百鹿入城的题
初三中考诗歌鉴赏语文试题附答案

初三中考诗歌鉴赏语文试题附答案一、九年级下册诗歌鉴赏1.阅读下面的诗歌,完成问题。
关雎关关雎鸠,在河之洲。
窈窕淑女,君子好逑。
参差荇菜,左右流之。
窈窕淑女,寤寐求之。
求之不得,寤寐思服。
悠哉悠哉,辗转反侧。
参差荇菜,左右采之。
窈窕淑女,琴瑟友之。
参差荇菜,左右芼之。
窈窕淑女,钟鼓乐之。
(1)诗中的女子,为何会让君子“寤寐思服”?请用自己的话概括。
(2)本诗起句运用“兴”的手法托物寄意。
请从学过的其它诗文中选取一例,并加以简析。
2.阅读下面这首词,然后回答问题。
太常引·建康中秋夜为吕叔潜赋辛弃疾一轮秋影转金波,飞镜又重磨。
把酒问妲娥:被白发,欺人奈何?乘风好去,长空万里,直下看山河。
斫去桂婆娑,人道是,清光更多。
【注】本词约作于宋孝宗淳熙元年,作者时在江东安抚司参议任上。
(1)下列对这首词作的赏析,不恰当的两项是()A.开篇破题,写中秋圆月皎洁似金波,升高后逐渐变得像重新磨过的铜镜般明亮。
B.作者举杯赏月,由月亮联想到月中仙女,向嫦娥劝酒提问,浪漫而有意趣。
C.下片中作者想乘风直上长空,俯瞰壮丽山河,内心充满了激昂乐观的豪情壮志。
D.结句展现了作者奇特的想象:要飞奔月宫,砍去婆娑的桂树,让清光洒满人间。
E.作为豪放派词人,作者在本词中运用象征等手法托物言志,浪漫主义风格明显。
(2)词中有对“白发欺人”的感叹,有“俯瞰山河”“斫去桂树”的宏愿,请对其寓意作简要分析。
(3)“斫去桂婆娑,人道是,清光更多”运用了怎样的表现手法?请简要赏析(4)作者是如何通过浪漫主义手法抒写自己的情感的?请结合全词简要赏析。
3.阅读下面的诗歌,完成下题。
无题①陈毅生为革命死不哭,莽莽神州叹沉陆。
魂兮归来大地红,小住人间三十六②。
【注】①此诗为陈毅同志在梅山所作。
②三十六:指36年(即36岁),因为陈毅1901年生,1936年被围梅山,他做好了牺牲的准备。
(1)联系全诗,解释“大地红”的意思。
(2)这首诗表现出陈毅同志怎样的革命精神?(3)这首诗与《梅岭三章》中哪首诗所表达的信念一致?是什么信念?4.阅读下面诗歌,完成问题。
北师大版第5章 一元一次方程测试卷(含答案)

《第五章一元一次方程》章末测试卷一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.4.(3分)在等式中,已知S=800,a=30,h=20,则b=.5.(3分)(2018•牡丹江)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.6.(3分)(2018•南通)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.7.(3分)(2018•呼和浩特)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=式是解答此题的关键.12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.414.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6 15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c16.(3分)(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5B.4C.3D.2三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).18.(9分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?19.(5分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?24.(9分)(2018•随州)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x,于是得0..同理可得0.,1.1+0.1根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.,5.;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1,2.0;(注:0.10.315315…,2.0 2.01818…)【探索发现】(4)①试比较0.与1的大小:0.=1(填“>”、“<”或“=”)②若已知0.8571,则3.1428.(注:0.857l0.285714285714…)参考答案一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=﹣1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】本题考查列一元一次方程和解一元一次方程的能力,因为2a与1﹣a互为相反数,所以可得方程2a+1﹣a=0,进而求出a值.【解答】解:由题意得:2a+1﹣a=0,解得:a=﹣1.故填:﹣1.