高中数学不等式的分类、解法

合集下载

(完整版)高中数学不等式归纳讲解

(完整版)高中数学不等式归纳讲解

第三章不等式定义:用不等号将两个解析式连结起来所成的式子。

3-1 不等式的最基本性质①对称性:如果x>y,那么y<x;如果y<x,那么x>y;②传递性:如果x>y,y>z;那么x>z;③加法性质;如果x>y,而z为任意实数,那么x+z>y +z;④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则)3-2 不等式的同解原理①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。

③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。

④不等式F (x )G (x )>0与不等式0)x (G 0)x (F >>或0)x (G 0)x (F <<同解不等式解集表示方式F(x)>0的解集为x 大于大的或x 小于小的F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式3-3-1 均值不等式1、调和平均数: )a 1...a 1a 1(nH n21n +++= 2、几何平均数: n 1n 21n )a ...a a (G =3、算术平均数: n)a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++=这四种平均数满足Hn ≤Gn ≤An ≤Qna1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号3-3-1-1均值不等式的变形(1)对正实数a,b ,有2ab b a22≥+ (当且仅当a=b 时取“=”号)(2)对非负实数a,b ,有ab 2b a ≥+ (6)对非负数a,b ,有ab )2b a (b a 222≥+≥+ (7) 若,,a bc R +∈,有a b c ++≥a b c ==时成立)(8)对非负数a,b,c ,有ac bc ab c b a 222++≥++ (9)对非负数a,b , 2b a 2b a ab 222b1a 1+≤+≤≤+ 3-3-1-1最值定理当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和有最小值。

高中数学不等式知识点总结

高中数学不等式知识点总结

不等式一、不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 二、均值不等式1.均值不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 2、使用均值不等式的条件:3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即2221122a b a b ab a b++≥≥≥+(当a =b 时取等)例题1、(1)已知a ,b 为正常数,x 、y 为正实数,且1a b+=x y,求x+y 的最小值。

(2) 已知00>>y x ,,且302=++xy y x ,求xy 的最大值.三、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆二次函数c bx ax y ++=2 (0>a )的图象))((212x x x x a c bx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根a bx x 221-==无实根的解集)0(02>>++a c bx axR的解集)0(02><++a c bx ax∅ ∅注意:一般常用因式分解法、求根公式法求解一元二次不等式 例题2、解关于x 的不等式:12)1(>--x x a 例题3:不等式03)4)(23(22≤+-+-x x x x 的解为( )(数轴穿跟法: 奇穿,偶不穿)A .-1<x ≤1或x ≥2B .x <-3或1≤x ≤2C .x =4或-3<x ≤1或x ≥2D .x =4或x <-3或1≤x ≤2四、含有绝对值的不等式1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离2、则不等式:如果,0>a a x a x ax -<><=>>或|| a x a x ax -≤≥<=>≥或||a x a ax <<-<=><||a x a ax ≤≤-<=>≤||3.当0c >时, ||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<;当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. 4、解含有绝对值不等式的主要方法:①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;②去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.(2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 例题4:求解不等式:|21||2|4x x ++->.例题5:设p :x 2-x -20>0,q :212--x x <0,则p 是q 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 五、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ ②无理不等式:转化为有理不等式求解()0()()()0()()f x f x g x g x f x g x ⎧≥⎫⇒⎪⎬>⇔≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f ③指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>④对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩六、三角不等式: |b ||a ||b a ||b |-|a |+≤+≤七、不等式证明的几种常用方法比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、基本概念不等式是数学中的一个重要概念,它描述了数值之间的大小关系。

在高中数学中,我们学习了许多不等式的性质和解法。

下面将从基本概念、性质和解法三个方面对高中不等式的知识点进行总结。

1.1 不等式的定义不等式是指两个数或两个代数式之间的大小关系,用符号“<”、“>”、“≤”、“≥”表示。

不等式中的符号有以下含义: - “<”表示小于,例如a < b表示a小于b; - “>”表示大于,例如a > b表示a大于b; - “≤”表示小于等于,例如a ≤ b表示a小于等于b; - “≥”表示大于等于,例如a ≥ b表示a大于等于b。

