探索与发现三角形边的关系ppt课件

合集下载

华东师大版数学七年级下册课件:9.1.3 三角形的三边关系(共17张PPT)

华东师大版数学七年级下册课件:9.1.3 三角形的三边关系(共17张PPT)
拓展思考:第三根木棒的长度应大于多少,小 于多少,才能与5cm,8cm的木棒组成三角形?
解:设第三根木棒的长度为acm,则由三角形三 边长的关系可得
8-5 <a < 8+5 即 3<a<13
故第三根木棒的长度应大于3cm,小于13cm,才能 与5cm,8cm的木棒组成三角形?
及时巩固
1、判断下列各组线段中,哪些能组成三角形, 哪些不能组成三角形,并说明理由。 (1)a=2.5cm, b=3cm, c=5cm. (2)e=6.3cm, f=6.3cm, g=12.6cm. 2、已知等腰三角形的两边长分别是3cm和6cm,则
A
D
B
C
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。

三角形的三边关系说课PPT课件

三角形的三边关系说课PPT课件
三角形的三边关系
.
1
目录
CONTENT
1 教材分析 2 学情分析 3 教学目标 4 教学重难点 5 教学准备 6 教学流程 7 板书设计
.
2
1
教材分析
人民教育出版社小学数学四年级下册
.
3
“三角形的三边关系”是人民教育出版社小学数学四年级 下册第30页的内容。本节《三角形边的关系》内容是在学生 已经学过三角形初步认识、三角形内角和的知识基础上进行 的,是前面所学知识的应用,也为初中实验几何“基本图形” 知识的获得做以铺垫。这节课的学习,使三角形的内容形成 了一个较完善的知识体系,为今后的应用提供了重要条件。
举一反三,利用练习巩固新学的知识
.
14
7
板书设计
设示效应,使教学的信息 浓缩。
.
15
副板书
主板书
题目书写
三角形的三边关系 三角形的任意两边
之和大于第三边
单击添加段落文字
说明
.
16
谢谢大家观看
Thanks For Watching
.
17
.
8
4
教学重难点
.
9
三角形三边关系的 实验与探究
重点
提高学生全面思
考数学问题的能

难点2
利用三角形三边
之间的关系解决 难点1 实际问题
.
10
5
教学准备
.
11
教案 PPT课件
教 准学 备
若干不同长度 的小棒
.
12
6
教学流程
.
13
引入 实践 练习
教学流程设计
小明家到学校有三条路,哪条路最近?为什么? 让同学们从若干不同长度的小棒任取三根看能 否围成三角形,从中发现什么?

2.4 探索与发现:三角形边的关系

2.4   探索与发现:三角形边的关系

探索与发现:三角形边的关系。

(教材第27、28页)1. 结合具体情境和直观操作活动,让学生探索并发现三角形任意两边之和大于第三边,并能运用三角形三边关系解决简单的实际问题。

2. 培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力。

3. 让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生应用数学的意识以及团结协助的精神。

重点:探索并发现三角形任意两边之和大于第三边。

难点:利用三角形三边之间的关系解决实际问题。

多媒体课件、每个小组一袋木棒(里面有四组小棒)、学生自己准备10根小棒等。

1. 课件出示下面的图形。

教师:认真观察,你知道小明从家到学校一共有几条路吗?学生:小明从家到学校一共有3条路。

教师:分别是哪3条?学生1:小明家——电影院——学校。

学生2:小明家——学校。

学生3:小明家——邮局——学校。

教师:今天,小明起床晚了,眼看上学快迟到了,你们快帮小明选择一条能最快到达学校的路?学生:小明家——学校。

1. 教师:为什么小明走这条路最近?你是怎么知道的?有的学生用生活经验解决,有的学生用尺子测量,有的……教师:哪个小组的同学想把你的想法和大家分享?学生1:从小明家到学校的路是直的,但是其他路是弯曲的,所以小明走直的路最近。

学生2:用尺子测量,发现小明家——学校是最近的。

教师:同学们你们在分别测量小明家到学校的距离、小明家到电影院的距离以及电影院到学校的距离,实际上,小明家、电影院和学校这三点构成了一个什么图形?学生:三角形。

教师:这三条线段就是三角形的三条边,因此这个问题与三角形三边之间的关系有关。

这节课我们就来探讨三角形三边之间的关系。

(板书课题:三角形边的关系)【设计意图:联系生活情境来创设问题,让学生体会到数学与生活的联系,数学就在我们身边,运用数学知识能较好地解决生活实际问题,从而增加学生学习的兴趣与动力】2. 教师:下面让我们做个试验来探讨上面的问题。