【点评】根据题意列方程要注意题中的关键词的分析理解,只有正确理解题目所述才能列出方程.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于a的方程,即可求得a的值.【解答】解:把x=2代入方程得:4+a﹣9=0,解得:a=5.故答案是:5.【点评】本题考查了方程的解得定义,理解定义是关键.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.据此即可得到一个关于a的方程,从而求解.【解答】解:根据题意,得2a﹣2=1,解得:a=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.(3分)在等式中,已知S=800,a=30,h=20,则b=50.【考点】解一元一次方程.【专题】计算题.【分析】将S=800,a=30,h=20,代入中,求出b的值即可.【解答】解:把S=800,a=30,h=20,代入中,800=,解得b=50.故答案为50.【点评】本题比较简单,只是考查一元一次方程的解法.5.(3分)(2018•牡丹江)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为160元.【分析】等量关系为:标价×0.8=标价﹣40,依此列出方程,解方程即可.【解答】解:设这双鞋的标价为x元,根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.6.(3分)(2018•南通)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为240x=150x+12×150.【分析】设快马x天可以追上慢马,根据快马和慢马所走的路程相等建立方程即可.【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×150【点评】本题考查了一元一次方程的应用,解答本题的关键是设出未知数,挖掘出隐含条件.7.(3分)(2018•呼和浩特)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款486元.【分析】设小华购买了x个笔袋,根据原单价×购买数量(x﹣1)﹣打九折后的单价×购买数量(x)=节省的钱数,即可得出关于x的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.【解答】解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是738.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.【解答】解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,由题意得100(3x﹣1)+10x+(2x+1)=100(2x+1)+10x+(3x﹣1)+99解得:x=3,则2x+1=7,3x﹣1=8,所以原来的三位数为738.故答案为:738.【点评】此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.【考点】一元一次方程的定义.【专题】计算题.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.【解答】解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.【考点】同解方程.【分析】求出已知方程的解,再把求出的数代入每个方程,看看左、右两边是否相等即可.【解答】解:x﹣1=2x,解得:x=﹣1,A、把x=﹣1代入方程得:左边≠右边,故本选项错误;B、把x=﹣1代入方程得:左边=右边,故本选项正确;C、把x=﹣1代入方程得:左边≠右边,故本选项错误;D、把x=﹣1代入方程得:左边≠右边,故本选项错误;故选B.【点评】本题考查了一元一次方程的解的应用,注意:使方程左右两边相等的未知数的值叫方程的解.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=【考点】等式的性质.【分析】根据等式的基本性质对各选项进行逐一分析即可.【解答】解:A、不符合等式的基本性质,故本选项错误;B、不论c为何值,等式成立,故本选项正确;C、∵=,∴•6c=•6c,即3a=2b,故本选项错误;D、当a≠b时,等式不成立,故本选项错误.故选B.【点评】本题考查的是等式的基本性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解答此题的关键.12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九【考点】一元一次方程的应用.【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【解答】解:设该商品的打x折出售,根据题意得,3200×=2400(1+20%),解得:x=9.答:该商品的打9折出售.