1.2 不等式的解集不等式的解集是使不等式成立的所有实数的集合。

根据不等式的类型和题目的要求,解集可以是有限集、无限集或空集。

二、基本性质不等式具有一些基本的性质,了解这些性质可以帮助我们更好地理解和运用不等式。

2.1 不等式的传递性对于任意实数a、b、c,如果a < b且b < c,则有a < c。

这个性质称为不等式的传递性。

利用不等式的传递性,我们可以简化不等式的推导过程。

2.2 不等式的加减性质对于任意实数a、b、c,如果a < b,则有a + c < b + c,a - c < b - c。

这个性质称为不等式的加减性质。

利用不等式的加减性质,我们可以对不等式进行加减运算,从而得到等价的不等式。

2.3 不等式的乘除性质对于任意实数a、b、c(c ≠ 0),如果a < b且c > 0,则有ac < bc;如果a < b且c < 0,则有ac > bc。

这个性质称为不等式的乘除性质。

利用不等式的乘除性质,我们可以对不等式进行乘除运算,从而得到等价的不等式。

2.4 不等式的倒置性质对于任意实数a、b,如果 a < b,则有-b < -a。

高中数学教案:不等式与不等式组的解法

高中数学教案:不等式与不等式组的解法

高中数学教案:不等式与不等式组的解法一、引言不等式与不等式组是高中数学中重要的内容之一,也是同学们理解和掌握的重点。

不等式是数学中用以表示两个数之间的大小关系的方法,而不等式组则是由多个不等式组成的集合。

在这篇教案中,我们将探讨不等式和不等式组的定义、性质以及解法。

二、不等式的定义和性质1. 不等式的定义不等式是数学中用来描述两个数量之间大小关系的表示方法。

常见的不等号包括大于号(>)、小于号(<)、大于或等于号(≥)以及小于或等于号(≤)。

例如,“x > y”表示x大于y,“a ≤ b”表示a小于或者等于b。

2. 不等式性质a) 通过相同数值加减一个具体值后,原来相对大小关系保持不变。

例如,如果a > b,则a + c > b + c。

b) 通过相同数值乘除一个正实数后,原来相对大小关系保持不变;但如果乘除一个负实数,则相对大小关系发生改变。

例如,如果a > b,则ka > kb (k为正实数);但如果k为负实数,则ka < kb。

c) 相反符号代表相反的大小关系。

例如,如果a > b,则-b < -a。

三、一元不等式的解法1. 不等式的解集不等式的解集是使得不等式成立的所有实数的集合。

求解一元不等式时,我们可以通过以下步骤进行:a) 对于不包含未知数x的项,直接化简;b) 对于包含未知数x的项,根据其系数和符号性质转换为整数形式,并移项将未知数放在左边;c) 根据不同情况,分析不等号方向并得出解集。

2. 例题演示:求解一元不等式题目:解不等式3x + 4 > 10。

解题过程:a) 将不包含未知数x的项直接化简为10。

b) 包含未知数x的项为3x,请注意其系数和符号性质。

我们需要将该项移至左边,并转换为整数形式:3x - 6 > 0。

c) 分析不等号方向得出解集:由于系数为正(3 > 0),所以大于关系保持不变,即3x - 6 > 0 可变形为 x > 2。

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题29 常见不等式的解法

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题29 常见不等式的解法

专题29 常见不等式的解法【热点聚焦与扩展】高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算.相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大.本专题以一些典型例题来说明处理这类问题的常规思路。

(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可-—关键点:图象与x 轴的交点 2、高次不等式(1)可考虑采用“数轴穿根法",分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根 ④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分 ()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式 3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式(2)分式若成立,则必须满足分母不为零,即()0g x ≠ (3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()0f x g x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式 (1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解: ① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同 ② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理 5、指对数不等式的解法:(1)先讲一个不等式性质与函数的故事在不等式的基本性质中,有一些性质可从函数的角度分析,例如:a b a c b c >⇒+>+,可发现不等式的两边做了相同的变换(均加上c ),将相同的变换视为一个函数,即设()f x x c =+,则()(),a c f a b c f b +=+=,因为()f x x c =+为增函数,所以可得:()()a b f a f b >⇔>,即a b a c b c >⇒+>+成立,再例如:0,0,c ac bca b c ac bc >>⎧>⇒⎨<<⎩,可设函数()f x cx =,可知0c >时,()f x 为增函数,0c <时,()f x 为减函数,即()()()()0,0,c f a f b a b c f a f b >>⎧⎪>⇒⎨<<⎪⎩由以上两个例子我们可以得出:对于不等式两边作相同变换的性质,可将变换视为一个函数,则在变换时不等号是否发生改变,取决于函数的增减性。

高次不等式

高次不等式

高次不等式
高次不等式是:二次以上的不等式。

解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式。

常用的解法有化为不等式组法、列表法和根轴法(串根法或穿针引线法)来求解。

高次不等式的计算:
简单不等式我们可以直接计算来求解,分式不等式,我们先整理右侧为0,然后判断分子分母的正负情况,考虑需不需要变不等号,二次不等式,引用函数方程的思想,通过根的判别式计算求解。