三角形三边关系课件

三角形三边关系课件
三角形分类
根据三角形的边长和角度,可以 将三角形分为等边三角形、等腰 三角形、直角三角形、锐角三角 形和钝角三角形等。
三角形元素介绍
பைடு நூலகம்顶点

三角形的三个角所在的点称为三角形 的顶点。
三角形中相邻两边所夹的角称为三角 形的角。

组成三角形的三条线段称为三角形的 边。
三角形性质概述
三角形两边之和大于第三 边,两边之差小于第三边 。
在几何证明中的应用
利用三角形三边关系及其不等式形式,可以在几 何证明中方便地证明一些与边长相关的结论。
3
在实际问题中的应用
三角形三边关系及其不等式形式在实际问题中也 有广泛的应用,如建筑设计、测量等领域。
05 三角形三边关系实验探究 与发现
通过实验验证三角形三边关系原理
准备实验材料
长度不同的小棒、直尺、笔和纸等。
在实际问题中求解最值问题
在建筑、工程等实际问题中, 利用三角形三边关系求解最短 路径、最小成本等问题。
通过构建数学模型,将实际问 题转化为三角形三边关系问题, 进而求解最优解。
结合不等式性质与三角形三边 关系,解决一类具有约束条件 的最值问题。
在其他数学领域应用
在解析几何中,利用三角形三边 关系判断点的位置、直线的交点
平或拉长。
实例解析
例如,在一个直角三角形中,两 条直角边之差一定小于斜边,这 符合三角形两边之差小于第三边
的性质。
三角形三边关系证明方法
01
02
03
代数法
通过三角形的边长代数表 达式进行推导和证明,常 用于解决与边长相关的计 算问题。
几何法
利用几何图形和性质进行 直观证明,常用于解决与 形状、位置相关的几何问 题。

《三角形的三边关系》示范课PPT课件

《三角形的三边关系》示范课PPT课件

小小数学家们,开始 你们的探索之旅吧!
当两边的和等于第三边时
两边的和等于第三边时,不能围成三角形。
当两边的和大于第三边时
当两边的和大于第三边时,能围成三角形。
三角形任意两边之和大于 第三边。
三、知识运用
2. 在能拼成三角形的各组小棒下面画“√”(单位成3段, 拼一拼,围一围,看是 否能拼成三角形!
二、探究新知
边长 比较任意两边之和与第三边的 能不能摆
关系(用算式表示)
成三角形
8厘米 10厘米 30厘米
8+10<30 30+10>8 30+8>10
不能围成 三角形
我的发现:两边之和小于第三边时不能拼成三角形
当两边的和小于第三边时
两边的和小于第三边时,不能围成三角形
(3)
(√)
(√)
(4)
()
(√)
下列各组线段能围成三角形吗?
1、4cm ,10cm, 6cm (×) 2、9cm ,7cm, 6cm (√ ) 3、3cm ,10cm, 5cm (×)
×
挑战自我
(1)任何三条线段都能组成一个三角形。 ( )
(2)因为a+b>c,所以a、b、c三边可以构成三角形( × )
3有两根长度分别是有两根长度分别是22厘米和厘米和55厘米长的小棒厘米长的小棒aa用长度是用长度是33厘米的小棒与它们能摆成三角形吗
人教版四年级下册
三边
广丰区洋口镇中心小学:徐春涛
哪一个图形是三角形?
(1)
(2)
(3)
由三条线段围成的图形(每相邻 的两条线段首尾相连)叫做三角形。
比一比谁的动手能力最强!
533 534 535 536 537