故选:D.【点评】本题考查了一元一次方程的应用,正确区分利润与进价,打折与标价的关系是解题关键.13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.4【考点】解一元一次方程.【专题】计算题.【分析】设所缺的部分为x,2y+y﹣x,把y=﹣代入,即可求得x的值.【解答】解:设所缺的部分为x,则2y+y﹣x,把y=﹣代入,求得x=2.故选:B.【点评】考查了一元一次方程的解法.本题本来要求y的,但有不清楚的地方,又有y的值,则把所缺的部分当作未知数来求它的值.14.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6【考点】解一元一次方程.【分析】方程两边都乘以6即可得出答案.【解答】解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选B.【点评】本题考查了解一元一次方程的应用,注意:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化成1.15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c【考点】等式的性质.【专题】分类讨论.【分析】根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.【解答】解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.16.(3分)(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5B.4C.3D.2【分析】可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x+3﹣2x﹣4=2x+3,移项合并得:x=﹣4;(2)去括号得:x﹣2﹣4﹣2x=3,移项合并得:﹣x=9,解得:x=﹣9;(3)去分母得:6x﹣2+2x=x+2﹣6,移项合并得:7x=﹣2,解得:x=﹣;(4)方程整理得:﹣=,去分母得:8﹣90x﹣78+180x=200x+40,移项合并得:110x=﹣110,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(9分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.(5分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【考点】二元一次方程组的应用.【专题】应用题.【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.【考点】一元一次方程的应用.【分析】(1)首先设摩托车经过x小时追上自行车,由题意得摩托车速度是每小时行45km,再根据等量关系:骑自行车者2小时路程+x小时路程+180km=骑摩托车x小时路程,根据等量关系列出方程,再解即可;(2)利用船的速度与水速,进而表示出顺流与逆流所用时间,再利用一共航行了7小时得出等式求出即可.【解答】解:(1)设摩托车经过x小时追上自行车,由题意得:2×15+15x+180=3×15×x,解得:x=7.答:摩托车经过7小时追上自行车.(2)设:A、B两地距离为y千米.则B、C两地距离为(y﹣10)千米;根据题意可得:+=7,解得:y=32.5.答:A、B两地之间的路程为32.5km.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.用到的公式是:路程=速度×时间.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【考点】一元一次方程的应用.【专题】图表型.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?【考点】一元一次方程的应用.【专题】应用题;经济问题.【分析】(1)要知道到那个商店省钱,就要知道小明要买20本,要付多少钱.依题意列方程求出甲店所需付款和乙商店所需付款,然后进行比较到哪个商店省钱;(2)根据给两个商店付相等的钱这个等量关系列方程求解.(3)找出等量关系列方程求出用24元钱在甲商店可买多少本,在乙商店可买多少本,即可知道最多能买多少本.【解答】解:(1)甲店需付款10+10×0.7=17元;乙商店需付款:20×0.8=16元,故到乙商店省钱.(2)设买多少本时给两个商店付相等的钱,依题意列方程:10+(x﹣10)×70%=80%x,解得:x=30.故买30本时给两个商店付相等的钱.(3)设最多可买X本,则甲商店10+(X﹣10)×70%=24,解得:X=30;乙商店80%X=24解得:X=30.故最多可买30本.【点评】此题的关键是要比较,比较哪个店买多少本时便宜.24.(9分)(2018•随州)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x,于是得0..