)∴OM=OP,∠MOC=∠POA.∵∠POA+∠POC=90°,∴∠MOP=∠MOC+∠COP=90°,∴∠OPF=45°.点评:本题考查了二次根式的性质的运用,坐标与图形的性质的运用,全等三角形的判定与性质的运用,勾股定理的运用,平行线的性质的运用,解答时证明三角形全等是关键.31 / 31。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年新人教版八年级数学下册期中复习试题
(四)
一、选择题:(每题3分,共36分)
1.在下列根式中,不是最简二次根式的是( )
A. B. C. D.
2.下列线段不能组成直角三角形的是( )
A. a=6,b=8,c=10 B.a=1,, C.,b=1,
D.a=2,b=3,
3.直角三角形的两条直角边的长分不为5,12,则斜边上的中线为(
)
A.cm B.13cm C.6cm
D.cm
4.如图,数轴上点A所表示的数为a,则a的值是( )
A.+1 B.﹣+1 C.﹣1 D.
5.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使
得四边形ABCD是菱形,则那个条件能够是( )
A.∠ABC=90° B.AC⊥BD C.AB=CD
D.AB∥CD
6.正方形具有而菱形不一定具有的性质是( )
A.对角线相等 B.对角线互相垂直平分 C.对角线平分
一组对角 D.四条边相等
7.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其
中能构成一个直角三角形三边的线段是( )
A. CD、EF、GH B.AB、EF、GH C.AB、CD、G
H D.AB、CD、EF
8.如图,在△ABC中,AB=6,AC=10,点D,E,F分不是AB,BC,AC的中点,
则四边形ADEF的周长为( )
A.8 B.10 C.12
D.16
第8题图 第9题图
第10题图
9.如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE等于(
)
A.65° B.25° C.30°
D.15°
10.矩形ABCD中,P、R分不是BC和DC上的点,E、F分不是AP和R
P的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确
的是( )
A.线段EF的长逐步增长 B.线段EF的长逐步减
小
C.线段EF的长始终不变 D.线段EF的长与点P
的位置有关
11.将矩形纸片ABCD按如图的方式折叠,恰好得到菱形AECF.若AD=
,则菱形AECF面积为( )
A.2 B.4 C.4
D.8
12.如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形AB
CD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边
中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下
列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是.
A.①② B.②③ C.②③④ D.①②③④
二、填空题:(每小题3分,共计18分)
13.如图,四边形ABCD中,E,F,G,H分不是边AB,BC,CD,DA的中点.请你
添加一个条件,使四边形EFGH为矩形,应添加的条件是 .
第13题图 第14题图
第15题图
14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线
段CD的长为 .
15.一只蚂蚁从长为4cm,宽为3cm,高是5cm的长方体纸箱的A点沿纸
箱爬到B点,那么它所行的最短路线的长是 cm.
16.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是
.
17.如图,已知矩形ABCD,过D作BD的垂线,与BC延长线交于E点,F
为BE的中点,连接DF.已知DF=4,设AB=x,AD=y.则代数式x2+(y-4)2=
第17题图 第18
题图
18.如图,M是正方形ABCD内一定点.
(1)若正方形ABCD的边长为4,则正方形ABCD的面积为 ;
(2)请在图中作出两条直线(要求其中一条直线必须过点M)使它们将正
方形ABCD的面积四等分,保留作图痕迹,并简要的写出作图步骤.
三、综合题:(共7题,共计66分)
19.(本小题8分)有一道练习题:关于式子2244aaa先化简,后求值,
其中2a.
小明的解法如下:2244aaa=22(2)aa=2(2)aa=2a=22.
小明的解法对吗?如果不对,请改正.
20.(本小题8分)如图,在一棵树的10米高B处有两只猴子,其中一只爬
下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只
猴子通过的距离相等,咨询这棵树有多高?
21.(本小题10分)如图,已知在▱ABCD中,E、F是对角线AC上的两点,
且AE=CF.求证:四边形BFDE是平行四边形.
22.(本小题10分)如图,一架长2.5m的梯子,斜靠在一竖直的墙上,这时,
梯底距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,则梯子的底端将滑出多
少米?
23.(本小题10分)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD
边与对角线BD重合,折痕为DG,求DG的长?
24.(本小题10分)如图,在△ABC中,BDAC于D,CEAB于E,点M、
N分不是BC、DE的中点.
求证:MNDE.
25.(本小题10分)如图1,四边形ABCD是正方形,点E是边BC的中点.∠
AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F.
(1)若取AB的中点M并连接EM,可通过全等证出AE=EF,请写出证
明过程.
(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条
件不变,那么结论“AE=EF”是否仍旧成立,若成立,请写出证明过程;若不成
立,请讲明理由;