人教版数学四年级下册三角形三边的关系PPT课件

人教版数学四年级下册三角形三边的关系PPT课件

03
三角形稳定性与应用举例
三角形稳定性原理
三角形的基本性质
三角形是由三条边和三个角组成的平面图形,具有稳定性和不 变形性。
稳定性原理
当三角形的三条边长度确定时,其形状和大小也就唯一确定了, 因此三角形具有稳定性。这种稳定性使得三角形在受到外力作 用时,能够有效地抵抗变形。
建筑结构中三角形应用
桥梁结构
的对角互补等。同时,正多边形与圆的关系更为特殊,如正多边形的外
接圆半径和内切圆半径有固定的比例关系。
06
总结回顾与课堂互动环节
关键知识点总结回顾
三角形的定义和性质 三角形是由三条线段首尾顺次连接而成的图形,具有稳定 性、内角和为180度等性质。
三角形三边关系定理 三角形任意两边之和大于第三边,任意两边之差小于第三 边。
任意两边之差小于第三边,也是三角 形存在的基本条件。
几何意义
具体案例
如上述三边长度分别为3cm、4cm、 5cm的三角形,任意两边之差均小于 第三边,如5-3<4、5-4<3、4-3<5。
保证了三角形不是扁平的,即任意两 边长度的差不会等于第三边。
特殊情况下三边关系
等边三角形
等腰三角形
直角三角形
不满足三边关系的情况
THANKS
感谢观看
三角形分类 按角分可分为锐角三角形、直角三角形和钝角三角形;按 边分可分为等腰三角形、等边三角形和不属于以上两种的 其他三角形。
学生自我评价报告分享
学习收获
通过本节课的学习,我掌握了三 角形的基本概念和性质,理解了 三角形三边关系定理,并能够运 用所学知识解决一些实际问题。
学习不足
在运用三角形三边关系定理解决 问题时,有时会出现计算错误或 理解偏差,需要加强练习和巩固。

《三角形三边的关系》ppt课件

《三角形三边的关系》ppt课件
、建筑设计等。
06
三角形不等式在实 际问题中的应用
城市规划与建筑设计中的应用
道路设计
在道路规划中,利用三角形不等 式原理可以确定最短路径,优化
交通网络布局。
建筑设计
建筑师在设计建筑物时,需考虑 结构的稳定性和美观性,三角形 不等式可用于确定支撑结构的最
佳角度和长度。
城市规划
在城市规划中,三角形不等式可 用于计算地块之间的最短距离, 为公共设施布局、绿地规划等提
THANKS
感谢您的观看
其他领域中的实际应用案例
机器人路径规划
在机器人技术领域,三角形不等式可用于规划机器人的行动路径, 确保其以最短距离到达目的地。
计算机图形学
在计算机图形学中,三角形不等式可用于三维模型的表面重建、纹 理映射等方面,提高图形渲染的真实感和效率。
物理模拟与仿真
在物理模拟和仿真领域,三角形不等式可用于计算物体之间的相互作 用力和运动轨迹,为科学研究和工程设计提供有力支持。
《三角形三边的关系 》ppt课件
目录
CONTENTS
• 三角形基本概念与性质 • 三角形三边关系定理 • 三角形稳定性与三边关系 • 三角形面积与三边关系 • 三角形相似与全等中的三边关系 • 三角形不等式在实际问题中的应

01
三角形基本概念与 性质
三角形定义及分类
三角形的定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
等腰三角形的面积最大化
对于等腰三角形,在给定底边和腰长的情况下,探讨其面积最大化 的条件及求解方法。
直角三角形面积最大化
对于直角三角形,在给定斜边和一条直角边的情况下,探讨其面积 最大化的条件及求解方法。

三角形的三边关系PPT课件

三角形的三边关系PPT课件

教 学 楼
请勿
践踏!
草坪
道 图书馆
有人说姚明一步能走2米多,相信吗?
姚明腿长1.28米
单击页面即可演示
有人说姚明一步能走2米多,相信吗?
姚明腿长1.28米
复 习
画一画,说一说:
请同学们在纸上画一个你最喜 欢的三角形,再跟同桌说一说三角 形有什么特点?
说一说:
在A点的小狗,为了尽快吃到B点的香肠, 它会选择哪条路线?如果小狗在C点呢?
C B C
A
B
A
5
6
两边的和小于第三边, 不能围成三角形。
12
5
7
两边的和等于第三边, 不能围成三角形。
12
两边的和小于第三边,不能围成三角形。 两边的和等于第三边,不能围成三角形。
大胆猜测:
猜想:
两边的和大于第三边, 能围成三角形。
实验:用以下三组小棒摆三角形。
( 1)
6厘米
7厘米
8厘米

(2 )
4厘米
5厘米
9厘米
×
(3 )
3厘米
6厘米
10厘米
×
任意两边之和大于第三边,
能围成三角形。
5
6
7
三角形任意 两边的和大于第 三边。
用尺测量出刚才所画的三角形 三条边的长度。再算一算,看看任 意两边的和是否大于第三边?
做一做
可以用较短的两条线段的和 每次都这样计算真累啊! 在能拼成三角形的各组小棒下面 与第三条线段相比较来检验 有没有简单的办法呢?
B
公路
应用拓展
学校的木工小组现有两根木条,分别 长7厘米和10厘米,要选择第三根木条, 钉成一个三角形木架,你能帮助确定第三 根木条最长是多少厘米?最短是多少厘米 吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档