同理可得0.,1.1+0.1根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.,5.;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1,2.0;(注:0.10.315315…,2.0 2.01818…)【探索发现】(4)①试比较0.与1的大小:0.=1(填“>”、“<”或“=”)②若已知0.8571,则3.1428.(注:0.857l0.285714285714…)【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.【解答】解:(1)由题意知0.、5.5,故答案为:、;(2)0.0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x,∴0.;(3)同理0.1,2.02故答案为:,(4)①0.1故答案为:=②3.14280.8571 3.4∴4﹣0.85714故答案为:【点评】本题考查了规律探索和简单一元一次方程的应用,解答时注意按照阅读材料的示例找到规律.。
贵州省毕节织金2024年中考语文全真模拟试卷(含解析)

2024 学年中考语文模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、积累1.根据句意,依次填人下面横线上的词语,最恰当的一项是()工匠们传承、坚守、钻研、创新,技能的极致,打磨完美的作品。
司马迁的伟大,在于他从未以成败论英雄,从未以简单的道德观念来历史人物。
清晨,我漫步在桃花湖畔,听到阵阵的鸟鸣声,我的心情更加愉快。
书法是中国传统艺术形式,风格各异的书法作品将书法艺术表现得。
A .追求评判清脆淋漓尽致B .追赶判断清冽惟妙惟肖C .追赶评判清脆惟妙惟肖D .追求判断清冽淋濟尽致2.下列句子中标点符号使用正确的一项是:A .4 月12 日,沼山镇杨井小学留守儿童迎来了鄂州职业大学中职学院的“爱心妈妈”志愿团队。
B .通过《国家安全》主题教育课,师生进一步增强了自觉维护国家安全的责任感和使命感:国家安全,人人有责!C .会上老师对防溺水“六不准”,及溺水自救自护、心肺复苏、人工呼吸……等知识作了重点宣讲。
D .保育老师从孩子年龄特点和生活环节为切入点,如:我会排队、如何保护牙齿?怎样预防感冒?如何正确洗手?及驱蚊防蚊的方法等方面,组织了一堂特别的教学活动。
3.下面语境中,用语不得体一项是( )尊敬的老师:您好!收到您惠赠给我的大作,心里十分高兴,连夜拜读,如在海滩上拾到一颗珍珠,颇有收获。
您嘱咐我给您的大作写一篇书评,恨自己只有八斗之才,恐怕难以胜任。
敬请原谅。
A .惠赠B .拜读C .大作D .八斗之才4.下列句子中,加点成语使用准无误的一项是( )A .在“课内比较学”活动中,郭老师的课讲的惟妙惟肖,赢得了全班同学的热烈掌声。
深圳科城实验学校初中部语文初三上册诗歌鉴赏试卷

深圳科城实验学校初中部语文初三上册诗歌鉴赏试卷一、九年级上册诗歌鉴赏1.阅读诗歌,回答问题江上董颖万顷沧江万顷秋,镜天飞雪一双鸥。
摩挲数尺沙边柳,待汝成阴系钓舟。
(1)四句诗有实有虚,请找出虚写的一句。
(2)前两句诗写景手法独特,与范仲淹的“千嶂里,长烟落日孤城闭”有异曲同工之妙,请赏析它们的表达效果。
2.阅读下面古诗,完成两小题。
早秋山居温庭筠山近觉寒早,草堂霜气晴。
树凋窗有日,池满水无声。
果落见猿过,叶干闻鹿行。
素琴机虑静,空伴夜泉清。
(1)请写出体现“山居”生活时间推移的语句:觉寒早→霜气晴→→(2)颈联采用了以动衬静的写法,请作具体赏析。
(1)窗有日;夜泉清(2)衬山居之地的清幽寂静,由此引发居静自乐的闲适心情。
通过描绘“果”飘落,“猿”经过,“鹿”行走动态的景物,反衬山居之地的清幽寂静。
或者通过从果落见到猿过,叶干闻知鹿行,可见这儿山深人少,猿鹿才会从容大胆地昼夜出来觅食,反衬山居之地的清幽寂静,由此引发居静自乐的闲适心情。
【解析】【分析】(1)题干中问“时间”就是找出表示时间变化的词语,“日”“夜”。
(2)“果落”、“叶干”都是秋天山中的实景,而从果落可推见到猿过,叶干闻知鹿行,可见这儿山深人少,猿鹿才会从容大胆地昼夜出来觅食,山居环境的寥落寂静,便可了然。
用的正是前人“鸟鸣山更幽”的以动衬静的写作手法。
【点评】(1)鉴赏诗歌的形象。
能力层级为鉴赏评价D。
(2)鉴赏诗歌的表达技巧。
能力层级为鉴赏评价D。
3.阅读诗歌,回答问题睛①杜甫久雨巫山暗,新晴锦绣文②。
碧知湖外草,红见海东云。
竟日莺相和,摩霄鹤数群。
野花干更落,风处急纷纷。
【注】①本诗是诗人流落蜀中时所作。
②文:花纹、图案。
(1)这首诗的颔联和颈联是如何描写景物的,有何作用?(2)尾联中的“急纷纷”蕴含了诗人怎样的感情?(1)选取典型的景物,发挥想象,动静结合(视觉听觉相结合、远近结合、虚实结合),写出了雨后初晴的巫山绚丽多彩、生机勃勃景象。
2018全国中考数学分类汇编--3方程与不等式应用题