不等式问题在咱们的管理类联考的数学中占有很大的比重,而且逐年仍有题量加多、题型变难的趋势。

基本不等式专题分类解析

基本不等式专题分类解析

基本不等式专题分类解析1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥b a 112+2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭题型二:利用不等式求函数最值、值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y方法一、凑项1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;方法二、凑系数1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。

不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。

例如,x > y表示x大于y,x < y表示x小于y。

二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。

1.对称性:如果x > y,则y < x。

这就是说,不等式两边同时改变符号,不等式的方向不会改变。

2.传递性:如果x > y,且y > z,则x > z。

这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。

3.可加性:如果x > y,且a > 0,则x + a > y + a。

这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。

4.乘法原则:如果x > y,且m > 0,则x * m > y * m。

这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。

三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。

1.作差比较法:如果x > y,则x - y > 0。

我们可以通过作差来比较两个数的大小。

2.作商比较法:如果x > y,则x / y > 1。

我们可以通过作商来比较两个数的大小。

3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。

我们可以通过韦达定理来比较两个数的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学简单不等式的分类、解法
一、知识点回顾
1.简单不等式类型:一元一次、二次不等式,分式不等式,高次不等式,指数、对数不等式,三角不等式,含参不等式,函数不等式,绝对值不等式。

2.一元二次不等式的解法
解二次不等式时,将二次不等式整理成首项系数大于0的一般形式,再求根、结合图像写出解集 3三个二次之间的关系:
二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228)
4.5.6.a>1时a
f 0<a<17.8.9.10.(1)3-(2
3-
<(2)213
022
x x ++>解集为
(R )(变为≤,则得?)(无实根则配方) 三、例题与练习
例1已知函数)()1()(b x ax x f +∙-=,若不等式
0)(>x f 的解集为)3,1(-,则不等式0)2(<-x f 的
解集为),2
1()23,(+∞--∞
解法一:由根与系数关系求出3,1-=-=b a ,得
32)(2++-=x x x f ,再得出新不等式,求解
解法二:由二次不等式0)(>x f 的解集为)3,1(-得
0)(<x f 解集为),3()1,(+∞--∞ ,再由
∈-x 2),3()1,(+∞--∞ 得解集
变式1.已知关于x 的不等式20x mx n -+≤的解集是 的解集是.
. 1<0 ) 当0<a<1时,原不等式解集为)1,1(a
当a=1时,0)1(2
<-x ,原不等式解集为φ 当a>1时,原不等式解集为)1,1(a
②.解关于x 的不等式0)1(log 1
2<--x a a
答案:当a>1时,解集为)2log 2
1
,
0(a
当0<a<1时,解集为)2log 2
1
,(a -∞
(总结指数与对数不等式解法)
思维点拨:含参数不等式,应选择恰当的讨论标准对所含字母分类讨论,要做到不重不漏.
例4:已知函数⎩⎨⎧≤≥+=)0(,1)
0(,1)(2x x x x f ,
则不等式)2()1(2
x f x f >-的解集为
分析:考虑解题思路,有两种方向---函数不等式或分段解不等式
⎩⎨⎧-<122x x 变式4x f )(=解集为(例5:f e x f =)(分析:x ),0[+∞为1(f -)1,(--∞变式5为f (x )则不等解析 故不等-6<3,解得x ∈(2,3)四、小结1.含参不等式求解要先考虑分类标准,做到不漏不重2.要善于转化,化为不等式组或整式不等式或代数不等式,注意数形结合。

五、课后思考题
1.已知函数)(x f 的大致图像如图,则不等式0)
1)((>-x
x x f 的解
集为
分析:化为不等式组⎪⎩⎪⎨⎧>>-0)(01x f x x 或⎪⎩⎪⎨⎧<<-0
)(0
1x f x x
进而得解集为),3()0,1(+∞-
2.已知⎩⎨⎧<-≥=)
0(2)
0(2)(2x x x x x f x ,解不等式
8))((<x f f
分析:换元,设t x f =)(,先解不等式8)(<t f ,得02<<-t 或30<≤t ,再转化为关于x 的不等式求解,解集为)3log ,1(2-
3.已知f (x )是定义域为实数集R 的偶函数,对任意x 1,x 2≥0,若x 1≠x 2,则
0)
()(2
121<--x x x f x f ,如果f =,且
3)(log 48
1>x f ,那么x 的取值范围为( )
时,f (x )是)log (8
1x ,
A B C ∆是。

相关文档
最新文档