2018全国中考数学分类汇编--3方程与不等式应用题D【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.10.(2018·山东淄博)(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2018·四川眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是A.8% B.9% C.10% D.11%答案:C8.(2018·四川绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【考点】一元二次方程的应用【解析】【解答】解:设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为:C.【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.6.(2018·四川宜宾)(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.(2018·浙江杭州)某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
2018年安徽省中考数学试卷含答案

10.如图,直线 l1 ,l2 都与直线 l 垂直,垂足分别为 M , N , MN 1 .正方形 ABCD 的边长 为 2 ,对角线 AC 在直线 l 上,且点 C 位于点 M 处,将正方形 ABCD 沿 l 向右平移,
直到点 A 与点 N 重合为止.记点 C 平移的距离为 x ,正方形 ABCD 的边位于 l1 , l2 之
五、解答题(本大题共 2 小题,共 20 分.解答应写出文字说明、证明过程或演算步骤)
19.(本小题满分 10 分) 为了测量竖直旗杆 AB 的高度,某综合实践小组在地面 D 处竖直放置标杆 CD ,并在 地面上水平放置个平面镜 E ,使得 B, E, D 在同 一水平线上,如图所示.该小组在标杆 的 F 处通过平面镜 E 恰好观测到旗杆顶 A (此时 AEB FED ).在 F 处测得旗杆
故选:B. 【考点】增长率问题. 7.【答案】A 【 解 析 】 原 方 程 可 变 形 为 x2 (a 1)x 0 . ∵ 该 方 程 有 两 个 相 等 的 实 数 根 , ∴
21.(本小题满分 9 分)
“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)
上
进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
答
(第 21 题)
(1)本次比赛参赛选手共有
人,扇形统计图中“ 69.5~79.5 ”这一组人数占总
题
参赛人数的百分比为
.
(2)赛前规定,成绩由高到低前 60% 的参赛选手 获奖.某_______姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
方程与不等式市公开课一等奖课件名师大赛获奖课件

(2)根据题意,得x1+x2=-(2m+1),x1x2=m2-2. ∵(x1-x2)2+m2=21,∴(x1+x2)2-4x1x2+m2=21. ∴(2m+1)2-4(m2-2)+m2=21.
第一部分 知识梳理
第二章 方程与不等式 课时5 一元一次方程及其应用
1. (2017杭州)设x,y,c是实数,则( B )
A. 若x=y,则x+c=y-c B. 若x=y,则xc=yc
C. 若x=y,则
D. 若
则2x=3y
2. 已知2x=3y(y≠0),则下列式子成立的是( B )
3. 在解方程
解得x=12.
经检验,x=12是原分式方程的解,且符合题意.∴3x=36.
答:自行车的速度是12 km/h,公共汽车的速度是 36 km/h.
能力提升
7. (2018眉山)已知关于x的分式方程
有一个正数解,则k的取值范围为___k_<__6_且__k_≠__3____.
8. 若关于x的方程
无解,则m的值为
解得
答:一个篮球和一个足球的售价分别是70元,50元.
(2)设购进足球a个,由题意,得a≤2(100-a).
解得
∴最多可购买足球66个.
答:最多可购买足球66个.
能力提升
6. (2018天门)若关于x的一元一次不等式组 的解集是x>3,则m的取值范围是
( D) A. m>4
B. m≥4
C. m<4
课时7 分式方程及其应用
1. (2017河南)解分式方程
中考数学一轮复习《一元一次方程》练习题(含答案)

中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百鹿入城问题出现在我国古代数学著作《孙子算经》中,原文如
下:今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几
何?
这个问题的大意为:现在有100头鹿进城,每家领取一头后还有
剩余,剩下的鹿每三家分一头,则恰好取完,问城中共有多少户人家?
设城中共有x户人家,根据题意,我们可以得出方程:x + 3 = 100。
因此,正确答案是B。
这个问题考查了由实际问题抽象出一元一次方程的能力,解题的
关键是正确理解题意,找出等量关系。